[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

AU2002320303A1 - Beta-amino tetrahydroimidazo (1, 2-A) pyrazines and tetrahydrotrioazolo (4, 3-A) pyrazines as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes - Google Patents

Beta-amino tetrahydroimidazo (1, 2-A) pyrazines and tetrahydrotrioazolo (4, 3-A) pyrazines as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes

Info

Publication number
AU2002320303A1
AU2002320303A1 AU2002320303A AU2002320303A AU2002320303A1 AU 2002320303 A1 AU2002320303 A1 AU 2002320303A1 AU 2002320303 A AU2002320303 A AU 2002320303A AU 2002320303 A AU2002320303 A AU 2002320303A AU 2002320303 A1 AU2002320303 A1 AU 2002320303A1
Authority
AU
Australia
Prior art keywords
compound
treatment
group
patient
effective amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002320303A
Other versions
AU2002320303B2 (en
Inventor
Scott D. Edmondson
Michael H. Fisher
Dooseop Kim
Malcolm Maccoss
Emma R. Parmee
Ann E. Weber
Jinyou Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Merck Sharp and Dohme LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Sharp and Dohme LLC filed Critical Merck Sharp and Dohme LLC
Priority claimed from PCT/US2002/021349 external-priority patent/WO2003004498A1/en
Publication of AU2002320303A1 publication Critical patent/AU2002320303A1/en
Application granted granted Critical
Publication of AU2002320303B2 publication Critical patent/AU2002320303B2/en
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. Request to Amend Deed and Register Assignors: MERCK & CO., INC.
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. Request to Amend Deed and Register Assignors: MERCK & CO., INC.
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. Request to Amend Deed and Register Assignors: MERCK SHARP & DOHME CORP.
Adjusted expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

BETA-AMINO TETRAHYDROIMIDAZO (1,2-A) PYRAZINES AND TETRAHYDROTRIAZOLO (4,3-A) PYRAZINES AS DIPEPTIDYL PEPTIDASE INHIBITORS FOR THE TREATMENT OR PREVENTION
OF DIABETES
5 BACKGROUND OF THE INVENTION
Diabetes refers to a disease process derived from multiple causative factors and characterized by elevated levels of plasma glucose or hyperglycemia in the fasting state or after administration of glucose during an oral glucose tolerance test. Persistent or uncontrolled hyperglycemia is associated with increased and premature 0 morbidity and mortality. Often abnormal glucose homeostasis is associated both directly and indirectly with alterations of the lipid, lipoprotein and apolipoprotein metabolism and other metabolic and hemodynamic disease. Therefore patients with Type 2 diabetes mellitus are at especially increased risk of macrovascular and microvascular complications, including coronary heart disease, stroke, peripheral 5 vascular disease, hypertension, nephropathy, neuropathy, and retinopathy. Therefore, therapeutical control of glucose homeostasis, lipid metabolism and hypertension are critically important in the clinical management and treatment of diabetes mellitus.
There are two generally recognized forms of diabetes. In type 1 diabetes, or insulin-dependent diabetes mellitus (DDDM), patients produce little or no 0 insulin, the hormone which regulates glucose utilization. In type 2 diabetes, or noninsulin dependent diabetes mellitus (NTDDM), patients often have plasma insulin levels that are the same or even elevated compared to nondiabetic subjects; however, these patients have developed a resistance to the insulin stimulating effect on glucose and lipid metabolism in the main insulin-sensitive tissues, which are muscle, liver and 5 adipose tissues, and the plasma insulin levels, while elevated, are insufficient to overcome the pronounced insulin resistance.
Insulin resistance is not primarily due to a diminished number of insulin receptors but to a post-insulin receptor binding defect that is not yet understood. This resistance to insulin responsiveness results in insufficient insulin 0 activation of glucose uptake, oxidation and storage in muscle and inadequate insulin repression of lipolysis in adipose tissue and of glucose production and secretion in the liver.
The available treatments for type 2 diabetes, which have not changed substantially in many years, have recognized limitations. While physical exercise and 5 reductions in dietary intake of calories will dramatically improve the diabetic condition, compliance with this treatment is very poor because of well-entrenched sedentary lifestyles and excess food consumption, especially of foods containing high amounts of saturated fat. Increasing the plasma level of insulin by administration of sulfonylureas (e.g. tolbutamide and glipizide) or meglitinide, which stimulate the pancreatic β-cells to secrete more insulin, and/or by injection of insulin when sulfonylureas or meglitinide become ineffective, can result in insulin concentrations high enough to stimulate the very insulin-resistant tissues. However, dangerously low levels of plasma glucose can result from administration of insulin or insulin secretagogues (sulfonylureas or meglitinide), and an increased level of insulin resistance due to the even higher plasma insulin levels can occur. The biguanides increase insulin sensitivity resulting in some correction of hyperglycemia. However, the two biguanides, phenfor in and metformin, can induce lactic acidosis and nausea/diarrhea. Metformin has fewer side effects than phenformin and is often prescribed for the treatment of Type 2 diabetes. The glitazones (i.e. 5-benzylthiazolidine-2,4-diones) are a more recently described class of compounds with potential for ameliorating many symptoms of type 2 diabetes. These agents substantially increase insulin sensitivity in muscle, liver and adipose tissue in several animal models of type 2 diabetes resulting in partial or complete correction of the elevated plasma levels of glucose without occurrence of hypoglycemia. The glitazones that are currently marketed are agonists of the peroxisome proliferator activated receptor (PPAR), primarily the PPAR-gamma subtype. PPAR-gamma agonism is generally believed to be responsible for the improved insulin sensititization that is observed with the glitazones. Newer PPAR agonists that are being tested for treatment of Type TJ diabetes are agonists of the alpha, gamma or delta subtype, or a combination of these, and in many cases are chemically different from the glitazones (i.e., they are not thiazolidinediones). Serious side effects (e.g. liver toxicity) have occurred with some of the glitazones, such as troglitazone.
Additional methods of treating the disease are still under investigation. New biochemical approaches that have been recently introduced or are still under development include treatment with alpha-glucosidase inhibitors (e.g. acarbose) and protein tyrosine phosphatase-lB (PTP-1B) inhibitors.
Compounds that are inhibitors of the dipeptidyl peptidase-IV ("DP-IV" or "DPP-IV") enzyme are also under investigation as drugs that may be useful in the treatment of diabetes, and particularly type 2 diabetes. See for example WO 97/40832, WO 98/19998, U.S. Patent No. 5,939,560, Bioorg. Med. Chem. Lett., 6(10), 1163-1166 (1996); and Bioorg. Med. Chem. Lett., 6(22), 2745-2748 (1996). The usefulness of DP-IV inhibitors in the treatment of type 2 diabetes is based on the fact that DP-TV in vivo readily inactivates glucagon like peptide- 1 (GLP-1) and gastric inhibitory peptide (GIP). GLP-1 and GIP are incretins and are produced when food is consumed. The incretins stimulate production of insulin. Inhibition of DP-TV leads to decreased inactivation of the incretins, and this in turn results in increased effectiveness of the incretins in stimulating production of insulin by the pancreas. DP-TV inhibition therefore results in an increased level of serum insulin. Advantageously, since the incretins are produced by the body only when food is consumed, DP-TV inhibition is not expected to increase the level of insulin at inappropriate times, such as between meals, which can lead to excessively low blood sugar (hypoglycemia). Inhibition of DP-TV is therefore expected to increase insulin without increasing the risk of hypoglycemia, which is a dangerous side effect associated with the use of insulin secretagogues.
DP-IV inhibitors also have other therapeutic utilities, as discussed herein. DP-IV inhibitors have not been studied extensively to date, especially for utilities other than diabetes. New compounds are needed so that improved DP-TV inhibitors can be found for the treatment of diabetes and potentially other diseases and conditions.
SUMMARY OF THE INVENTION
The present invention is directed to compounds which are inhibitors of the dipeptidyl peptidase-IV enzyme ("DP-IV inhibitors") and which are useful in the treatment or prevention of diseases in which the dipeptidyl peptidase-IV enzyme is involved, such as diabetes and particularly type 2 diabetes. The invention is also directed to pharmaceutical compositions comprising these compounds and the use of these compounds and compositions in the prevention or treatment of such diseases in which the dipeptidyl peptidase-IV enzyme is involved.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to compounds of the formula I:
I wherein:
Ar is phenyl which is unsubstituted or substituted with 1-5 of R3, wherein R3 is independently selected from the group consisting of:
(1) halogen,
(2) Ci_6alkyl, which is linear or branched and is unsubstituted or substituted with 1-5 halogens,
(3) OCi-βalkyl, which is linear or branched and is unsubstituted or substituted with 1-5 halogens, and
(4) CN;
X is selected from the group consisting of:
(1) N, and
(2) CR2;
Rl and R are independently selected from the group consisting of: (1) hydrogen,
(2) CN,
(3) Cι_ιoalkyl, which is linear or branched and which is unsubstituted or substituted with 1-5 halogens or phenyl, which is unsubstituted or substituted with 1-5 substituents independently selected from halogen, CN, OH, R4, OR4, NHSO2R4, SO2R4, CO2H, and CO2Ci_6alkyl, wherein the CO2Ci_6 l yl is linear or branched,
(4) phenyl which is unsubstituted or substituted with 1-5 substituents independently selected from halogen, CN, OH, R4, OR4, NHSO2R4, SO2R4, CO2H, and CO2Cι_6alkyl, wherein the CO2Ci-6alkyl is linear or branched, and (6) a 5- or 6-membered heterocycle which may be saturated or unsaturated comprising 1-4 heteroatoms independently selected from N, S and O, the heterocycle being unsubstituted or substituted with 1-3 substituents independently selected from oxo, OH, halogen, Ci_6alkyl, and OCι_6alkyl, wherein the Cj.βalkyl and OCι_6alkyl are linear or branched and optionally substituted with 1-5 halogens;
R4 is Cι_6alkyl, which is linear or branched and which is unsubstituted or substituted with 1-5 groups independently selected from halogen, CO2H, and CO Cι_6alkyl, wherein the CO2Cι_6alkyl is linear or branched;
and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
An embodiment of the present invention includes compounds of the formula la:
la wherein X, Ar and Ri are defined herein; and pharmaceutically acceptable salts and individual diastereomers thereof.
Another embodiment of the present invention includes compounds of the formula lb:
lb wherein Ar and R* are defined herein; and pharmaceutically acceptable salts and individual diastereomers thereof.
Another embodiment of the present invention includes compounds of the formula Ic:
Ic wherein Ar, Ri and R2 are defined herein; and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
In the present invention it is preferred that Ar is phenyl which is unsubstituted or substituted with 1-5 substitutents which are independently selected from the group consisting of:
(1) fluoro,
(2) bromo, and (3) CF3.
In the present invention it is more preferred that Ar is selected from the group consisting of:
(1) phenyl, (2) 2-fluorophenyl,
3) 3,4-difluorophenyl,
4) 2,5-difluorophenyl,
5) 2,4,5-trifluorophenyl,
6) 2-fluoro-4-(triflouromethyl)phenyl, and (7) 4-bromo-2,5-difluorophenyl.
In the present invention it is preferred that R* is selected from the group consisting of:
(1) hydrogen, and (2) Ci_6alkyl, which is linear or branched and which is unsubstituted or substituted with phenyl or 1-5 fluoro.
In the present invention it is more preferred that R is selected from the group consisting of:
(1) hydrogen,
(2) methyl,
(3) ethyl,
(4) CF3,
(5) CH2CF3,
(5) CF2CF3
(6) phenyl, and
(7) benzyl.
In the present invention it is more preferred that R* is selected from the group consisting of:
(1) hydrogen,
(2) methyl,
(3) ethyl, (4) CF3, and
(5) CH2CF3.
In the present invention it is even more preferred that R is hydrogen or CF3.
In the present invention it is preferred that R2 is selected from:
(1) hydrogen,
(2) Ci_6alkyl, which is linear or branched and which is unsubstituted or substituted with 1-5 fluoro, (3) phenyl, which is unsubstituted or substituted with 1-3 substituents independently selected from fluoro, OCH3, and
OCF3. In the present invention it is more preferred that R2 is selected from the
;roup consisting of:
(1) hydrogen,
(2) methyl,
(3) ethyl,
(4) CF3,
(5) CH2CF3,
(5) CF2CF3
(6) phenyl,
(7) (4-methoxy)phenyl,
(8) (4-trifluoromethoxy)phenyl,
(9) 4-fluorophenyl, and
(10) 3 ,4-difluorophenyl .
In the present invention it is even more preferred that R2 is CF3 or
CF2F .
In the present invention it is preferred that R3 is F, Br or CF3.
The compounds of the present invention may contain one or more asymmetric centers and can thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers. The compounds of the instant invention have one asymmetric center at the beta carbon atom. Additional asymmetric centers may be present depending upon the nature of the various substituents on the molecule. Each such asymmetric center will independently produce two optical isomers and it is intended that all of the possible optical isomers and diastereomers in mixtures and as pure or partially purified compounds are included within the ambit of this invention. The present invention is meant to comprehend all such isomeric forms of these compounds.
Some of the compounds described herein contain olefinic double bonds, and unless specified otherwise, are meant to include both E and Z geometric isomers.
Some of the compounds described herein may exist as tautomers, which have different points of attachment of hydrogen accompanied by one or more double bond shifts. For example, a ketone and its enol form are keto-enol tautomers. The individual tautomers as well as mixtures thereof are encompassed with compounds of the present invention.
Formula I shows the structure of the class of compounds without preferred stereochemistry. Formula la shows the preferred sterochemistry at the carbon atom that is attached to the amine group of the beta amino acid from which these compounds are prepared.
The independent syntheses of these diastereomers or their chromatographic separations may be achieved as known in the art by appropriate modification of the methodology disclosed herein. Their absolute stereochemistry may be determined by the x-ray crystallography of crystalline products or crystalline intermediates which are derivatized, if necessary, with a reagent containing an asymmetric center of known absolute configuration.
If desired, racemic mixtures of the compounds may be separated so that the individual enantiomers are isolated. The separation can be carried out by methods well known in the art, such as the coupling of a racemic mixture of compounds to an enantiomerically pure compound to form a diastereomeric mixture, followed by separation of the individual diastereomers by standard methods, such as fractional crystallization or chromatography. The coupling reaction is often the formation of salts using an enantiomerically pure acid or base. The diasteromeric derivatives may then be converted to the pure enantiomers by cleavage of the added chiral residue. The racemic mixture of the compounds can also be separated directly by chromatographic methods utilizing chiral stationary phases, which methods are well known in the art.
Alternatively, any enantiomer of a compound may be obtained by stereoselective synthesis using optically pure starting materials or reagents of known configuration by methods well known in the art.
The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts in the solid form may exist in more than one crystal structure, and may also be in the form of hydrates. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N-dibenzylethylene- diamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
When the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like. Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, fumaric, and tartaric acids.
It will be understood that, as used herein, references to the compounds of Formula I are meant to also include the pharmaceutically acceptable salts.
As appreciated by those of skill in the art, halo or halogen as used herein are intended to include fluoro, chloro, bromo and iodo. Similarly, Ci_8, as in Ci_8alkyl is defined to identify the group as having 1, 2, 3, 4, 5, 6, 7 or 8 carbons in a linear or branched arrangement, such that Cι_8aιkyl specifically includes methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, pentyl, hexyl, heptyl and octyl. Likewise, Co, as in Coalkyl is defined to identify the presence of a direct covalent bond. A group which is designated as being independently substituted with substituents may be independently substituted with multiple numbers of such substituents. The term "heterocycle" as used herein is intended to include 5- or 6-membered ring systems which are within the following listing: benzimidazolyl, benzodioxanyl, benzofuranyl, benzopyrazolyl, benzothiadiazolyl, benzotriazolyl, benzothiophenyl, benzoxadiazolyl, benzoxazolyl, carbazolyl, carbolinyl, chromanyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthyridinyl, oxadiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridopyridinyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, tetrazolyl, thiadiazolyl, thiazolidinyl, thiazolyl, thienyl, triazolyl, azetidinyl, 1,4-dioxanyl, hexahydroazepinyl, piperazinyi, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, dihydrobenzimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydrobenzoxazolyl, dihydrofuranyl, dihydroimidazolyl, dihydroindolyl, dihydroisooxazolyl, dihydroisothiazolyl, dihydrooxadiazolyl, dihydrooxazolyl, dihydropyrazinyl, dihydropyrazolyl, dihydropyridinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydroquinolinyl, dihydrotetrazolyl, dihydrothiadiazolyl, dihydrothiazolyl, dihydrothienyl, dihydrotriazolyl, dihydroazetidinyl, methylenedioxybenzoyl, tetrahydrofuranyl, tetrahydroimidazolyl, tetrahydroisoquinolinyl, and tetrahydrothienyl.
Exemplifying the invention is the use of the compounds disclosed in the Examples and herein.
Specific compounds within the present invention include a compound which selected from the group consisting of the compounds disclosed in the following Examples and pharmaceutically acceptable salts thereof and individual diastereomers thereof. The subject compounds are useful in a method of inhibiting the dipeptidyl peptidase-IV enzyme in a patient such as a mammal in need of such inhibition comprising the administration of an effective amount of the compound. The present invention is directed to the use of the compounds disclosed herein as inhibitors of dipeptidyl peptidase-IV enzyme activity. In addition to primates, such as humans, a variety of other mammals can be treated according to the method of the present invention. For instance, mammals including, but not limited to, cows, sheep, goats, horses, dogs, cats, guinea pigs, rats or other bovine, ovine, equine, canine, feline, rodent or murine species can be treated. However, the method can also be practiced in other species, such as avian species (e.g., chickens).
The present invention is further directed to a method for the manufacture of a medicament for inhibiting dipeptidyl peptidase-IV enzyme activity in humans and animals comprising combining a compound of the present invention with a pharmaceutical carrier or diluent. The subject treated in the present methods is generally a mammal, preferably a human being, male or female, in whom inhibition of dipeptidyl peptidase- IV enzyme activity is desired. The term "therapeutically effective amount" means the amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician. The term "composition" as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. Such term in relation to pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier. By "pharmaceutically acceptable" it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. The terms "administration of" and or "administering a" compound should be understood to mean providing a compound of the invention or a prodrug of a compound of the invention to the individual in need of treatment.
The utility of the compounds in accordance with the present invention as inhibitors of dipeptidyl peptidase-IV enzyme activity may be demonstrated by methodology known in the art. Inhibition constants are determined as follows. A continuous fluorometric assay is employed with the substrate Gly-Pro-AMC, which is cleaved by DP-IV to release the fluorescent AMC leaving group. The kinetic parameters that describe this reaction are as follows: Km = 50 μM; kcat = 75 s"1; kc t/Km = 1.5 x 106 M'V1. A typical reaction contains approximately 50 pM enzyme, 50 μM Gly-Pro-AMC, and buffer (100 mM HEPES, pH 7.5, 0.1 mg/ml BS A) in a total reaction volume of 100 μl. Liberation of AMC is monitored continuously in a 96-well plate fluorometer using an excitation wavelength of 360 nm and an emission wavelength of 460 nm. Under these conditions, approximately 0.8 μM AMC is produced in 30 minutes at 25 degrees C. The enzyme used in these studies was soluble (transmembrane domain and cytoplasmic extension excluded) human protein produced in a baculo virus expression system (Bac-To-Bac, Gibco BRL). The kinetic constants for hydrolysis of Gly-Pro-AMC and GLP-1 were found to be in accord with literature values for the native enzyme. To measure the dissociation constants for compounds, solutions of inhibitor in DMSO were added to reactions containing enzyme and substrate (final DMSO concentration is 1%). All experiments were conducted at room temperature using the standard reaction conditions described above. To determine the dissociation constants (Kj), reaction rates were fit by nonlinear regression to the Michaelis-Menton equation for competitive inhibition. The errors in reproducing the dissociation constants are typically less than two-fold. In particular, the compounds of the following examples had activity in inhibiting the dipeptidyl peptidase-IV enzyme in the aforementioned assays, generally with an IC50 of less than about 1 μM. Such a result is indicative of the intrinsic activity of the compounds in use as inhibitors the dipeptidyl peptidase-IV enzyme activity. Dipeptidyl peptidase-IV enzyme (DP-TV) is a cell surface protein that has been implicated in a wide range of biological functions. It has a broad tissue distribution (intestine, kidney, liver, pancreas, placenta, thymus, spleen, epithelial cells, vascular endothelium, lymphoid and myeloid cells, serum), and distinct tissue and cell-type expression levels. DP-TV is identical to the T cell activation marker CD26, and it can cleave a number of immunoregulatory, endocrine, and neurological peptides in vitro. This has suggested a potential role for this peptidase in a variety of disease processes in humans or other species.
Accordingly, the subject compounds are useful in a method for the prevention or treatment of the following diseases, disorders and conditions.
Type TJ Diabetes and Related Disorders: It is well established that the incretins GLP-1 and GTP are rapidly inactivated in vivo by DP-TV. Studies with DP-TV^-deficient mice and preliminary clinical trials indicate that DP-TV inhibition increases the steady state concentrations of GLP-1 and GTP, resulting in improved glucose tolerance. By analogy to GLP-1 and GIP, it is likely that other glucagon family peptides involved in glucose regulation are also inactivated by DP-TV (eg. PACAP, glucagon). Inactivation of these peptides by DP-TV may also play a role in glucose homeostasis. The DP-IV inhibitors of the present invention therefore have utility in the treatment of type II diabetes and in the treatment and prevention of the numerous conditions that often accompany Type II diabetes, including metabolic syndrome X, reactive hypoglycemia, and diabetic dyslipidemia. Obesity, discussed below, is another condition that is often found with Type TJ diabetes that may respond to treatment with the compounds of this invention.
The following diseases, disorders and conditions are related to Type 2 diabetes, and therefore may be treated, controlled or in some cases prevented, by treatment with the compounds of this invention: (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) irritable bowel syndrome, (15) inflammatory bowel disease, including Crohn's disease and ulcerative colitis, (16) other inflammatory conditions, (17) pancreatitis, (18) abdominal obesity, (19) neurodegenerative disease, (20) retinopathy, (21) nephropathy, (22) neuropathy, (23) Syndrome X, (24) ovarian hyperandrogenism (polycystic ovarian syndrome), and other disorders where insulin resistance is a component.
Obesity: DP-TV inhibitors may be useful for the treatment of obesity. This is based on the observed inhibitory effects on food intake and gastric emptying of GLP-1 and GLP-2. Exogenous administration of GLP-1 in humans significantly decreases food intake and slows gastric emptying (Am. J. Physiol. 277, R910-R916 (1999)). ICV administration of GLP-1 in rats and mice also has profound effects on food intake (Nature Medicine 2, 1254-1258 (1996)). This inhibition of feeding is not observed in GLP-IR^ mice, indicating that these effects are mediated through brain GLP-1 receptors. By analogy to GLP-1, it is likely that GLP-2 is also regulated by DP-TV. ICV administration of GLP-2 also inhibits food intake, analogous to the effects observed with GLP-1 (Nature Medicine 6, 802-807 (2000)).
Growth Hormone Deficiency: DP-IV inhibition may be useful for the treatment of growth hormone deficiency, based on the hypothesis that growth-hormone releasing factor (GRF), a peptide that stimulates release of growth hormone from the anterior pituitary, is cleaved by the DP-IV enzyme in vivo (WO 00/56297). The following data provide evidence that GRF is an endogenous substrate: (1) GRF is efficiently cleaved in vitro to generate the inactive product GRF[3-44] (BBA 1122, 147-153 (1992)); (2) GRF is rapidly degraded in plasma to GRF[3-44]; this is prevented by the DP-TV inhibitor diprotin A; and (3) GRF[3-44] is found in the plasma of a human GRF transgenic pig (J. Clin. Invest. 83, 1533-1540 (1989)). Thus DP-TV inhibitors may be useful for the same spectrum of indications which have been considered for growth hormone secretagogues. Intestinal Injury: The potential for using DP-IV inhibitors for the treatment of intestinal injury is suggested by the results of studies indicating that glucagon-like peptide-2 (GLP-2), a likely endogenous substrate for DP-TV, may exhibit trophic effects on the intestinal epithelium (Regulatory Peptides 90, 27-32 (2000)). Administration of GLP-2 results in increased small bowel mass in rodents and attenuates intestinal injury in rodent models of colitis and enteritis.
Immunosuppression: DP-IV inhibition may be useful for modulation of the immune response, based upon studies implicating the DP-TV enzyme in T cell activation and in chemokine processing, and efficacy of DP-TV inhibitors in in vivo models of disease. ' DP-TV has been shown to be identical to CD26, a cell surface marker for activated immune cells. The expression of CD26 is regulated by the differentiation and activation status of immune cells. It is generally accepted that CD26 functions as a co-stimulatory molecule in in vitro models of T cell activation. A number of chemokines contain proline in the penultimate position, presumably to protect them from degradation by non-specific aminopeptidases. Many of these have been shown to be processed in vitro by DP-TV. In several cases (RANTES, LD78-beta, MDC, eotaxin, SDF-lalpha), cleavage results in an altered activity in chemotaxis and signaling assays. Receptor selectivity also appears to be modified in some cases (RANTES). Multiple N-terminally truncated forms of a number of chemokines have been identified in in vitro cell culture systems, including the predicted products of DP-TV hydrolysis.
DP-IV inhibitors have been shown to be efficacious immunosupressants in animal models of transplantation and arthritis. Prodipine (Pro- Pro-diphenyl-phosphonate), an irreversible inhibitor of DP-TV, was shown to double cardiac allograft survival in rats from day 7 to day 14 (Transplantation 63, 1495-1500 (1997)). DP-IV inhibitors have been tested in collagen and alkyldiamine-induced arthritis in rats and showed a statistically significant attenuation of hind paw swelling in this model (Int. J. Immunopharmacology 19, 15-24 (1997), Immunopharmacology 40, 21-26 (1998)). DP-IV is upregulated in a number of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, Graves' disease, and Hashimoto's thyroiditis (Immunology Today 20, 367-375 (1999)).
H V Infection: DP-TV inhibition may be useful for the treatment or prevention of HTV infection or AIDS because a number of chemokines which inhibit HIV cell entry are potential substrates for DP-TV (Immunology Today 20, 367-375 (1999)). In the case of SDF-lalpha, cleavage decreases antiviral activity (PNAS 95, 6331-6 (1998)). Thus, stabilization of SDF-lalpha through inhibition of DP-TV would be expected to decrease HTV infectivity.
Hematopoiesis: DP-TV inhibition may be useful for the treatment or prevention of hematopiesis because DP-TV may be involved in hematopoiesis. A DP-TV inhibitor, Val-Boro-Pro, stimulated hematopoiesis in a mouse model of cyclophosphamide- induced neutropenia (WO 99/56753).
Neuronal Disorders: DP-TV inhibition may be useful for the treatment or prevention of various neuronal or psychiatric disorders because a number of peptides implicated in a variety of neuronal processes are cleaved in vitro by DP-TV. A DP-IV inhibitor thus may have a therapeutic benefit in the treatment of neuronal disorders. Endomorphin-2, beta-casomorphin, and substance P have all been shown to be in vitro substrates for DP-TV. In all cases, in vitro cleavage is highly efficient, with cat/Km ~ 106 M'V1 or greater. In an electric shock jump test model of analgesia in rats, a DP-TV inhibitor showed a significant effect that was independent of the presence of exogenous endomorphin-2 (Brain Research 815, 278-286 (1999)).
Tumor Invasion and Metastasis: DP-TV inhibition may be useful for the treatment or prevention of tumor invasion and metastasis because an increase or decrease in expression of several ectopeptidases including DP-TV has been observed during the transformation of normal cells to a malignant phenotype (J. Exp. Med. 190, 301-305 (1999)). Up- or down-regulation of these proteins appears to be tissue and cell-type specific. For example, increased CD26 DP-IV expression has been observed on T cell lymphoma, T cell acute lymphoblastic leukemia, cell-derived thyroid carcinomas, basal cell carcinomas, and breast carcinomas. Thus, DP-TV inhibitors may have utility in the treatment of such carcinomas.
Benign Prostatic Hypertrophy: DP-TV inhibition may be useful for the treatment of benign prostatic hypertrophy because increased DP-TV activity was noted in prostate tissue from patients with BPH (Eur. J. Clin. Chem. Clin. Biochem 30, 333-338 (1992)). Sperm motility/male contraception: DP-TV inhibition may be useful for the altering sperm motility and for male contraception because in seminal fluid, prostatosomes, prostate derived organelles important for sperm motility, possess very high levels of DP-TV activity (Eur. J. Clin. Chem. Clin. Biochem 30, 333-338 (1992)).
Gingivitis: DP-TV inhibition may be useful for the treatment of gingivitis because DP-TV activity was found in gingival crevicular fluid and in some studies correlated with periodontal disease severity (Arch. Oral Biol. 37, 167-173 (1992)).
Osteoporosis: DP-IV inhibition may be useful for the treatment or prevention of osteoporosis because GIP receptors are present in osteoblasts.
Tthe compounds of the present invention have utility in treating or preventing one or more of the following conditions or diseases: (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) irritable bowel syndrome, (15) inflammatory bowel disease, including Crohn's disease and ulcerative colitis, (16) other inflammatory conditions, (17) pancreatitis, (18) abdominal obesity, (19) neurodegenerative disease, (20) retinopathy, (21) nephropathy, (22) neuropathy, (23) Syndrome X, (24) ovarian hyperandrogenism (polycystic ovarian syndrome), (25) Type TJ diabetes, (26) growth hormone deficiency, (27) neutropenia, (28) neuronal disorders, (29) tumor metastasis, (30) benign prostatic hypertrophy, (32) gingivitis, (33) hypertension, (34) osteoporosis, and other conditions that may be treated or prevented by inhibition of DP-TV.
The subject compounds are further useful in a method for the prevention or treatment of the aforementioned diseases, disorders and conditions in combination with other agents. The compounds of the present invention may be used in combination with one or more other drugs in the treatment, prevention, suppression or amelioration of diseases or conditions for which compounds of Formula I or the other drugs may have utility, where the combination of the drugs together are safer or more effective than either drug alone. Such other drug(s) may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of Formula I. When a compound of Formula I is used contemporaneously with one or more other drugs, a pharmaceutical composition in unit dosage form containing such other drugs and the compound of Formula I is preferred. However, the combination therapy may also includes therapies in which the compound of Formula I and one or more other drugs are administered on different overlapping schedules. It is also contemplated that when used in combination with one or more other active ingredients, the compounds of the present invention and the other active ingredients may be used in lower doses than when each is used singly. Accordingly, the pharmaceutical compositions of the present invention include those that contain one or more other active ingredients, in addition to a compound of Formula I.
Examples of other active ingredients that may be administered in combination with a compound of Formula I, and either administered separately or in the same pharmaceutical composition, include, but are not limited to: (a) other dipeptidyl peptidase TV (DP-TV) inhibitors; (b) insulin sensitizers including (i) PPARγ agonists such as the glitazones (e.g. troglitazone, pioglitazone, englitazone, MCC-555, rosiglitazone, and the like) and other PPAR ligands, including PPARα/γ dual agonists, such as KRP- 297, and PPARα agonists such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and bezafibrate), (ii) biguanides such as metformin and phenformin, and (iii) protein tyrosine phosphatase-lB (PTP-1B) inhibitors;
(c) insulin or insulin mimetics;
(d) sulfonylureas and other insulin secretagogues such as tolbutamide and glipizide, meglitinide, and related materials;
(e) α-glucosidase inhibitors (such as acarbose); (f) glucagon receptor antagonists such as those disclosed in WO
98/04528, WO 99/01423, WO 00/39088, and WO 00/69810;
(g) GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists such as those disclosed in WO00/42026 and WOOO/59887;
(h) GTP and GTP mimetics such as those disclosed in WO00/58360, and GIP receptor agonists;
(i) PACAP, PACAP mimetics, and PACAP receptor 3 agonists such as those disclosed in WO 01/23420;
(j) cholesterol lowering agents such as (i) HMG-CoA reductase inhibitors (lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rivastatin, itavastatin, rosuvastatin, and other statins), (ii) sequestrants (cholestyramine, colestipol, and dialkylaminoalkyl derivatives of a cross-linked dextran), (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPARα agonists such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and bezafibrate), (v) PPARα/γ dual agonists, such as KRP-297, (vi) inhibitors of cholesterol absorption, such as beta- sitosterol and ezetimibe, (vii) acyl CoA:cholesterol acyltransferase inhibitors, such as avasimibe, and (viii) anti-oxidants, such as probucol;
(k) PPARδ agonists, such as those disclosed in WO97/28149;
(1) antiobesity compounds such as fenfluramine, dexfenfluramine, phentermine, sibutramine, orlistat, neuropeptide Y5 inhibitors, and β3 adrenergic receptor agonists;
(m) an ileal bile acid transporter inhibitor; and (n) agents intended for use in inflammatory conditions such as aspirin, non-steroidal anti-inflammatory drugs, glucocorticoids, azulfidine, and cyclo- oxygenase 2 selective inhibitors. The above combinations include combinations of a compound of the present invention not only with one other active compound, but also with two or more other active compounds. Non-limiting examples include combinations of compounds having Formula I with two or more active compounds selected from biguanides, sulfonylureas, HMG-CoA reductase inhibitors, PPAR agonists, PTP-1B inhibitors, other DP-TV inhibitors, and anti-obesity compounds.
Likewise, compounds of the present invention may be used in combination with other drugs that are used in the treatment/prevention/suppression or amelioration of the diseases or conditions for which compounds of the present invention are useful. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of the present invention. When a compound of the present invention is used contemporaneously with one or more other drugs, a pharmaceutical composition containing such other drugs in addition to the compound of the present invention is preferred. Accordingly, the pharmaceutical compositions of the present invention include those that also contain one or more other active ingredients, in addition to a compound of the present invention.
The weight ratio of the compound of the compound of the present invention to the second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the present invention is combined with another agent, the weight ratio of the compound of the present invention to the other agent will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the present invention and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.
In such combinations the compound of the present invention and other active agents may be administered separately or in conjunction. In addition, the administration of one element may be prior to, concurrent to, or subsequent to the administration of other agent(s). The compounds of the present invention may be administered by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous, ICV, intracisternal injection or infusion, subcutaneous injection, or implant), by inhalation spray, nasal, vaginal, rectal, sublingual, or topical routes of administration and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non- toxic pharmaceutically acceptable carriers, adjuvants and vehicles appropriate for each route of administration. In addition to the treatment of warm-blooded animals such as mice, rats, horses, cattle, sheep, dogs, cats, monkeys, etc., the compounds of the invention are effective for use in humans.
The pharmaceutical compositions for the administration of the compounds of this invention may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation. In the pharmaceutical composition the active object compound is included in an amount sufficient to produce the desired effect upon the process or condition of diseases. As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated by the techniques described in the U.S. Patents 4,256,108; 4,166,452; and 4,265,874 to form osmotic therapeutic tablets for control release.
Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxy- propylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally- occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.
Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butane diol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables. The compounds of the present invention may also be administered in the form of suppositories for rectal administration of the drag. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.
For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing the compounds of The present invention are employed. (For purposes of this application, topical application shall include mouth washes and gargles.)
The pharmaceutical composition and method of the present invention may further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above mentioned pathological conditions.
In the treatment or prevention of conditions which require inhibition of dipeptidyl peptidase-IV enzyme activity an appropriate dosage level will generally be about 0.01 to 500 mg per kg patient body weight per day which can be administered in single or multiple doses. Preferably, the dosage level will be about 0.1 to about 250 mg/kg per day; more preferably about 0.5 to about 100 mg/kg per day. A suitable dosage level may be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day. Within this range the dosage may be 0.05 to 0.5, 0.5 to 5 or 5 to 50 mg/kg per day. For oral administration, the compositions are preferably provided in the form of tablets containing 1.0 to 1000 milligrams of the active ingredient, particularly 1.0, 5.0, 10.0, 15.0. 20.0, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 600.0, 750.0, 800.0, 900.0, and 1000.0 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.
When treating or preventing diabetes mellitus and/or hyperglycemia or hypertriglyceridemia or other diseases for which compounds of the present invention are indicated, generally satisfactory results are obtained when the compounds of the present invention are administered at a daily dosage of from about 0.1 milligram to about 100 milligram per kilogram of animal body weight, preferably given as a single daily dose or in divided doses two to six times a day, or in sustained release form. For most large mammals, the total daily dosage is from about 1.0 milligrams to about 1000 milligrams, preferably from about 1 milligrams to about 50 milligrams. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 milligrams to about 350 milligrams. This dosage regimen may be adjusted to provide the optimal therapeutic response.
It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.
Several methods for preparing the compounds of this invention are illustrated in the following Schemes and Examples. Starting materials are made according to procedures known in the art or as illustrated herein.
The compounds of the present invention can be prepared from beta amino acid intermediates such as those of formula TJ and substituted heterocyclic intermediates such as those of formula m, using standard peptide coupling conditions followed by deprotection. The preparation of these intermediates is described in the following schemes.
II III
where Ar, X and R1 are as defined above and P is a suitable nitrogen protecting group such as tert-butoxycarbonyl, benzyloxycarbonyl, or 9-fluorenylmethoxycarbonyl.
SCHEME 1
Compounds of formula TJ are commercially available, known in the literature or may be conveniently prepared by a variety of methods familiar to those skilled in the art. One common route is illustrated in Scheme 1. Acid 1, which may be commercially available or readily prepared from the corresponding amino acid by protection using, for example, di-tert-butyl-dicarbonate (for P = Boc), carbobenzyloxy chloride (for P = Cbz), or N-(9-fluorenylmethoxycarbonyloxy)succinimide (for P = Fmoc), is treated with isobutyl chloroformate and a base such as triethylamine or diisopropylethylamine, followed by diazomethane. The resultant diazoketone is then treated with silver benzoate in a solvent such as methanol or aqueous dioxane and may be subjected to sonication following the procedure of Sewald et al., Synthesis, 837 (1997) in order to provide the beta amino acid TJ. As will be understood by those skilled in the art, for the preparation of enantiomerically pure beta amino acids TJ, enantiomerically pure alpha amino acids 1 may be used. Alternate routes to these compounds can be found in the following reviews: E. Juaristi, Enantioselective Synthesis of β-Amino Acids, Ed., Wiley- VCH, New York: 1997, Juaristi et al., Aldrichimica Acta, 27, 3 (1994), Cole et al., Tetrahedron, 32, 9517 (1994).
SCHEME 2
2 III
Compounds HI are commercially available, known in the literature or may be conveniently prepared by a variety of methods familiar to those skilled in the art. One convenient method is shown in Scheme 2. Unsaturated derivative 2 is reduced, for example, by treatment with hydrogen gas and a catalyst such as palladium on carbon or platinum oxide in a solvent such as methanol or ethanol to provide Compound TJJ. SCHEME 3
Intermediates 2, from Scheme 2, are themselves commercially available, known in the literature or may be conveniently prepared by a variety of methods familiar to those skilled in the art. One such method when X is CR2 is illustrated in Scheme 3. Aminopyrazine 3 is treated with a 2-haloketone such as 2- bromoketone 4 in a solvent such as methanol or ethanol to provide intermediate 2a. Alternatively, for the preparation of intermediate 2a where R2 is H, 2-bromo- dimethylacetal 5 and a catalytic amount of acid such as hydrochloric acid may be employed instead of intermediate 4.
SCHEME 4
6 7
A convenient method for the preparation of intermediate 2b, where X is N, is illustrated in Scheme 4. Chloropyrazme 6 is treated with hydrazine to provide hydrazinopyrazine 7. Compound 7 may be condensed with either an orthoester such as triethyl orthoester 8 to give 2b or with a carboxylic acid 9 in polyphosphoric acid at elevated temperatures to give 2b. SCHEME 5
An alternate route for the preparation of Compound UJb wherein X is N is illustrated in Scheme 5. Compound 12 is prepared according to the method outlined above employing dichloropyrazine 10 instead of chloropyrazine 6.
Compound 12 is then subjected to catalytic hydrogenation using a catalyst such as platinum oxide to provide Compound TJJb, as its monohydrochloride salt.
SCHEME 6
deprotection e.g., TFA/CH2CI2 for P = Boc
Intermediates TJ and UI are coupled under standard peptide coupling conditions, for example, using l-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 1-hydroxybenzotriazole (HOBT), and a base, generally diisopropylethylamine, in a solvent such as N,N-dimethylformamide (DMF) or dichloromethane for 3 to 48 hours at ambient temperature to provide intermediate 13 as shown in Scheme 6. The protecting group is then removed with, for example, trifluoroacetic acid or methanolic hydrogen chloride in the case of Boc to give the desired amine I. The product is purified from unwanted side products, if necessary, by recrystalhzation, trituration, preparative thin layer chromatography, flash chromatography on silica gel as described by W. C. Still et al, J. Org. Chem., 43, 2923 (1978), or HPLC. Compounds which are purified by HPLC may be isolated as the corresponding salt. Purification of intermediates is achieved in the same manner. In some cases the intermediate 13 from the coupling reaction described in Scheme 6 may be further modified before removal of the protecting group, for example, by manipulation of substituents on X or Rl. These manipulations may include, but are not limited to, reduction, oxidation, alkylation, acylation, and hydrolysis reactions which are commonly known to those skilled in the art. In some cases the order of carrying out the foregoing reaction schemes may be varied to facilitate the reaction or to avoid unwanted reaction products. The following examples are provided so that the invention might be more fully understood. These examples are illustrative only and should not be construed as limiting the invention in any way.
INTERMEDIATE 1
(3R)-3-r(l -Dimethylethoxycarbonyl)aminol-4-(2,5-difluorophenyl)butanoic acid
Step A. (R,lS')-N-(Ll-Dimethylethoxycarbonyl)-2.5-difluorophenylalanine
To a solution of 0.5 g (2.49 mmol) of 2,5-difluoro-DL-phenylalanine in 5 mL of tert-butanol were added sequentially 1.5 mL of 2N aqueous sodium hydroxide solution and 543 mg of di-tert-butyl dicarbonate. The reaction was stirred at ambient temperature for 16 h and diluted with ethyl acetate. The organic phase was washed sequentially with IN hydrochloric acid and brine, dried over magnesium sulfate and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel, 97:2:1 dichloromethane:methanol: acetic acid) to afford 671 mg of the title compound. MS 302 (M + 1).
Step B. (R,5)-3-r( l-Dimethylethoxycarbonyl)aminol-l-diazo-4-(2.5-difluoro- phenyl)butan-2-one
To a solution of 2.23 g (7.4 mmol) of (R,S)-N-(l,l- dimethylethoxycarbonyl)-2,5-difluorophenylalanine in 100 mL of diethyl ether at 0 °C were added sequentially 1.37 mL (8.1 mmol) of triethylamine and 0.931 mL (7.5 mmol) of isobutyl chloroformate and the reaction was stirred at this temperature for 15 min. A cooled ethereal solution of diazomethane was then added until the yellow color persisted and stirring was continued for a further 16 h. The excess diazomethane was quenched by dropwise addition of acetic acid, and the reaction was diluted with ethyl acetate and washed sequentially with 5% hydrochloric acid, saturated aqueous sodium bicarbonate solution and brine, dried over magnesium sulfate and concentrated in vacuo. Purification by flash chromatography (silica gel, 4:1 hexane:ethyl acetate) afforded 1.5 g of diazoketone. H NMR (500 MHz,
CDCI3) δ 7.03-6.95 (m, IH), 6.95-6.88 (m, 2H), 5.43 (bs, IH), 5.18 (bs, IH), 4.45
(bs, IH), 3.19-3.12 (m, IH), 2.97-2.80 (m, IH), 1.38 (s, 9H).
Step C. (3R)-3-r( l-Dimethylethoxycarbonyl)aminol-4-(2.5-difluorophenyl)butanoic acid
To a solution of 2.14 g (6.58 mmol) of (R,S)-3-[(l,l- dimethylethoxycarbonyl)-amino]-l-diazo-4-(2,5-difluorophenyl)butan-2-one dissolved in 100 mL of methanol at -30 °C were added sequentially 3.3 mL (19 mmol) of diisopropylethylamine and 302 mg (1.32 mmol) of silver benzoate. The reaction was stirred for 90 min before diluting with ethyl acetate and washing sequentially with 2N hydrochloric acid, saturated aqueous sodium bicarbonate, and brine. The organic phase was dried over magnesium sulfate, concentrated in vacuo and the enantiomers were separated by preparative chiral HPLC (Chiralpak AD column, 5% ethanol in hexanes) to give 550 mg of the desired (R)-enantiomer, which eluted first. This material was dissolved in 50 mL of a mixture of tetrahydrofuran:methanol: IN aqueous lithium hydroxide (3:1:1) and stirred at 50 °C for 4 h. The reaction was cooled, acidified with 5% dilute hydrochloric acid and extracted with ethyl acetate. The combined organic phases were washed with brine, dried over magnesium sulfate and concentrated in vacuo to give 360 mg of the title compound as a white foamy solid. 1H NMR (500 MHz, CDCI3) δ 7.21 (m, IH), 6.98
(m, 2H), 6.10 (bs, IH), 5.05 (m,lH), 4.21 (m, IH), 2.98 (m, 2H), 2.60 (m, 2H), 1.38 (s, 9H).
INTERMEDIATE 2
(3R)-3-r( l-Dimethylethoxycarbonyl)aminol-4-r2-fluoro-4-(trifluoromethyl)phenyll- butanoic acid
Step A. (2R.5 )-2.5-Dihvdro-3.6-dimethoxy-2-(2'-fluoro-4'-(trifluoromethyl)benzyl)- 5-isopropylpyrazine
To a solution of 3.32 g (18 mmol) of commercially available (2S)-2,5- dihydro-3,6-dimethoxy-2-isopropylpyrazine in 100 mL of tetrahydrofuran at -70 °C was added 12 mL (19 mmol) of a 1.6M solution of butyllithium in hexanes. After stirring at this temperature for 20 min, 5 g (19.5 mmol) of 2-fluoro-4- trifluoromethylbenzyl bromide in 20 mL of tetrahydrofuran was added and stirring was continued for 3 h before warming the reaction to ambient temperature. The reaction was quenched with water, concentrated in vacuo, and extracted with ethyl acetate. The combined organic phase was washed with brine, dried, and concentrated in vacuo. Purification by flash chromatography (silica gel, 0-5% ethyl acetate in hexanes) afforded 5.5 g of the title compound. IH NMR (500 MHz, CDCI3) δ 7.33-
7.25 (m, 3H), 4.35-4.31 (m, IH), 3.75 (s, 3H), 3.65 (s, 3H), 3.60 (t, IH, J = 3.4 Hz), 3.33 (dd, IH, J = 4.6, 13.5 Hz), 3.03 (dd, IH, J = 7, 13.5 Hz), 2.25-2.15 (m, IH), 1.0 (d, 3H, J = 7 Hz), 0.66 (d, 3H, J = 7 Hz).
Step B. (R)-N-(l.l-Dimethylethoxycarbonyl)-2-fluoro-4-trifluoromethyl)phenyl- alanine methyl ester
To a solution of 5.5 g (15 mmol) of (2R,5S)-2,5-dihydro-3,6- dimethoxy-2-(2'-fluoro-4'-(trifluoromethyl)benzyl)-5-isopropylpyrazine in 50 mL of a mixture of acetonitrile:dichloromethane (10:1) was added 80 mL of IN aqueous trifluoroacetic acid. The reaction was stirred for 6 h and the organic solvents were removed in vacuo. Sodium carbonate was added until the solution was basic (>pH 8), and then the reaction was diluted with 100 mL of tetrahydrofuran and 10 g (46 mmol) of di-tert-butyl dicarbonate was added. The resulting slurry was stirred for 16 h, concentrated in vacuo, and extracted with ethyl acetate. The combined organic phase was washed with brine, dried, and concentrated in vacuo. Purification by flash chromatography (silica gel, 20% ethyl acetate in hexanes) afforded 5.1 g of the title compound. XH NMR (500 MHz, CDCI3) δ 7.38-7.28 (m, 3H), 5.10 (bd, IH), 4.65-
3.98 (m, IH), 3.76 (s, 3H), 3.32-3.25 (m, IH), 3.13-3.05 (m, IH), 1.40 (s, 9H).
Step C. (J?)-N-(Ll-Dimethylethoxycarbonyl)-2-fluoro-4-trifluoromethyl)phenyl- alanine
A solution of 5.1 g (14 mmol) of (R,S)-N-(1,1- dimethylethoxycarbonyl)-2-fluoro-4-trifluoromethyl)phenylalanine methyl ester in 350 mL of a mixture of tetrahydrofuran: methanol: IN lithium hydroxide (3:1:1) was stirred at 50 °C for 4 h. The reaction was cooled, acidified with 5% dilute hydrochloric acid and extracted with ethyl acetate. The combined organic phases were washed with brine, dried over magnesium sulfate and concentrated in vacuo to give 4.8 g of the title compound. IH NMR (500 MHz, CD3OD) δ 7.45-7.38 (m, 3H),
4.44.4.4O (m, IH), 3.38-3.33 (m, IH), 2.98 (dd, IH, J = 9.6, 13.5 Hz), 1.44 (s, 9H).
Step D. (3J?)-3-r(Ll-Dimethylethoxycarbonyl)aminol-4-r2-fluoro-4-(trifluoromethyl)- phenyllbutanoic acid
To a solution of 3.4 g (9.7 mmol) of the product from Step C in 60 mL of tetrahydrofuran at 0 °C were added sequentially 2.3 mL (13 mmol) of diisopropylethylamine and 1.7 mL (13 mmol) of isobutyl chloroformate and the reaction was stirred at this temperature for 30 min. A cooled ethereal solution of diazomethane was then added until the yellow color persisted and stirring was continued for a further 16 h. The excess diazomethane was quenched by dropwise addition of acetic acid, and the reaction was diluted with ethyl acetate and washed sequentially with 5% hydrochloric acid, saturated aqueous sodium bicarbonate solution and brine, dried over magnesium sulfate and concentrated in vacuo.
Purification by flash chromatography (silica gel, 9:1 hexane:ethyl acetate) afforded 0.5 g of diazoketone. To a solution of 0.5 g (1.33 mmol) of the diazoketone dissolved in 100 mL of methanol at 0 °C were added sequentially 0.7 mL (4 mmol) of diisopropylethylamine and 32 mg (0.13 mmol) of silver benzoate. The reaction was stirred for 2 h before diluting with ethyl acetate and washing sequentially with 2N hydrochloric acid, saturated aqueous sodium bicarbonate, and brine. The organic phase was dried over magnesium sulfate, concentrated in vacuo and dissolved in 50 mL of a mixture of tetrahydrofura methanol: IN aqueous lithium hydroxide (3:1:1) and stirred at 50 °C for 3 h. The reaction was cooled, acidified with 5% dilute hydrochloric acid and extracted with ethyl acetate. The combined organic phases were washed with brine, dried over magnesium sulfate and concentrated in vacuo to give 410 mg of the title compound as a white foamy solid. H NMR (500 MHz, CD3OD) δ 7.47-7.33 (m, 3H), 4.88 (bs, IH), 4.26-3.98 (m, IH), 3.06-3.01 (m, IH),
2.83-2.77 (m, IH), 2.58-2.50 (m, 2H), 1.29 (s, 9H).
INTERMEDIATE 3
(3R)-3-r(l.l-Dimethylethoxycarbonyl)aminol-4-(2.4,5-trifluorophenyl)butanoic acid
Step A. (25. 5R)-2,5-Dihvdro-3,6-dimethoxy-2-isopropyl-5-(2'.4',5'trifluorobenzyl)- pyrazine
The title compound (3.81 g) was prepared from 3.42 g (18.5 mmol) of (25)-2,5-dihydro-3,6-dimethoxy-2-isopropylpyrazine using the procedure described for Intermediate 2, Step A. 1H NMR (500 MHz, CDCI3) δ 7.01 (m, IH), 6.85 (m,
IH), 4.22 (m, IH), 3.78 (m, 3H), 3.64 (m, 3H), 3.61 (m, IH), 3.20 (m, IH), 2.98 (m, IH), 2.20 (m, IH), 0.99 (d, 3H, J = 8 Hz), 0.62 (d, 3H, J = 8 Hz).
Step B. (R)-N-( l-Dimethylethoxycarbonyl)-2,4.5-trifluorophenylalanine methyl ester
To a solution of 3.81 g (11.6 mmol) of (25, 5R)-2,5-dihydro-3,6- dimethoxy-2-isopropyl-5-(2',4',5'trifluoro-benzyl)pyrazine in 20 mL of acetonitrile was added 20 mL of 2N hydrochloric acid. The reaction was stirred for 72 h and concentrated in vacuo. The residue was dissolved in 30 mL of dichloromethane and 10 mL (72 mmol) of triethylamine and 9.68 g (44.8 mmol) of di-tert-butyldicarbonate were added. The reaction was stirred for 16 h, diluted with ethyl acetate and washed sequentially with IN hydrochloric acid and brine. The organic phase was dried over sodium sulfate, concentrated in vacuo and purified by flash chromatography (silica gel, 9:1 hexanes:ethyl acetate) to afford 2.41 g of the title compound. IH NMR (500 MHz, CDCI3) δ 6.99 (m, IH), 6.94 (m, IH), 5.08 (m, IH), 4.58 (m, IH), 3.78 (m,
3H), 3.19 (m, IH), 3.01 (m, IH), 1.41 (s, 9H).
Step C. (R)-N-( l-Dimethylethoxycarbonyl)-2,4,5-trifluorophenylalanine
The title compound (2.01 g) was prepared from 2.41 g (7.5 mol) of (R)-N-(l,l-dimethylethoxycarbonyl)-2,4,5-trifluorophenylalanine methyl ester using the procedure described for Intermediate 2, Step C. MS (M + l)-BOC 220.9.
Step D. (3R)-3-f( l-Dimethylethoxycarbonyl)aminol-4-(2.4.5-trifluorophenyl)- butanoic acid
To a solution of 0.37 g (1.16 mmol) of (R)-N~(l,l- dimethylethoxycarbonyl)-2,4,5-trifluorophenylalanine in 10 mL of diethyl ether at -20 °C were added sequentially 0.193 mL (1.3 mmol) of triethylamine and 0.18 mL (1.3 mmol) of isobutyl chloroformate, and the reaction was stirred at this temperature for 15 min. A cooled ethereal solution of diazomethane was then added until the yellow color persisted and stirring was continued for a further 1 h. The excess diazomethane was quenched by dropwise addition of acetic acid, and the reaction was diluted with ethyl acetate and washed sequentially with saturated aqueous sodium bicarbonate solution and brine, dried over magnesium sulfate and concentrated in vacuo.
Purification by flash chromatography (silica gel, 3:1 hexane: ethyl acetate) afforded 0.36 g of diazoketone. To a solution of 0.35 g (1.15 mmol) of the diazoketone dissolved in 12 mL of 1,4-dioxane: water (5:1) was added 26 mg (0.113 mmol) of silver benzoate. The resultant solution was sonicated for 2 h before diluting with ethyl acetate and washing sequentially with IN hydrochloric acid and brine, drying over magnesium sulfate and concentrating in vacuo. Purification by flash chromatography (silica gel, 97:2:1 dichloromethane:methanol: acetic acid) afforded 401 mg of the title compound. 4ϊ NMR (500 MHz, CDCI3) δ 7.06 (m, IH), 6.95 (m,
IH), 5.06 (bs, IH), 4.18 (m, IH), 2.98 (m, 2H), 2.61 (m, 2H), 1.39 (s, 9H). INTERMEDIATE 4
(3R)-3-r(Ll-Dimethylethoxycarbonyl)aminol-4-(4-bromo-2.5-difluorophenyl)- butanoic acid
Step A. 4-Bromo-2.5-difluorobenzyl bromide
To a solution of 2 g (8.44 mmol) of 4-bromo-2,5-difluorobenzoic acid (prepared according to the procedure of Ishikawa et al., Kogyo Kagaku Zasshi, pg 972-979, 1970) in 20 mL of tetrahydrofuran was added 40 mL of a IM solution of borane-tetrahydrofuran complex. The solution was heated under reflux for 64 h, cooled to ambient temperature and 100 mL of methanol was added. The reaction was then heated for a further 2 h, cooled and concentrated in vacuo. Purification by flash chromatography (silica gel, 9:1 hexane:ethyl acetate) afforded 1.6 g of 4-bromo-2,5- difluorobenzyl alcohol. To a solution of 1.3 g (5.6 mmol) of 4-bromo-2,5- difluorobenzyl alcohol in 20 mL of dichloromethane at 0 °C was added 2.27 g (6.7 mmol) of carbon tetrabromide and 1.8 g (6.7 mmol) of triphenylphosphine. The reaction was stirred for 2 h at this temperature, the solvent was removed in vacuo and the residue stirred with 100 mL of diethyl ether. The solution was filtered, concentrated in vacuo, and purified by flash chromatography (silica gel, 9:1 hexane: ethyl acetate) to afford 1.5 g of the title compound.
Step B. (25. 5R)-2.5-Dihvdro-3.6-dimethoxy-2-isoproρyl-5-(4'-bromo-2,.5'- difluorobenzyDpyrazine The title compound (1.61 g) was prepared from 0.865 g (4.7 mmol) of
(2S)-2,5-dihydro-3,6-dimethoxy-2-isopropylpyrazme and 1.5 g (5.2 mmol) of 4- bromo-2,5-difhιorobenzyl bromide using the procedure described for Intermediate 2, Step A. IH NMR (400 MHz, CDCI3) δ 7.21 (m, IH), 6.97 (m, IH), 4.25 (m, IH), 3.78 (s, 3H), 3.70-3.64 (m, 4H), 3.25-3.18 (m, IH), 2.96-2.90 (m, IH), 2.25-2.16 (m, IH), 1.01 (d, 3H, J = 8 Hz), 0.65 (d, 3H, J = 8 Hz).
Step C. (R)-N-(l, l-Dimethylethoxycarbonyl)-4-bromo-2.5-difluorophenylalanine methyl ester
To a solution of 1.61 g (4.14 mmol) of (25, 5R)-2,5-dihydro-3,6- dimethoxy-2-isopropyl-5-(4'-bromo-2',5'-difluorobenzyl)pyrazine in 10 mL of acetonitrile was added 10 mL of 2N hydrochloric acid. The reaction was stirred for 16 h and concentrated in vacuo. The residue was dissolved in 30 mL of dichloromethane and 5.6 mL (40 mmol) of triethylamine and 2.2 g (10 mmol) of di- tert-butyldicarbonate were added. The reaction was stirred for 16 h, diluted with ethyl acetate and washed sequentially with saturated aqueous sodium bicarbonate solution and brine. The organic phase was dried over magnesium sulfate, concentrated in vacuo and purified by flash chromatography (silica gel, 9:1 hexanes:ethyl acetate) to afford 1.22 g of the title compound. 1H NMR (400 MHz, CDCI3) δ 7.27-7.15 (m,
IH), 6.98-6.93 (m, IH), 5.08 (bs, IH), 4.61-4.55 (m, IH), 3.78 (s, 3H), 3.23-3.18 (m, IH), 3.05-2.95 (m, IH), 1.41 (s, 9H).
Step D. (R)-N-(l.l-Dimethylethoxycarbonyl)-4-bromo-2.5-difluorophenylalanine The title compound (1.34 g) was prepared from 1.4 g (3.5 mmol) of
(R)-N-(l , 1 -dimethylethoxycarbonyl)-4-bromo-2,5-diifluorophenylalanine methyl ester using the procedure described for Intermediate 2, Step C. MS (M + 1) 380.3 and 382.3.
Step E. (3R)-3-r(Ll-Dimethylethoxycarbonyl)aminol-4-(4'-bromo-2'.5'- difluorophenvDbutanoic acid
The title compound (0.36 g) was prepared from 0.6 g (1.57 mmol) of (R)-N-(l, l-dimethylethoxycarbonyl)-4-bromo-2,5-diifluorophenylalanine using the procedure described for Intermediate 3, Step D. MS (M + 1) 394.1 and 396.1.
EXAMPLE 1
7-r(3R)-3-Amino-4-(3.4-difluorophenyl)butanoyll-2-(trifluoromethyl)-5.6.7.8- tetrahydroimidazor 1 ,2- lpyrazine, dihydrochloride
Step A. 2-(Trifluoromethyl)imidazo[T,2-αlpyrazine
To a solution of 2-aminopyrazine (5.25 g, 55.2 mmol) in ethanol (120 mL) was added l-bromo-3,3,3-trifluoroacetone (5.73 mL, 55.2 mmol). The reaction was stirred at reflux for 20 h. After evaporation of solvent, the residue was partitioned between ethyl acetate and saturated aqueous sodium bicarbonate solution.
The aqueous layer was extracted with ethyl acetate (3x). The combined organic phase was washed with brine, dried over magnesium sulfate and concentrated. The residue was purified by flash chromatography (silica gel, 1:1 ethyl acetate:hexane, then 100% ι ethyl acetate) to give 2.35 g of the title compound as a solid. H NMR (500 MHz, CDC13) 6 8.02 (m, 2H), 8.13(m, IH), 9.22 (s, IH). ESI-MS 188 (M+1).
Step B. 2-(Trifluoromethyl)-5,6,7,8-tetrahvdroimidazo[T ,2- lpyrazine
To a solution of 2-(trifluoromethyl)imidazo[l,2-α]pyrazine (2.0 g, 10.46 mmol, from Step A) in methanol (100 mL) was added 10% palladium on carbon (400 mg). The mixture was stirred under atmospheric hydrogen at ambient temperature for 14 h. The mixture was filtered through Celite and washed with methanol (3X). The filtrate was concentrated and purified by flash chromatography (silica gel, 10% methanol in ethyl acetate, then 15% methanol in chloroform with 1% aqueous ammonium hydroxide) to give 1.33 g of the title compound as a solid. H NMR (500 MHz, CDC13) δ 1.93 (bs, IH), 3.26 (t, 2H, J=5.5 Hz), 3.99 (t, 2H, J=5.5 Hz), 4.10 (s, IH), 7.16 (s, IH). ESI-MS 192 (M+1).
Step C. 7-l(3R)-3-r(Ll-dimethylethoxycarbonyl)aminol-4-(3.4- difluorophenyDbutanoyll -2-(trifluoromethyl)-5.6.7.8-tetrahydroimidazo \ 1,2- lpyrazine To a solution of 2-(trifluoromethyl)-5,6,7,8-tetrahydroimidazo[l,2- αjpyrazine (64.3 mg, 0.34 mmol, from Step B) and (3R)-3-[(l,l- dimethylethoxycarbonyl)amino]-4-(3,4-difluorophenyl)butanoic acid (105.9 mg, 0.34 mmol) in dichloromethane (5 mL) was added HOBT (54.5 mg, 0.42 mmol) at 0 °C . The reaction was stirred at 0 °C for 10 min, then EDC (96.6 mg, 0.50 mmol) was added. After removal of the ice-bath, the reaction was allowed to stir at ambient temperature for 14 h. The mixture was concentrated and purified by HPLC (Gilson; YMC-Pack Pro C18 column, 100 x 20 mm ID.; solvent gradient from 10% acetonitrile, 90% water, and 0.1 % trifluoroacetic acid to 90% acetonitrile, 10% water, and 0.1 % trifluoroacetic acid) to give 115 mg of the title compound as a foamy solid. *H NMR (500 MHz, CDC13) δ 1.36 (s, 9H), 2.62 (m, 2H), 2..86 (m, 2H) 3.34 (bs, IH), 3.86 (m, IH), 4.05 (m, 4H). 4.85 (m, IH) 5.30-5.38 (m, IH) 6.97 (m, 3H), 7.28 (m, IH). LC/MS 489 (M+1).
Step D. 7-r(3R)-3-Amino-4-(3.4-difluorophenyl)butanoyll-2-(trifluoromethyl)- 5,6,7,8-tetrahvdroimidazori,2-.zlpyrazine, dihydrochloride
To 7-[(3R)-3-[(l,l-dimethylethoxycarbonyl)amino]-4-(3,4- difluorophenyl)butanoyl]-2-(Mfluoromethyl)-5,6,7,8-tetrahyα oimidazo[l,2- αjpyrazine (110.8 mg, 0.226 mmol, from Step C) was added 2 mL of methanol saturated with hydrogen chloride. The reaction was stirred at ambient temperature for 1 h. Concentration gave 89.5 mg of the title compound as a foamy solid. IH NMR (500 MHz, CD3OD) δ 2.97-3.10 (m, 4H), 3.91-4.34 (m, 5H), 4.90-5.04 (m, 2H), 7.16-
7.33 (m, 2H), 8.01-8.08 (m, IH). ESI-MS 389 (M+1).
EXAMPLE 2
7-r(3i?)-3-Amino-4-(2.5-difluorophenyl)butanoyll-2-(trifluoromethyl)-5.6.7.8- tetrahydroimidazori.2-αlpyrazine, dihydrochloride Step A. 7-r(3J?)-3-r(l.l-dimethylethoxycarbonyl)aminol-4-(2.5- difluorophenyl)butanoyll-5,6,7,8-tetrahydroimidazori.2-αlpyrazine
The title compound was prepared from 2-(trifluoromethyl)-5,6,7,8- tetrahydroimidazo[l,2-α]pyrazine (277 mg, 1.45 mmol, from Example 1, Step B), (3R)-3-[(l , l-dimethylethoxycarbonyl)amino]-4-(2,5-difluorophenyl)butanoic acid (Intermediate 1, 416 mg, 1.32 mmol), DTPEA (226 mg, 1.58 mol), HOBT (216 mg, 1.98 mol) and HATU (753 mg, 1.98 mol) in DMF (6 mL), using a procedure analogous to that described in Example 1 Step C, except for the purification method. The compound was purified by preparative TLC (silica gel, 20% hexane in ethyl acetate, then 10% methanol in dichloromethane) to give 360 mg of the title compound as a foamy solid. H NMR (500 MHz, CDC13) δ 1.35 (s, 9H), 2.62 (m, 2H), 2.88 (m, 2H) 3.88-4.16 (m, 5H), 4.73 (s, IH), 4.85 (m, IH) 5.26-5.39 (m, IH) 6.90 (bs, IH), 7.06(m, 2H), 7.24(m, IH). ESI-MS 489 (M+1).
Step B. 7-r(3i?)-3-Amino-4-(2,5-difluorophenyl)butanoyll-5,6,7.8- tetrahydroimidazolT ,2-αlpyrazine, dihydrochloride
The title compound was prepared from 7-[(3R)-3-[(l,l- dimethylethoxycarbonyl)-amino]-4-(2,5-difluorophenyl)butanoyl]-5,6,7,8- tetrahydroimidazo[l,2-α]pyrazine (349.8 mg, 0.72 mol, from Step A) in 1.5 mL of methanol saturated with hydrogen chloride, using a procedure analogous to that described in Example 1, Step D. Evaporation of solvent gave 299 mg of the title compound as a foamy solid. 1H NMR (500 MHz, CD3OD): δ 3.10-3.17 (m, 2H),
2.89-2.99 (m, 2H), 3.94-4.22 (m, 4H), 4.33 (m, IH), 4.91-5.48 (m, 2H), 7.07-7.23 (m, 3H), 8.05 (m, IH). ESI-MS 389(M+1).
EXAMPLE 3
7-r(3^)-3-Amino-4-(2.4,5-trifluorophenyl)butanoyll-2-(trifluoromethyl)-5,6,7,8- tetrahydroimidazoll,2- lpyrazine, dihydrochloride Step A. 7-r(3R)-3-r(l.l-dimethylethoxycarbonyl)aminol-4-(2,4.5- trifluorophenyDbutanoyπ -5,6,7 , 8-tetrahvdroimidazo I" 1 ,2-αlpyrazine
The title compound was prepared from 2-(trifluoromefhyl)-5,6,7,8- tetrahydroimidazo[l,2-α]pyrazine (31.7 mg, 0.166 mmol, from Example 1, Step B), (3R)-3-[(l,l-dimethylethoxycarbonyl)amino]-4-(2,4,5-trifluorophenyl)butanoic acid (Intermediate 3, 57 mg, 0.166 mmol), HOBT (26.9 mg,0.199 ) mmol, and EDC (47.8 mg, 0.249 mmol) in 4 mL of dichloromethane, using a procedure analogous to that described in Example 1, Step C. Purification by preparative TLC (silica gel, 100% ethyl acetate, then 10% methanol in dichloromethane) gave 40 mg of the title compound as a foamy solid. XH NMR (500 MHz, CDC13) δ 1.35 (s, 9H), 3.00 (m, 2H), 3.30 (m, 2H), 3.93 ( , IH) 4.04-4.24 (m, 2H), 4.23 (s, IH), 4.35 (m, IH) 4.97- 5.48 (m, 2H) 7.22 (m, IH), 7.44 (m, IH), 8.04 (m, IH). ESI-MS 507 (M+1).
Step B. 7-r(3R)-3-Amino-4-(2.4.5-trifluorophenyl)butanoyll-5,6,7,8- tetrahydroimidazori,2-αlpyrazine, dihydrochloride
The title compound was prepared from 7-[(3R)-3-[(l,l- dimethylethoxycarbonyl)amino]-4-(2,4,5-trifluorophenyl)butanoyl]-5,6,7,8- tetrahydroimidazo[l,2- ]pyrazme (38 mg, 0.075 mmol, from Step A), in 1.5 mL of methanol saturated with hydrogen chloride, using a procedure analogous to that described in Example 1, Step D. Evaporation of solvent gave 34 mg of the title compound as a foamy solid. H NMR (500 MHz, CD3OD): δ 2.59-2.66 (m, 2H),
2.92 (m, 2H), 3.89-4.16-4.22 (m, 5H), 4.70-4.84 (m, 2H), 5.42 (m, IH), 6.86 (m, IH), 7.06 (m, IH), 7.24 (m, IH). ESI-MS 407(M+1).
EXAMPLE 4
7-r(3R)-3-Amino-4-(3.4-difluorophenyl)butanoyl1-5,6.7.8-tetrahvdroimidazori.2- αlpyrazine, dihydrochloride Step A. Imidazori,2- lpyrazine
To a solution of 2-aminopyrazine (2.0 g, 21.03 mmol) in ethanol (40 mL) was added 2-bromo-l,l-dimethoxyethane (2.5 mL, 21.03 mmol) followed by 5 drops of concentrated hydrochloric acid. After refluxing for 14 hours, the solvent was evaporated. The residue was partitioned between ethyl acetate and saturated aqueous sodium bicarbonate solution. The aqueous layer was extracted with ethyl acetate (3x). The combined organic phase was washed with brine, dried over magnesium sulfate, and concentrated. The residue was purified by flash chromatography (100% ethyl acetate, 10% methanol in ethyl acetate, then 10% methanol in dichloromethane) to give 536 mg of the title compound as a solid. *H NMR (500 MHz, CDC13) δ 7.70 (bs, IH), 7.82 (bs, IH), 7.89 (d, IH, J=4.4 Hz), 8.10 (d, IH, J=4.6 Hz), 9.12 (s, IH).
Step B. 5,6.7, 8-Tetrahydroimidazo|T,2-fllpyrazine
The title compound was prepared from imidazo[l,2-α]pyrazine (500 mg, 4.20 mmol, from Step A) and platinum oxide (250 mg) in methanol (50 mL), using a procedure analogous to that described in Example 1, Step B. Concentration
1 gave the title compound (512 mg) as a viscous oil. H NMR (500 MHz, CD3OD) δ 3.37 (t, IH, J=5.5 Hz), 4.18 (t, 2H, J=5.6 Hz), 4.88 (s, IH), 7.27 (d, J=1.6 Hz, IH), 7.33 (d, IH).
Step C. 7-r(3J?)-3-r(l,l-dimethylethoxycarbonyl aminol-4-(3,4- difluorophenyl)butanovn-5 ,6,7, 8-tetrahydroimidazo I" 1 ,2-alpyrazine
The title compound was prepared from 5,6,7,8-tetrahydroimidazo[l,2- αjpyrazine (31.3 mg, 0.254 mmol, from Step B), (3R)-3-[(l,l- dimethylethoxycarbonyl)amino]-4-(3,4-difluorophenyl)butanoic acid (80 mg, mmol),
DTPEA (32.8 mg, 0.254 mmol), HOBT (41.2 mg, 0.305 mmol) and EDC (73 mg,
0.381 mmol) in 5 mL of dichloromethane, using a procedure analogous to that described in Example 1, Step C. Purification by HPLC (Gilson; YMC-Pack Pro C18 column, 100 x 20 mm ID.; solvent gradient system from 10% acetonitrile, 90% water, and 0.1% trifluoroacetic acid to 90% acetonitrile, 10% water, and 0.1% trifluoroacetic
I acid) gave 75 mg of the title compound as a viscous oil. H NMR (500 MHz, CDC13) δ 1.38 (s, 9H), 2.05 (bs, IH), 2.62 (m, 2H), 2.89 (m, 2H) 3.81-4.04 (m, 5H), 4.64-4.88
(m, 2H). 5.38 (m, IH) 6.88 (m, 2H), 7.0 5(m, 3H). ESI-MS 421 (M+1). Step P. 7-r(3R)-3-Amino-4-(3.4-difluorophenyl)butanoyll-5,6.7.8- tetrahydroimidazoπ,2-fl1pyrazine, dihydrochloride
The title compound was prepared from 7-[(3R)-3-[(l,l- dimethylethoxycarbonyl)-amino]-4-(3,4-difluorophenyl)butanoyl]-5,6,7,8- tetrahydroimidazo[l,2-α]pyrazine (72 mg, 0.171 mmol, from Step C), in 1.5 mL of methanol saturated with hydrogen chloride, using a procedure analogous to that described in Example 1, Step D. Concentration gave 66 mg of the title compound as a foamy solid. IH NMR (500 MHz, CD3OD) δ 2.96-3.13 (m, 4H), 3.93 (m, IH), 4.13
(m, 2H), 4.26-4.38 (m, 2H), 4.26-4.38 (m, 2H), 4.90-5.04 (m, 2H), 7.19-7.36 (m, 3H), 7.58 (m, IH). ESI-MS 321 (M+1).
EXAMPLE 5
7-I(3J? -3-Amino-4-(3,4-difluorophenvDbutanoyll-3-ethyl-5,6,7.8-tetrahvdro-l,2,4- triazolor4,3- lpyrazine, dihydrochloride
Step A. 8-Chloro-3-ethyl-l,2,4-triazolor4,3- 1pyrazine
To 3-chloro-2-hydrazinopyrazine (3.0 g, 20.75 mmol), prepared from 2,3-dichloropyrazine and hydrazine using a procedure analogous to that described in the literature (Huynh-Dinh et al, J. Org. Chem. 1979, 44, 1028), was added 8 mL of triethyl orthopropionate. After refluxing for 10 h, the reaction was cooled down to ambient temperature and the precipitate was filtered. The solid was purified by flash chromatography (100% ethyl acetate, then 10% methanol in ethyl acetate) to give 2.73 g of the title compound as a solid. *H NMR (500 MHz, CDC13) δ 1.54 (t, 3H, J=7.6 Hz), 3.16 (q, 2H, J=7.8 Hz), 7.70 (d, IH, J=4.5 Hz), 7.83 (d, IH, J=4.8 Hz).
Step B. 3-Ethyl-5.6.7,8-tetrahydro-1.2.4-triazolor4,3- 1 pyrazine, hydrochloride
The title compound was prepared from 8-chloro-3-ethyl- 1,2,4- triazolo[4,3-α]pyrazine (2.70 g, 14.8 mmol, from Step A) and platinum oxide (0.4 g) in 200 mL of methanol in a paar shaker under hydrogen (50 psi) for 14 hours. Filtration through Celite followed by concentration gave the title compound as a solid. *H NMR (500 MHz, CD3OD) δ 1.36 (t, 3H, J=6.0 Hz), 2.84 (q, 2H, J=6.0 Hz), 3.70 (t, 2H, J=8.0 Hz), 4.28 (t, 2H, J=8.0 Hz). 4.06(s, 2H). ESI-MS 153 (M+1).
Step C. 7-r(3J? -3-r(l,l-dimethylethoxycarbonyl)aminol-4-(3.4- difluoroρhenyl)butanoyn-3-ethyl-5,6,7,8-tetrahydro-l,2,4-triazolor4,3-αlpyrazine The title compound was prepared from 3-ethyl-5,6,7,8-tetrahydro- l,2,4-triazolo[4,3-α]pyrazine hydrochloride (400 mg, 2.12 mmol, from Step B), (3i?)- 3-[(l,l-dimethylethoxycarbonyl)amino]-4-(3,4-difluorophenyl)butanoic acid (668 mg, 2.12 mmol), DIPEA (1.1 mL, 4.24 mmol), HOBT (343.8 mg, 2.54 mmol) and EDC (609.6 mg, 3.18 mmol) in 20 mL of dichloromethane, using a procedure analogous to that described in Example 1, Step C. The crude product was purified by HPLC (Gilson; YMC-Pack Pro C18 column, 100 x 20 mm ID.; solvent gradient from 10% acetonitrile, 90% water, and 0.1% trifluoroacetic acid to 90% acetonitrile, 10% water, and 0. % trifluoroacetic acid) to give 366.3 mg of the title compound as a viscous oil. XH NMR (500 MHz, CDC13) δ 1.31-1.34 (m, 12H), 2.67-2.92 (m, 6H), 4.03-4.12 (m, 4H), 5.03-5.31 (m, 3H), 6.93 (s, IH), 7.05 (m, 2H). ESI-MS 450 (M+1).
Step D. 7-r(3R)-3-Amino-4-(3,4-difluorophenyl)butanoyll-3-ethyl-5.6,7,8-tetrahvdro- L2,4-triazolor4,3-α1 pyrazine, dihydrochloride
The title compound was prepared from 7-[(3R)-3-[(l,l- dimethylethoxycarbonyl)-amino]-4-(3,4-difluorophenyl)butanoyl]-3-ethyl-5,6,7,8- tetrahydro-l,2,4-triazolo[4,3-α]ρyrazine (30 mg, 0.067 mmol from Step C), in 1.5 mL of methanol saturated with hydrogen chloride, using a procedure analogous to that described in Example 1, Step D. Evaporation of solvent afforded 28 mg of the title compound as a viscous oil. 1H NMR (500 MHz, CD3OD) δ 1.45 (t, 3H), 2.93-3.07
(m, 6H), 3.90-4.31 (m, 5H), 5.08 (m, 2H), 7.16 (s, IH), 7.31 (m, 2H). ESI-MS 350 (M+H). EXAMPLE 6
7-r(3ig)-3-Amino-4-(2,5-difluorophenyl)butanoyll-3-(trifluoromethyl)-5,6,7,8- tetrahydro- 1 ,2,4-triazolo r4,3-alpyrazine, hydrochloride
Step A. 3-(Trifluoromethyl)-L2,4-triazolor4,3-fllpyrazine
A mixture of 2-hydrazinopyrazine (820 mg, 7.45 mmol), prepared from 2-chloropyrazine and hydrazine using a procedure analogous to that described in the literature (P.J. Nelson and K.T. Potts, J. Org. Chem. 1962, 27, 3243, except that the crude product was extracted into 10%methanol/dichloromethane and filtered, and the filtrate was concentrated and purified by flash chromatography on silica gel, eluting with 100% ethyl acetate followed by 10% methanol in dichloromethane), TFA (2.55 g, 22.4 mmol), and polyphosphoric acid (10 mL) was heated to 140 °C with stirring for 18 h. The solution was added to ice and neutralized by the addition of ammonium hydroxide. The aqueous solution was extracted with ethyl acetate (3X), washed with brine, and dried over anhydrous magnesium sulfate. Concentration followed by flash chromatography (silica gel, 1:1 hexane:ethyl acetate, then 100% ethyl acetate) afforded the title compound as a solid (861 mg). 1H NMR (500 MHz, CDC13) δ 8.17-8.20 (m, 2H), 9.54 (s, IH). LC/MS (M+1) 189.
Step B. 3-(Trifluoromethyl)-5,6,7,8-tetrahydro-l,2,4-triazolor4,3-αlpyrazine
3-(Trifluoromethyl)-l,2,4-triazolo[4,3-α] pyrazine (540 mg, 2.87 mmol, from Step A) was hydrogenated under atmospheric hydrogen with 10% Pd/C (200 mg) as a catalyst in ethanol (10 mL) at ambient temperature for 18 h. Filtration through Celite followed by concentration gave a dark colored oil. Dichloromethane was added to the above oil and the insoluble black precipitate was filtered off. Concentration of the filtrate gave the title compound as an oil (495 mg). 1H NMR (500 MHz, CDC13) δ 2.21 (br, IH), 3.29 (t, 2H, J = 5.5 Hz), 4.09 (t, 2H, J = 5.5 Hz), 4.24 (s, 2H). LC/MS (M+1) 193.
Step C. 7-r(3R)-3-r(l,l-Dimethylethoxycarbonyl)aminol-4-(2.5- difluorophenyl)butanoyn-3-(trifluoromethyl)-5,6,7,8-tetrahvdro-l,2,4-triazolor4,3- alpyrazine
The title compound was prepared from (3i?)-3-[(l,l- dimethylethoxycarbonyl)-amino]-4-(2,5-difluorophenyl)butanoic acid (Intermediate 1, 50 mg, 0.16 mmol) and 3-(trifluoromethyl)-5,6,7,8-tetrahydro-l,2,4-triazolo[4,3- αjpyrazine (30 mg, 0.16 mmol) using a procedure analogous to that described for Example 1, Step C. The crude product was purified by preparative TLC (silica gel, 100% ethyl acetate, then 10% methanol/dichloromethane (2X)) to afford the title compound (38.1 mg) as a solid. 1H NMR (500 MHz, CDC13) δ 1.38 (s, 9H), 2.57-3.05 (m, 4H), 3.85-4.30 (m, 5H), 4.90 (s, IH), 4.95-5.15 (m, IH), 5.22-5.40 (br, IH), 6.86-7.24 (m, 3H). LC/MS (M+1-t-Boc) 390.
Step D. 7-r(3R)-3-Amino-4-(2,5-difluorophenyl)butanovn-3-(trifluoromethyl)- 5,6,7, 8-tetrahydro-l,2,4-triazolo[4,3-αl pyrazine, hydrochloride
The title compound was prepared from 7-[(3R)-3-[(l,l- dimethylethoxycarbonyl)-amino]-4-(2,5-difluorophenyl)butanoyl]-3-(trifluoromethyl)- 5,6,7, 8-tetrahydro-l,2,4-triazolo[4,3-α]pyrazine (19.1 mg, 0.039 mmol, from Step C) using a procedure analogous to that described for Example 1, Step D. Concentration afforded the title compound (16.1 mg) as a solid. 1H NMR (500 MHz, CD3OD) δ 2.75-3.16 (m, 4H), 3.86-4.35 (m, 5H), 4.95-5.05 (m, 2H), 7.03-7.20 (m, 3H). LC/MS (M+1) 390.
EXAMPLE 7
7-r(3R -3-Amino-4-(2,4.5-trifluorophenyl butanoyll-3-(trifluoromethyl)-5,6,7,8- tetrahydro-l,2,4-triazolor4.3-fllpyrazine, hydrochloride
Step A. 7-r(3Jg)-3-r(l,l-Dimethylethoxycarbonyl)aminol-4-(2.4.5-trifluorophenyl)- butanoyn-3-(trifluoromethyl)-5,6,7,8-tetrahydro-l,2,4-triazolor4,3- lpyrazine
The title compound was prepared from (3R)-3-[(l,l-dimethylethoxy- carbonyl)-amino]-4-(2,4,5-trifluorophenyl)butanoic acid (Intermediate 3, 50.1 mg, 0.15 mmol) and 3-(trifluoromethyl)-5,6,7,8-tetrahydro-l,2,4-triazolo[4,3-α]pyrazine (39.2 mg, 0.20 mmol) using a procedure analogous to that described for Example 1, Step C. The crude product was purified by preparative TLC (silica gel, 100% ethyl acetate) to afford the title compound (29 mg) as a solid. 1H NMR (500 MHz, CDC13) δ 1.37 (s, 9H), 2.61-3.00 (m, 4H), 3.92-4.30 (m, 5H), 4.93 (s, IH), 4.95-5.12 (m, IH), 5.22-5.35 (br, IH), 6.83-6.95 (m, IH), 7.02-7.12 (m, IH). LC/MS (M+l-t-Bu) 452.
Step B. 7-r(3J? -3-Amino-4-(2.4.5-trifluorophenyl)butanoyll-3-(trifluoromethyl)- 5,6,7, 8-tetrahydro-l,2,4-triazolo[4,3-fll pyrazine, hydrochloride The title compound was prepared from 7-[(3i?)-3-[(l,l- dimethylethoxycarbonyl)-amino]-4-(2,4,5-trifluorophenyl)butanoyl]-3- (trifluoromethyl)-5,6,7,8-tetrahydro-l,2,4-triazolo[4,3-ΩJpyrazine (22 mg, 0.039 mmol, from Step A) using a procedure analogous to that described for Example 1, Step D. Concentration afforded the title compound (16.5 mg) as a solid. 1H NMR (500 MHz, CD3OD) δ 2.75-3.15 (m, 4H), 3.82-4.35 (m, 5H), 4.90-5.05 (m, 2H), 7.16-7.25 (m, IH), 7.30-7.42 (m, IH). LC/MS (M+1) 408. Essentially following the procedures outlined for Examples 1-7, the compounds listed in Table 1 were prepared.
TABLE 1
While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, effective dosages other than the particular dosages as set forth herein above may be applicable as a consequence of variations in responsiveness of the mammal being treated for any of the indications with the compounds of the invention indicated above. The specific pharmacological responses observed may vary according to and depending upon the particular active compounds selected or whether there are present pharmaceutical carriers, as well as the type of formulation and mode of administration employed, and such expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended, therefore, that the invention be defined by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.

Claims (40)

WHAT IS CLAIMED IS:
1. A compound of the formula I:
I wherein:
Ar is phenyl which is unsubstituted or substituted with 1-5 of R3, wherein R3 is independently selected from the group consisting of: (1) halogen, (2) Cι_6alkyl, which is linear or branched and is unsubstituted or substituted with 1-5 halogens,
(3) OCi_6alkyl, which is linear or branched and is unsubstituted or substituted with 1-5 halogens, and
(4) CN;
X is selected from the group consisting of:
(1) N, and
(2) CR2;
Rl and R2 are independently selected from the group consisting of:
(1) hydrogen,
(2) CN,
(3) Ci-ioalkyl, which is linear or branched and which is unsubstituted or substituted with 1-5 halogens or phenyl, which is unsubstituted or substituted with 1-5 substituents independently selected from halogen,
CN, OH, R4, OR4, NHS02R4 SO2R4, CO H, and CO2Ci-6alkyl, wherein the CO2Ci~6alkyl is linear or branched,
(4) phenyl which is unsubstituted or substituted with 1-5 substituents independently selected from halogen, CN, OH, R4, OR4 NHS02R4, SO2R4, CO2H, and CO2Ci_6alkyl, wherein the CO2Ci_6al yl is linear or branched, and (6) a 5- or 6-membered heterocycle which may be saturated or unsaturated comprising 1-4 heteroatoms independently selected from N, S and O, the heterocycle being unsubstituted or substituted with 1-3 substituents independently selected from oxo, OH, halogen, Ci_6alkyl, and OCi-βalkyl, wherein the Cι_6alkyl and OCι_6alkyl are linear or branched and optionally substituted with 1-5 halogens;
R4 is Cι_6alkyl, which is linear or branched and which is unsubstituted or substituted with 1-5 groups independently selected from halogen, CO2H, and CO2Ci-6alkyl, wherein the CO2Cι_6alkyl is linear or branched;
and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
2. The compound of Claim 1 of the formula la:
la wherein X, Ar and Ri are defined in Claim 1 ; and pharmaceutically acceptable salts and individual diastereomers thereof.
The compound of Claim 1 of the formula lb:
lb wherein Ar and Ri are defined in Claim 1; and pharmaceutically acceptable salts and individual diastereomers thereof.
4. The compound of Claim 1 of the formula Ic:
Ic wherein Ar , Ri and R are defined in Claim 1; and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
5. The compound of Claim 1 wherein Ar is phenyl which is unsubstituted or substituted with 1-5 substitutents which are independently selected from the group consisting of:
(1) fluoro,
(2) bromo, and (3) CF3.
6. The compound of Claim 1 wherein Ar is selected from the group consisting of:
(1) phenyl, (2) 2-fluorophenyl,
(3) 3,4-difluorophenyl,
(4) 2,5-difluorophenyl,
(5) 2,4,5-trifluorophenyl,
(6) 2-fluoro-4-(triflouromethyl)phenyl, and (7) 4-bromo-2,5-difluorophenyl.
7. The compound of Claim 1 wherein Ri is selected from the group consisting of:
(1) hydrogen, and (2) Ci-galkyl, which is linear or branched and which is unsubstituted or substituted with phenyl or 1-5 fluoro.
8. The compound of Claim 1 wherein Rl is selected from the group consisting of:
(1) hydrogen,
(2) methyl,
(3) ethyl,
(4) CF3, (5) CH2CF3,
(5) CF2CF3
(6) phenyl, and
(7) benzyl.
9. The compound of Claim 1 wherein Rl is selected from the group consisting of:
(1) hydrogen,
(2) methyl,
(3) ethyl, (4) CF3, and
(5) CH2CF3.
10. The compound of Claim 1 wherein Rl is hydrogen or CF3.
11. The compound of Claim 1 wherein R is selected from:
(1) hydrogen,
(2) Ci_6alkyl, which is linear or branched and which is unsubstituted or substituted with 1-5 fluoro,
(3) phenyl, which is unsubstituted or substituted with 1-3 substituents independently selected from fluoro, OCH3, and
OCF3.
12. The compound of Claim 1 wherein R2 is selected from the group consisting of: (1) hydrogen,
(2) methyl,
(3) ethyl,
(4) CF3,
(5) CH2CF3,
(5) CF2CF3
(6) phenyl,
(7) (4-methoxy)phenyl,
(8) (4-trifluoromefhoxy)phenyl,
(9) 4-fluorophenyl, and
(10) 3,4-difluorophenyl.
13. The compound of Claim 1 wherein R2 is CF3 or CF2F3.
14. The compound of Claim 1 wherein R3 is F, Br or CF3.
15. A compound which is selected from the group consisting of:
and pharmaceutically acceptable salts thereof.
16. A pharmaceutical composition which comprises an inert carrier and a compound of Claim 1.
17. A method for inhibition of dipeptidyl peptidase-IV enzyme activity in a mammal which comprises the administration of an effective amount of the compound of Claim 1.
18. A method for treating, controlling, or preventing diabetes comprising the administration to a patient of an effective amount of the compound of Claim 1.
19. A method for treating, controlling, or preventing non-insulin dependent (Type 2) diabetes mellitus in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
20. A method for treating, controlling or preventing hyperglycemia in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
21. A method for treating, controlling or preventing obesity in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
22. A method for treating, controlling or preventing insulin resistance in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
23. A method for treating, controlling or preventing one or more lipid disorders selected from the group conisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, and high LDL in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
24. A method for treating, controlling or preventing atherosclerosis in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
25. A method for treating or controlling growth hormone deficiency in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
26. A method for modulating the immune response in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
27. A method for treating or controlling HTV infection in a mammalian patient in need of such treatment which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
28. A method for treating, controlling or preventing in a mammalian patient in need of treatment one or more disorders selected from the group consisting of neutropenia, neuronal disorders, tumor metastasis, benign prostatic hypertrophy, gingivitis, hypertension and osteoporosis which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
29. A method for reducing sperm motility in a male mammalian patient which comprises administering to the patient a therapeutically effective amount of a compound of Claim 1.
30. A method for treating, controlling or preventing in a mammalian patient in need of treatment one or more conditions selected from the group consisitng of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) irritable bowel syndrome, (15) inflammatory bowel disease, including Crohn's disease and ulcerative colitis, (16) other inflammatory conditions, (17) pancreatitis, (18) abdominal obesity, (19) neurodegenerative disease, (20) retinopathy, (21) nephropathy, (22) neuropathy, (23) Syndrome X, (24) ovarian hyperandrogenism (polycystic ovarian syndrome), and other disorders where insulin resistance is a component, wherein the method comprises the administration to the patient of a therapeutically effective amount of a compound of Claim 1.
31. A method for treating, controlling or preventing in a mammalian patient in need of treatment one or more conditions selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) irritable bowel syndrome, (15) inflammatory bowel disease, including Crohn's disease and ulcerative colitis, (16) other inflammatory conditions, (17) pancreatitis, (18) abdominal obesity, (19) neurodegenerative disease, (20) retinopathy, (21) nephropathy, (22) neuropathy, (23) Syndrome X, (24) ovarian hyperandrogenism (polycystic ovarian syndrome), (25) Type TJ diabetes, (26) growth hormone deficiency, (27) neutropenia, (28) neuronal disorders, (29) tumor metastasis, (30) benign prostatic hypertrophy, (32) gingivitis, (33) hypertension, (34) osteoporosis, and other conditions that may be treated by inhibition of DP-TV, wherein the treatment comprises the administration to the patient of a therapeutically effective amount of a first compound of Claim 1, or a pharmaceutically acceptable salt thereof, and one or more other compounds selected from the group consisting of: (a) other dipeptidyl peptidase TV (DP-TV) inhibitors, (b) insulin sensitizers selected from the group consisting of (i) PPAR agonists, (ii) biguanides, and (iii) protein tyrosine phosphatase-lB (PTP-1B) inhibitors;
(c) insulin or insulin mimetics;
(d) sulfonylureas or other insulin secretagogues; (e) α-glucosidase inhibitors;
(f) glucagon receptor agonists;
(g) GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists; (h) GIP, GTP mimetics, and GTP receptor agonists;
(i) PACAP, PACAP mimetics, and PACAP receptor 3 agonists; (j) cholesterol lowering agents selected from the group consisting of
(i) HMG-CoA reductase inhibitors, (ii) sequestrants, (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPARα agonists, (v) PPARα/γ dual agonists, (vi) inhibitors of cholesterol absorption, (vii) acyl CoA:cholesterol acyltransferase inhibitors, and (viii) anti-oxidants; (k) PPARδ agonists; (1) antiobesity compounds;
(m) an ileal bile acid transporter inhibitor; and
(n) anti-inflammatory agents.
32. A method for the treatment, control, or prevention of one or more conditions selected from intestinal injury, inflammatory bowel disease, Crohn's disease, and ulcerative colitis, which method comprises administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
33. A method for the treatment, control, or prevention of one or more conditions selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia, and dyslipidemia, which method comprises administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1 and an HMG-CoA reductase inhibitor.
34. The method of Claim 33, wherein the HMG-CoA reductase inhibitor is a statin.
35. The method of Claim 34, wherein the statin is selected from the group consisting of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, ZD-4522 and rivastatin.
36. A method for the treatment, control, or prevention of atherosclerosis in a mammalian patient in need of such treatment comprising the administration to the patient of an effective amount of a compound of Claim 1 and an effective amount of an HMG-CoA reductase inhibitor.
37. The method as recited in Claim 36, wherein the HMG-CoA reductase inhibitor is a statin.
38. The method as recited in Claim 37, wherein the statin is selected from the group consisting of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, ZD-4522 and rivastatin.
39. A pharmaceutical composition for the treatment, prevention or control of atherosclerosis, comprising: (1) a compound of Claim 1, (2) an HMG- CoA reductase inhibitor, and (3) a pharmaceutically acceptable carrier.
40. A pharmaceutical composition comprising
(1) a compound of Claim 1,
(2) one or more compounds selected from the group consisting of :
(a) other dipeptidyl peptidase TV (DP-TV) inhibitors; (b) insulin sensitizers selected from the group consisting of (i) PPARγ agonists, other PPAR ligands, PPARα/γ dual agonists, and PPARα agonists, (ii) biguanides, and (iii) protein tyrosine phosphatase-lB (PTP-IB) inhibitors;
(b) insulin or insulin mimetics;
(c) sulfonylureas or other insulin secretagogues; (d) α-glucosidase inhibitors;
(f) glucagon receptor agonists;
(g) GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists; (h) GTP, GTP mimetics, and GTP receptor agonists;
(i) PACAP, PACAP mimetics, and PACAP receptor 3 agonists; (j) cholesterol lowering agents selected from the group consisting of
(i) HMG-CoA reductase inhibitors, (ii) sequestrants, (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPARα agonists, (v) PPARα/γ dual agonists, (vi) inhibitors of cholesterol absorption, (vii) acyl CoAxholesterol acyltransferase inhibitors, and (viii) anti-oxidants; (k) PPARδ agonists;
(1) antiobesity compounds;
(m) an ileal bile acid transporter inhibitor; and
(n) anti-inflammatory agents; and
(3) a pharmaceutically acceptable carrier.
AU2002320303A 2001-07-06 2002-07-05 Beta-amino tetrahydroimidazo (1, 2-A) pyrazines and tetrahydrotrioazolo (4, 3-A) pyrazines as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes Expired AU2002320303B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30347401P 2001-07-06 2001-07-06
US60/303,474 2001-07-06
PCT/US2002/021349 WO2003004498A1 (en) 2001-07-06 2002-07-05 Beta-amino tetrahydroimidazo (1, 2-a) pyrazines and tetrahydrotrioazolo (4, 3-a) pyrazines as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes

Publications (2)

Publication Number Publication Date
AU2002320303A1 true AU2002320303A1 (en) 2003-05-22
AU2002320303B2 AU2002320303B2 (en) 2004-10-14

Family

ID=23172273

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002320303A Expired AU2002320303B2 (en) 2001-07-06 2002-07-05 Beta-amino tetrahydroimidazo (1, 2-A) pyrazines and tetrahydrotrioazolo (4, 3-A) pyrazines as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes

Country Status (46)

Country Link
US (9) US6699871B2 (en)
EP (4) EP1412357B1 (en)
JP (1) JP3762407B2 (en)
KR (1) KR100606871B1 (en)
CN (2) CN1861077A (en)
AR (1) AR036114A1 (en)
AT (2) ATE321048T1 (en)
AU (1) AU2002320303B2 (en)
BE (1) BE2007C047I2 (en)
BG (1) BG108493A (en)
BR (1) BRPI0210866B8 (en)
CA (1) CA2450740C (en)
CR (1) CR7235A (en)
CY (3) CY2007019I2 (en)
DE (4) DE60236767D1 (en)
DK (2) DK1625847T3 (en)
DO (1) DOP2002000438A (en)
EA (2) EA012701B1 (en)
EC (1) ECSP044935A (en)
ES (2) ES2344846T3 (en)
FR (2) FR07C0041I2 (en)
GE (2) GEP20053734B (en)
HK (1) HK1068882A1 (en)
HR (1) HRP20031098B1 (en)
HU (2) HU225695B1 (en)
IL (3) IL159109A0 (en)
IS (2) IS2218B (en)
JO (1) JO2230B1 (en)
LT (1) LTC1412357I2 (en)
LU (2) LUC91360I2 (en)
MA (1) MA27053A1 (en)
ME (1) ME00439B (en)
MX (1) MXPA04000018A (en)
MY (1) MY127961A (en)
NL (2) NL300287I2 (en)
NO (4) NO321999B1 (en)
NZ (1) NZ529833A (en)
PE (1) PE20030654A1 (en)
PL (1) PL196278B6 (en)
PT (2) PT1625847E (en)
RS (1) RS50737B (en)
SI (1) SI1412357T1 (en)
TW (1) TWI226331B (en)
UA (1) UA74912C2 (en)
WO (1) WO2003004498A1 (en)
ZA (1) ZA200309294B (en)

Families Citing this family (429)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020006899A1 (en) * 1998-10-06 2002-01-17 Pospisilik Andrew J. Use of dipeptidyl peptidase IV effectors for lowering blood pressure in mammals
US7544511B2 (en) * 1996-09-25 2009-06-09 Neuralstem Biopharmaceuticals Ltd. Stable neural stem cell line methods
US20030176357A1 (en) * 1998-10-06 2003-09-18 Pospisilik Andrew J. Dipeptidyl peptidase IV inhibitors and their uses for lowering blood pressure levels
ATE440100T1 (en) * 1998-12-31 2009-09-15 Ipsen Pharma PRENYL TRANSFERAS INHIBITORS
JP2005500308A (en) 2001-06-20 2005-01-06 メルク エンド カムパニー インコーポレーテッド Dipeptidyl peptidase inhibitors for the treatment of diabetes
AU2002344820B2 (en) 2001-06-20 2006-12-14 Merck & Co., Inc. Dipeptidyl peptidase inhibitors for the treatment of diabetes
IL158923A0 (en) 2001-06-27 2004-05-12 Smithkline Beecham Corp Fluoropyrrolidines as dipeptidyl peptidase inhibitors
UA74912C2 (en) * 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
WO2003068805A2 (en) * 2002-02-14 2003-08-21 Bayer Pharmaceuticals Corporation Formulation strategies in stabilizing peptides in organic solvents and in dried states
US7307164B2 (en) 2002-03-25 2007-12-11 Merck & Co., Inc. β-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US7105526B2 (en) 2002-06-28 2006-09-12 Banyu Pharmaceuticals Co., Ltd. Benzimidazole derivatives
WO2004007468A1 (en) * 2002-07-15 2004-01-22 Merck & Co., Inc. Piperidino pyrimidine dipeptidyl peptidase inhibitors for the treatment of diabetes
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
ES2291680T3 (en) 2002-10-07 2008-03-01 MERCK & CO., INC. BETA-AMINO HETEROCICLIC INHIBITING ANTIDIABETICS OF DIPEPTIDIL PEPTIDASA.
PT1556362E (en) * 2002-10-18 2008-06-16 Merck & Co Inc Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
RU2005117383A (en) 2002-11-07 2006-01-20 Мерк энд Ко., Инк. (US) Phenylalanine derivatives as dipepididyl peptidase inhibitors for the treatment or prevention of diabetes
CA2508487A1 (en) * 2002-12-04 2004-06-17 Merck & Co., Inc. Phenylalanine derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US8293488B2 (en) 2002-12-09 2012-10-23 Neuralstem, Inc. Method for screening neurogenic agents
EP1576134B1 (en) 2002-12-09 2013-03-06 Judith Kelleher-Andersson Method for discovering neurogenic agents
DE60322944D1 (en) * 2002-12-10 2008-09-25 Novartis Ag COMBINATIONS OF A DPP-IV INHIBITOR AND A PPAR-ALPHA AGONIST
US20060052382A1 (en) * 2002-12-20 2006-03-09 Duffy Joseph L 3-Amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
CA2512899A1 (en) 2003-01-14 2004-08-05 Arena Pharmaceuticals Inc. 1,2,3-trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto such as diabetes and hyperglycemia
JP4564952B2 (en) * 2003-01-17 2010-10-20 メルク・シャープ・エンド・ドーム・コーポレイション 3-Amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment and prevention of diabetes
US7772188B2 (en) 2003-01-28 2010-08-10 Ironwood Pharmaceuticals, Inc. Methods and compositions for the treatment of gastrointestinal disorders
CA2513684A1 (en) * 2003-01-31 2004-08-19 Merck & Co., Inc. 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
AR043443A1 (en) * 2003-03-07 2005-07-27 Merck & Co Inc PROCEDURE FOR THE PREPARATION OF TETRAHYDROTRIAZOLOPIRAZINS AND INTERMEDIATE PRODUCTS
AR043505A1 (en) * 2003-03-18 2005-08-03 Merck & Co Inc PREPARATION OF BETA-CETOAMIDS AND REACTION INTERMEDIARIES
AR043515A1 (en) 2003-03-19 2005-08-03 Merck & Co Inc PROCEDURE TO PREPARE CHIRAL DERIVATIVES BETA AMINO ACIDS BY ASYMMETRIC HYDROGENATION
WO2004085661A2 (en) * 2003-03-24 2004-10-07 Merck & Co., Inc Process to chiral beta-amino acid derivatives
WO2004087053A2 (en) * 2003-03-25 2004-10-14 Syrrx, Inc. Dipeptidyl peptidase inhibitors
WO2004087650A2 (en) * 2003-03-27 2004-10-14 Merck & Co. Inc. Process and intermediates for the preparation of beta-amino acid amide dipeptidyl peptidase-iv inhibitors
ATE462432T1 (en) 2003-05-05 2010-04-15 Probiodrug Ag GLUTAMINYL CYCLASE INHIBITORS
GB0310593D0 (en) * 2003-05-08 2003-06-11 Leuven K U Res & Dev Peptidic prodrugs
AU2004240563A1 (en) * 2003-05-14 2004-12-02 Merck & Co., Inc. 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
JP2007511467A (en) 2003-05-14 2007-05-10 タケダ サン ディエゴ インコーポレイテッド Dipeptidyl peptidase inhibitor
US20070099884A1 (en) * 2003-06-06 2007-05-03 Erondu Ngozi E Combination therapy for the treatment of diabetes
JP2006527194A (en) * 2003-06-06 2006-11-30 メルク エンド カムパニー インコーポレーテッド Condensed indoles as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US7456204B2 (en) * 2003-06-17 2008-11-25 Merck & Co., Inc. Cyclohexylglycine derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
JO2625B1 (en) * 2003-06-24 2011-11-01 ميرك شارب اند دوم كوربوريشن Phosphoric acid salt of a dipeptidyl peptidase-IV inhibitor
AR045047A1 (en) 2003-07-11 2005-10-12 Arena Pharm Inc ARILO AND HETEROARILO DERIVATIVES TRISUSTITUIDOS AS MODULATORS OF METABOLISM AND PROFILAXIS AND TREATMENT OF DISORDERS RELATED TO THEMSELVES
AR045697A1 (en) 2003-07-14 2005-11-09 Arena Pharm Inc ARIL AND HETEROARIL FUSIONATED DERIVATIVES AS MODULATORS OF METABOLISM AND THE PREVENTION AND TREATMENT OF DISORDERS RELATED TO THE SAME
ES2328579T3 (en) * 2003-07-25 2009-11-16 Conjuchem Biotechnologies Inc. LONG-TERM INSULIN DERIVATIVES AND ASSOCIATED PROCEDURES.
CN1882551A (en) * 2003-07-31 2006-12-20 麦克公司 Hexahydrodiazepinones as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
US7169926B1 (en) 2003-08-13 2007-01-30 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7678909B1 (en) 2003-08-13 2010-03-16 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
KR20060041309A (en) * 2003-08-13 2006-05-11 다케다 야쿠힌 고교 가부시키가이샤 4-pyrimidone derivatives and their use as peptidyl peptidase inhibitors
JP2007504230A (en) * 2003-09-02 2007-03-01 メルク エンド カムパニー インコーポレーテッド A novel crystalline form of phosphate of dipeptidyl peptidase-IV inhibitor
US20050065144A1 (en) * 2003-09-08 2005-03-24 Syrrx, Inc. Dipeptidyl peptidase inhibitors
JP2007505121A (en) 2003-09-08 2007-03-08 武田薬品工業株式会社 Dipeptidyl peptidase inhibitor
US7547693B2 (en) 2003-09-22 2009-06-16 Banyu Pharmaceutical Co. Ltd. Piperidine derivative
EP1667524A4 (en) * 2003-09-23 2009-01-14 Merck & Co Inc Novel crystalline form of a phosphoric acid salt of a dipeptidyl peptidase-iv inhibitor
WO2005042003A1 (en) * 2003-10-24 2005-05-12 Merck & Co., Inc. Enhancement of growth hormone levels with a dipeptidyl peptidase iv inhibitor and a growth hormone secretagogue
US20050137142A1 (en) 2003-11-03 2005-06-23 Probiodrug Ag Combinations useful for the treatment of neuronal disorders
CA2541212A1 (en) * 2003-11-04 2005-05-19 Wallace T. Ashton Fused phenylalanine derivatives as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
US7767828B2 (en) * 2003-11-12 2010-08-03 Phenomix Corporation Methyl and ethyl substituted pyrrolidine compounds and methods for selective inhibition of dipeptidyl peptidase-IV
US7317109B2 (en) * 2003-11-12 2008-01-08 Phenomix Corporation Pyrrolidine compounds and methods for selective inhibition of dipeptidyl peptidase-IV
ES2524916T3 (en) * 2003-11-12 2014-12-15 Sino-Med International Alliance, Inc. Heterocyclic boronic acid compounds
US7576121B2 (en) * 2003-11-12 2009-08-18 Phenomix Corporation Pyrrolidine compounds and methods for selective inhibition of dipeptidyl peptidase-IV
KR20170104639A (en) 2003-11-17 2017-09-15 노파르티스 아게 Use of dipeptidyl peptidase iv inhibitors
EP1708571A4 (en) * 2004-01-16 2009-07-08 Merck & Co Inc Novel crystalline salts of a dipeptidyl peptidase-iv inhibitor
WO2005067976A2 (en) 2004-01-20 2005-07-28 Novartis Ag Direct compression formulation and process
CN101684089A (en) * 2004-02-05 2010-03-31 杏林制药株式会社 bicycloester derivative
BRPI0507485A (en) 2004-02-05 2007-07-10 Probiodrug Ag new glutaminyl cyclase inhibitors
US7501426B2 (en) 2004-02-18 2009-03-10 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
US7560569B2 (en) * 2004-02-18 2009-07-14 Kyorin Pharmaceutical Co., Ltd Bicycloamide derivative
CA2557275C (en) * 2004-02-27 2012-06-05 Kyorin Pharmaceutical Co., Ltd. Bicyclo derivative
US7732446B1 (en) 2004-03-11 2010-06-08 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
UA85871C2 (en) 2004-03-15 2009-03-10 Такеда Фармасьютікал Компані Лімітед Dipeptidyl peptidase inhibitors
CN1938286A (en) 2004-03-29 2007-03-28 默克公司 Diaryltriazoles as inhibitors of 11-beta-hydroxysteroid dehydrogenase-1
US20080125403A1 (en) 2004-04-02 2008-05-29 Merck & Co., Inc. Method of Treating Men with Metabolic and Anthropometric Disorders
TW200602293A (en) * 2004-04-05 2006-01-16 Merck & Co Inc Process for the preparation of enantiomerically enriched beta amino acid derivatives
CA2564264A1 (en) * 2004-05-04 2005-11-17 Merck & Co., Inc. 1,2,4-oxadiazole derivatives as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
AU2005247895A1 (en) * 2004-05-18 2005-12-08 Merck & Co., Inc. Cyclohexylalanine derivatives as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
JP2008501714A (en) * 2004-06-04 2008-01-24 武田薬品工業株式会社 Dipeptidyl peptidase inhibitor
CA2570807C (en) * 2004-06-21 2011-12-06 Merck & Co., Inc. Aminocyclohexanes as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
WO2006019965A2 (en) 2004-07-16 2006-02-23 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
AU2005267093B2 (en) * 2004-07-23 2009-10-01 Nuada Llc Peptidase inhibitors
TW200608967A (en) 2004-07-29 2006-03-16 Sankyo Co Pharmaceutical compositions containing with diabetic agent
ATE472531T1 (en) 2004-08-06 2010-07-15 Merck Sharp & Dohme SULFONYL COMPOUNDS AS INHIBITORS OF 11-BETA-HYDROXYSTEROIDDEHYDROGENASE-1
WO2006023750A2 (en) 2004-08-23 2006-03-02 Merck & Co., Inc. Fused triazole derivatives as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
JP4854511B2 (en) * 2004-08-26 2012-01-18 武田薬品工業株式会社 Diabetes treatment
PE20060652A1 (en) 2004-08-27 2006-08-11 Novartis Ag IMMEDIATE RELEASE PHARMACEUTICAL COMPOSITIONS INCLUDING FUSION GRANULES
EP1796671A4 (en) * 2004-09-15 2009-01-21 Merck & Co Inc Amorphous form of a phosphoric acid salt of a dipeptidyl peptidase-iv inhibitor
US20060063719A1 (en) * 2004-09-21 2006-03-23 Point Therapeutics, Inc. Methods for treating diabetes
EP1796669B1 (en) 2004-10-01 2010-09-22 Merck Sharp & Dohme Corp. Aminopiperidines as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
MX2007004305A (en) * 2004-10-12 2007-06-18 Glenmark Pharmaceuticals Sa Novel dipeptidyl peptidase iv inhibitors, pharmaceutical compositions containing them, and process for their preparation.
DE102004054054A1 (en) 2004-11-05 2006-05-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines
EP1814979B1 (en) * 2004-11-17 2015-04-08 Neuralstem, Inc. Transplantation of human neural cells for treatment of neurodegenerative conditions
JP2008524331A (en) 2004-12-21 2008-07-10 武田薬品工業株式会社 Dipeptidyl peptidase inhibitor
DOP2006000008A (en) 2005-01-10 2006-08-31 Arena Pharm Inc COMBINED THERAPY FOR THE TREATMENT OF DIABETES AND RELATED AFFECTIONS AND FOR THE TREATMENT OF AFFECTIONS THAT IMPROVE THROUGH AN INCREASE IN THE BLOOD CONCENTRATION OF GLP-1
CN102600144A (en) * 2005-03-08 2012-07-25 奈科明有限责任公司 Roflumilast for the treatment of diabetes mellitus
TWI357902B (en) 2005-04-01 2012-02-11 Lg Life Science Ltd Dipeptidyl peptidase-iv inhibiting compounds, meth
CN101426500A (en) * 2005-05-02 2009-05-06 默克公司 Combination of dipeptidyl peptidase-iv inhibitor and a cannabinoid cb1 receptor antagonist for the treatment of diabetes and obesity
US7825139B2 (en) * 2005-05-25 2010-11-02 Forest Laboratories Holdings Limited (BM) Compounds and methods for selective inhibition of dipeptidyl peptidase-IV
WO2006127530A2 (en) * 2005-05-25 2006-11-30 Merck & Co., Inc. Aminocyclohexanes as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
CA2609388C (en) 2005-05-30 2013-08-06 Banyu Pharmaceutical Co., Ltd. Novel piperidine derivative
MY152185A (en) 2005-06-10 2014-08-29 Novartis Ag Modified release 1-[(3-hydroxy-adamant-1-ylamino)-acetyl]-pyrrolidine-2(s)-carbonitrile formulation
JP4915833B2 (en) * 2005-07-01 2012-04-11 雪印メグミルク株式会社 Dipeptidyl peptidase IV inhibitor
ES2391470T3 (en) * 2005-07-20 2012-11-27 Eli Lilly And Company Phenyl compounds
WO2007015805A1 (en) * 2005-07-20 2007-02-08 Eli Lilly And Company 1-amino linked compounds
US8133907B2 (en) 2005-07-20 2012-03-13 Eli Lilly And Company Pyridine derivatives as dipeptedyl peptidase inhibitors
WO2007035198A2 (en) * 2005-07-25 2007-03-29 Merck & Co., Inc. Dodecylsulfate salt of a dipeptidyl peptidase-iv inhibitor
DE102005035891A1 (en) 2005-07-30 2007-02-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8- (3-amino-piperidin-1-yl) -xanthines, their preparation and their use as pharmaceuticals
JPWO2007018248A1 (en) 2005-08-10 2009-02-19 萬有製薬株式会社 Pyridone compounds
WO2007024004A1 (en) 2005-08-24 2007-03-01 Banyu Pharmaceutical Co., Ltd. Phenylpyridone derivative
TW200800213A (en) 2005-09-02 2008-01-01 Abbott Lab Novel imidazo based heterocycles
EP1939194A4 (en) 2005-09-07 2010-12-08 Banyu Pharma Co Ltd Bicyclic aromatic substituted pyridone derivative
PE20070522A1 (en) 2005-09-14 2007-07-11 Takeda Pharmaceutical 2- [6- (3-AMINO-PIPERIDIN-1-IL) -3-METHYL-2,4-DIOXO-3,4-DIHYDRO-2H-PYRIMIDIN-1-ILMETHYL] -4-FLUORO-BENZONITRILE AS INHIBITOR OF DIPEPTIDIL PEPTIDASE AND PHARMACEUTICAL COMPOSITIONS CONTAINING IT
EP1931350B2 (en) * 2005-09-14 2021-08-04 Takeda Pharmaceutical Company Limited Administration of dipeptidyl peptidase inhibitors
CA2622642C (en) 2005-09-16 2013-12-31 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
TW200745080A (en) * 2005-09-16 2007-12-16 Takeda Pharmaceuticals Co Polymorphs of tartrate salt of 2-[2-(3-(R)-amino-piperidin-1-yl)-5-fluoro-6-oxo-6H-pyrimidin-1-ylmethyl]-benzonitrile and methods of use therefor
TW200745079A (en) * 2005-09-16 2007-12-16 Takeda Pharmaceuticals Co Polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile and methods of use therefor
TW200738266A (en) * 2005-09-29 2007-10-16 Sankyo Co Pharmaceutical agent containing insulin resistance improving agent
CN101277960A (en) 2005-09-29 2008-10-01 默克公司 Acylated spiropiperidine derivatives as melanocortin-4 receptor modulators
US20090156579A1 (en) * 2005-10-25 2009-06-18 Hasegawa Philip A Combination of a Dipeptidyl Peptidase-4 Inhibitor and an Anti-Hypertensive Agent for the Treatment of Diabetes and Hypertension
US8163770B2 (en) 2005-10-27 2012-04-24 Msd. K. K. Benzoxathiin derivative
BRPI0618354B8 (en) 2005-11-10 2021-05-25 Banyu Pharma Co Ltd compound and its use, pharmaceutical composition, preventive or medicine
WO2007078726A2 (en) * 2005-12-16 2007-07-12 Merck & Co., Inc. Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with metformin
EP1801098A1 (en) 2005-12-16 2007-06-27 Merck Sante 2-Adamantylurea derivatives as selective 11B-HSD1 inhibitors
GB0526291D0 (en) * 2005-12-23 2006-02-01 Prosidion Ltd Therapeutic method
NZ569661A (en) * 2005-12-28 2011-06-30 Takeda Pharmaceutical Therapeutic agent for diabetes
WO2007077510A2 (en) * 2005-12-30 2007-07-12 Ranbaxy Laboratories Limited Muscarinic receptor antagonists
US20090156465A1 (en) 2005-12-30 2009-06-18 Sattigeri Jitendra A Derivatives of beta-amino acid as dipeptidyl peptidase-iv inhibitors
EP1978804B1 (en) * 2006-01-25 2014-07-30 Merck Sharp & Dohme Corp. Aminocyclohexanes as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
CA2645154C (en) * 2006-03-08 2011-11-29 Kyorin Pharmaceutical Co., Ltd. Method for producing aminoacetylpyrrolidinecarbonitrile derivative and production intermediate thereof
WO2007112347A1 (en) 2006-03-28 2007-10-04 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
EP1999108A1 (en) * 2006-03-28 2008-12-10 Takeda Pharmaceutical Company Limited Preparation of (r)-3-aminopiperidine dihydrochloride
PE20071221A1 (en) 2006-04-11 2007-12-14 Arena Pharm Inc GPR119 RECEPTOR AGONISTS IN METHODS TO INCREASE BONE MASS AND TO TREAT OSTEOPOROSIS AND OTHER CONDITIONS CHARACTERIZED BY LOW BONE MASS, AND COMBINED THERAPY RELATED TO THESE AGONISTS
TWI409458B (en) * 2006-04-11 2013-09-21 Arena Pharm Inc Methods of using gpr119 receptor to identify compounds useful for increasing bone mass in an individual
WO2007115821A2 (en) 2006-04-11 2007-10-18 Novartis Ag Organic compounds
PE20110235A1 (en) 2006-05-04 2011-04-14 Boehringer Ingelheim Int PHARMACEUTICAL COMBINATIONS INCLUDING LINAGLIPTIN AND METMORPHINE
EP1852108A1 (en) 2006-05-04 2007-11-07 Boehringer Ingelheim Pharma GmbH & Co.KG DPP IV inhibitor formulations
NZ573360A (en) 2006-05-04 2012-08-31 Boehringer Ingelheim Int Polymorphic forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine
EP2063890A1 (en) 2006-09-07 2009-06-03 Nycomed GmbH Combination treatment for diabetes mellitus
KR20170127074A (en) * 2006-09-13 2017-11-20 다케다 야쿠힌 고교 가부시키가이샤 Use of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2h-pyrimidin-1-ylmethyl]-4-fluoro-benzonitrile
US8324383B2 (en) 2006-09-13 2012-12-04 Takeda Pharmaceutical Company Limited Methods of making polymorphs of benzoate salt of 2-[[6-[(3R)-3-amino-1-piperidinyl]-3,4-dihydro-3-methyl-2,4-dioxo-1(2H)-pyrimidinyl]methyl]-benzonitrile
US8173629B2 (en) 2006-09-22 2012-05-08 Merck Sharp & Dohme Corp. Method of treatment using fatty acid synthesis inhibitors
WO2008038692A1 (en) 2006-09-28 2008-04-03 Banyu Pharmaceutical Co., Ltd. Diaryl ketimine derivative
EP2089383B1 (en) 2006-11-09 2015-09-16 Probiodrug AG 3-hydr0xy-1,5-dihydr0-pyrr0l-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcer, cancer and other diseases
TW200838536A (en) 2006-11-29 2008-10-01 Takeda Pharmaceutical Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor
EP2091948B1 (en) 2006-11-30 2012-04-18 Probiodrug AG Novel inhibitors of glutaminyl cyclase
EP1935420A1 (en) 2006-12-21 2008-06-25 Merck Sante 2-Adamantyl-butyramide derivatives as selective 11beta-HSD1 inhibitors
KR20080071476A (en) * 2007-01-30 2008-08-04 주식회사 엘지생명과학 Novel dipeptidyl peptidase-iv inhibitors
NZ579008A (en) * 2007-02-01 2012-02-24 Takeda Pharmaceutical Solid preparation comprising alogliptin and pioglitazone
US8093236B2 (en) 2007-03-13 2012-01-10 Takeda Pharmaceuticals Company Limited Weekly administration of dipeptidyl peptidase inhibitors
US20080064701A1 (en) * 2007-04-24 2008-03-13 Ramesh Sesha Anti-diabetic combinations
US20070172525A1 (en) * 2007-03-15 2007-07-26 Ramesh Sesha Anti-diabetic combinations
US8143427B2 (en) * 2007-03-22 2012-03-27 Kyorin Pharmaceutical Co., Ltd. Method for producing aminoacetylpyrrolidinecarbonitrile derivative
JP5319518B2 (en) 2007-04-02 2013-10-16 Msd株式会社 Indoledione derivative
EP2143443B1 (en) 2007-04-03 2014-11-19 Mitsubishi Tanabe Pharma Corporation A combination of dipeptidyl peptidase iv inhibitor and sweetener for use in the treatment of obesity
WO2008128985A1 (en) 2007-04-18 2008-10-30 Probiodrug Ag Thiourea derivatives as glutaminyl cyclase inhibitors
EP2155187B1 (en) 2007-05-07 2016-05-25 Merck Sharp & Dohme Corp. Method of treatment using fused aromatic compounds having anti-diabetic activity
WO2008141021A1 (en) * 2007-05-08 2008-11-20 Concert Pharmaceuticals, Inc. Deuterated derivatives of tetrahydrotriazolopyrazine compounds and their use as dpp-iv inhibitors
WO2008151257A2 (en) 2007-06-04 2008-12-11 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
EA201401193A1 (en) 2007-06-04 2015-08-31 Бен-Гурион Юниверсити Оф Дзе Негев Рисерч Энд Дивелопмент Оторити TRIAILARY COMPOUNDS AND COMPOSITIONS CONTAINING THEM
US8969514B2 (en) 2007-06-04 2015-03-03 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases
CN101318922B (en) * 2007-06-08 2010-11-10 上海阳帆医药科技有限公司 Novel dipeptidyl peptidase restrainer, synthesizing process and uses thereof
CL2008002427A1 (en) 2007-08-16 2009-09-11 Boehringer Ingelheim Int Pharmaceutical composition comprising 1-chloro-4- (bd-glucopyranos-1-yl) -2- [4 - ((s) -tetrahydrofuran-3-yloxy) benzyl] -benzene combined with 1 - [(4-methylquinazolin- 2-yl) methyl] -3-methyl-7- (2-butyn-1-yl) -8- (3- (r) -aminopiperidin-1-yl) xanthine; and its use to treat type 2 diabetes mellitus.
EP3542801A1 (en) * 2007-08-17 2019-09-25 Boehringer Ingelheim International GmbH Purin derivatives for use in the treatment of fap-related diseases
CN101397300B (en) * 2007-09-04 2011-04-27 山东轩竹医药科技有限公司 Dipeptidase-IV inhibitor derivates
US20090076013A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched sitagliptin
CN101417999A (en) * 2007-10-25 2009-04-29 上海恒瑞医药有限公司 Piperazines derivates, preparation method thereof and application thereof in medicine
WO2009084024A2 (en) * 2007-11-02 2009-07-09 Glenmark Generics Limited A process for the preparation of r-sit agliptin and its pharmaceutically acceptable salts thereof
US20090192326A1 (en) * 2007-11-13 2009-07-30 Nurit Perlman Preparation of sitagliptin intermediate
EP2679590A1 (en) 2007-12-20 2014-01-01 Dr. Reddy's Laboratories Ltd. Processes for the Preparation of Sitagliptin and Pharmaceutically acceptable Salts thereof
WO2009082134A2 (en) * 2007-12-21 2009-07-02 Lg Life Sciences, Ltd. Dipeptidyl peptidase-iv inhibiting compounds, methods of preparing the same, and pharmaceutical compositions containing the same as active agent
CN101468988A (en) * 2007-12-26 2009-07-01 上海恒瑞医药有限公司 Piperazine derivative, preparation thereof and use thereof in medicine
CL2008003653A1 (en) 2008-01-17 2010-03-05 Mitsubishi Tanabe Pharma Corp Use of a glucopyranosyl-derived sglt inhibitor and a selected dppiv inhibitor to treat diabetes; and pharmaceutical composition.
CN101925586B (en) * 2008-01-24 2014-05-07 万能药生物有限公司 Novel heterocyclic compounds
AU2009210641A1 (en) * 2008-02-05 2009-08-13 Merck Sharp & Dohme Corp. Pharmaceutical compositions of a combination of metformin and a dipeptidyl peptidase-IV inhibitor
JP2011513408A (en) * 2008-03-04 2011-04-28 メルク・シャープ・エンド・ドーム・コーポレイション Combination pharmaceutical composition of metformin and dipeptidyl peptidase-IV inhibitor
WO2009110510A1 (en) 2008-03-06 2009-09-11 萬有製薬株式会社 Alkylaminopyridine derivative
US8551524B2 (en) * 2008-03-14 2013-10-08 Iycus, Llc Anti-diabetic combinations
US20090247532A1 (en) * 2008-03-28 2009-10-01 Mae De Ltd. Crystalline polymorph of sitagliptin phosphate and its preparation
WO2009119726A1 (en) 2008-03-28 2009-10-01 萬有製薬株式会社 Diarylmethylamide derivative having antagonistic activity on melanin-concentrating hormone receptor
PE20091730A1 (en) * 2008-04-03 2009-12-10 Boehringer Ingelheim Int FORMULATIONS INVOLVING A DPP4 INHIBITOR
EP2146210A1 (en) * 2008-04-07 2010-01-20 Arena Pharmaceuticals, Inc. Methods of using A G protein-coupled receptor to identify peptide YY (PYY) secretagogues and compounds useful in the treatment of conditions modulated by PYY
EP2110374A1 (en) 2008-04-18 2009-10-21 Merck Sante Benzofurane, benzothiophene, benzothiazol derivatives as FXR modulators
US20090264476A1 (en) * 2008-04-18 2009-10-22 Mckelvey Craig CB-1 receptor modulator formulations
US8003672B2 (en) * 2008-04-21 2011-08-23 Merck Sharp & Dohme Corp. CB-1 receptor modulator formulations
PE20100156A1 (en) * 2008-06-03 2010-02-23 Boehringer Ingelheim Int NAFLD TREATMENT
EP3239170B1 (en) 2008-06-04 2019-03-20 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
WO2009154132A1 (en) 2008-06-19 2009-12-23 萬有製薬株式会社 Spirodiamine-diarylketoxime derivative
WO2010000469A2 (en) 2008-07-03 2010-01-07 Ratiopharm Gmbh Crystalline salts of sitagliptin
CA2730603C (en) 2008-07-16 2019-09-24 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
WO2010012781A2 (en) * 2008-07-29 2010-02-04 Medichem, S.A. New crystalline salt forms of a 5,6,7,8-tetrahydro-1,2,4- triazolo[4,3-a]pyrazine derivative
CA2731358A1 (en) 2008-07-30 2010-02-04 Banyu Pharmaceutical Co., Ltd. 5/5-or 5/6-membered condensed ring cycloalkylamine derivative
UY32030A (en) 2008-08-06 2010-03-26 Boehringer Ingelheim Int "TREATMENT FOR DIABETES IN INAPPROPRIATE PATIENTS FOR THERAPY WITH METFORMIN"
KR20190016601A (en) 2008-08-06 2019-02-18 베링거 인겔하임 인터내셔날 게엠베하 Treatment for diabetes in patients inappropriate for metformin therapy
WO2010016584A1 (en) * 2008-08-07 2010-02-11 杏林製薬株式会社 Process for production of bicyclo[2.2.2]octylamine derivative
WO2010018866A1 (en) * 2008-08-14 2010-02-18 杏林製薬株式会社 Stabilized pharmaceutical composition
MX2011001525A (en) * 2008-08-15 2011-03-29 Boehringer Ingelheim Int Purin derivatives for use in the treatment of fab-related diseases.
EP2331545B1 (en) * 2008-08-27 2013-10-02 Cadila Healthcare Limited Improved process for preparation of (2r)-4-oxo-4-[3- (trifluoromethyl)-5,6-dihydro [1,2,4]-triazolo[4,3-a]pyrazin- 7(8h)-yl]-l-(2,4,5-trifluorophenyl)butan-2-amine&new impurities in preparation thereof
US8513264B2 (en) 2008-09-10 2013-08-20 Boehringer Ingelheim International Gmbh Combination therapy for the treatment of diabetes and related conditions
AR073412A1 (en) 2008-10-03 2010-11-03 Schering Corp DERIVATIVES OF ESPIRO IMIDAZOLONA AS ANTAGONISTS OF THE GLUCAGON RECEIVER AND COMPOSITIONS THAT UNDERSTAND THEM.
US20200155558A1 (en) 2018-11-20 2020-05-21 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug
KR101054911B1 (en) * 2008-10-17 2011-08-05 동아제약주식회사 Pharmaceutical composition for the prevention and treatment of diabetes or obesity containing a compound that inhibits the activity of dipeptidyl peptidase-IV and other anti-diabetic or anti-obesity drugs as an active ingredient
EP2348857B1 (en) 2008-10-22 2016-02-24 Merck Sharp & Dohme Corp. Novel cyclic benzimidazole derivatives useful anti-diabetic agents
AU2009308980B2 (en) 2008-10-30 2013-02-28 Merck Sharp & Dohme Corp. Isonicotinamide orexin receptor antagonists
WO2010051206A1 (en) 2008-10-31 2010-05-06 Merck Sharp & Dohme Corp. Novel cyclic benzimidazole derivatives useful anti-diabetic agents
JO2870B1 (en) 2008-11-13 2015-03-15 ميرك شارب اند دوهم كورب Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
CA2743489A1 (en) 2008-11-17 2010-05-20 Merck Sharp & Dohme Corp. Substituted bicyclic amines for the treatment of diabetes
WO2010072776A1 (en) 2008-12-23 2010-07-01 Boehringer Ingelheim International Gmbh Salt forms of organic compound
EP2381772B1 (en) 2008-12-31 2016-08-24 Chiral Quest, Inc. Process and intermediates for the preparation of n-acylated-4-aryl beta-amino acid derivatives
AR074990A1 (en) 2009-01-07 2011-03-02 Boehringer Ingelheim Int TREATMENT OF DIABETES IN PATIENTS WITH AN INAPPROPRIATE GLUCEMIC CONTROL THROUGH METFORMIN THERAPY
US8404727B2 (en) * 2009-01-07 2013-03-26 Glenmark Pharmaceuticals S.A. Pharmaceutical composition that includes a dipeptidyl peptidase-IV inhibitor
CN105384726A (en) 2009-01-09 2016-03-09 幽兰化学医药有限公司 Dipeptidyl peptidase IV inhibitors
TWI466672B (en) 2009-01-29 2015-01-01 Boehringer Ingelheim Int Treatment for diabetes in paediatric patients
EP2218721A1 (en) * 2009-02-11 2010-08-18 LEK Pharmaceuticals d.d. Novel salts of sitagliptin
JP5685550B2 (en) 2009-02-13 2015-03-18 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Pharmaceutical composition comprising SGLT2 inhibitor, DPP-IV inhibitor, and optionally antidiabetic agent, and use thereof
AU2010212823B2 (en) 2009-02-13 2016-01-28 Boehringer Ingelheim International Gmbh Antidiabetic medications comprising a DPP-4 inhibitor (linagliptin) optionally in combination with other antidiabetics
EP2223923A1 (en) 2009-02-25 2010-09-01 Esteve Química, S.A. Process for the preparation of a chiral beta aminoacid derivative and intermediates thereof
CN101824036A (en) 2009-03-05 2010-09-08 上海恒瑞医药有限公司 Salt of tetrahydroimidazo [1,5-a] pyrazine derivative, preparation method and pharmaceutical application thereof
MX2011010205A (en) * 2009-03-30 2011-10-17 Dong A Pharm Co Ltd Improved method for manufacturing dipeptidyl peptidase-iv inhibitor and intermediate.
CN103922971B (en) 2009-03-30 2016-05-11 东亚St株式会社 For the preparation of improving one's methods of the intermediate of dipeptidyl peptidase-iv inhibitor
CN101849944A (en) * 2009-03-31 2010-10-06 江苏恒瑞医药股份有限公司 Medicinal composition for treating type 2 diabetes
WO2010122578A2 (en) * 2009-04-20 2010-10-28 Msn Laboratories Limited Process for the preparation of sitagliptin and its intermediates
JP6199556B2 (en) * 2009-05-11 2017-09-20 ジェネリクス・[ユーケー]・リミテッド Synthesis of sitagliptin
CN101899047B (en) * 2009-05-26 2016-01-20 盛世泰科生物医药技术(苏州)有限公司 Be used for the treatment of as depeptidyl peptidase inhibitors or the beta-amino tetrahydrochysene pyrazine of prevent diabetes, tetrahydropyrimidine and tetrahydropyridine
CN101899048B (en) 2009-05-27 2013-04-17 上海恒瑞医药有限公司 Salt of (R)-7-[3-amino-4-(2,4,5-trifluoro-phenyl)-butyryl]-3-trifluoromethyl-5,6,7,8-tetrahydro-imidazo[1,5-a]pyrazine-1- carboxylic acid methyl ester
EP2440553B1 (en) 2009-06-12 2017-08-23 Merck Sharp & Dohme Corp. Thiophenes as glucagon receptor antagonists, compositions, and methods for their use
IT1395596B1 (en) * 2009-06-30 2012-10-16 Dipharma Francis Srl PROCEDURE FOR THE PREPARATION OF SITAGLIPTIN
AR077463A1 (en) 2009-07-09 2011-08-31 Irm Llc IMIDAZO DERIVATIVES [1, 2 - A] PIRAZINA AND ITS USE IN MEDICINES FOR THE TREATMENT OF PARASITARY DISEASES
AR077642A1 (en) 2009-07-09 2011-09-14 Arena Pharm Inc METABOLISM MODULATORS AND THE TREATMENT OF DISORDERS RELATED TO THE SAME
WO2011011508A1 (en) 2009-07-23 2011-01-27 Schering Corporation Benzo-fused oxazepine compounds as stearoyl-coenzyme a delta-9 desaturase inhibitors
WO2011011506A1 (en) 2009-07-23 2011-01-27 Schering Corporation Spirocyclic oxazepine compounds as stearoyl-coenzyme a delta-9 desaturase inhibitors
EP2462943A4 (en) 2009-08-03 2014-11-05 Kaneka Corp Dipeptidyl peptidase-4 inhibitor
CN102471344B (en) * 2009-08-13 2016-01-20 桑多斯股份公司 The crystalline compounds of 7-[(3R)-3-amino-1-oxo-4-(2,4,5-trifluorophenyl) butyl]-5,6,7,8-tetrahydrochysene-3-(trifluoromethyl)-1,2,4-triazolo [4,3-A] pyrazines
WO2011019538A1 (en) 2009-08-13 2011-02-17 Merck Sharp & Dohme Corp. Substituted cyclopropyl compounds, compositions containing such compounds and methods of treatment
RU2550508C2 (en) 2009-09-02 2015-05-10 Мерк Шарп И Доум Корп. Aminotetrahydropyranes as dipeptidylpeptidase-iv inhibitors for treating or preventing diabetes
PL2475428T3 (en) 2009-09-11 2015-12-31 Probiodrug Ag Heterocylcic derivatives as inhibitors of glutaminyl cyclase
EP2295083A1 (en) 2009-09-15 2011-03-16 Ratiopharm GmbH Pharmaceutical composition comprising active agents metformin and sitagliptin or vildagliptin
CN102030683B (en) * 2009-09-27 2013-07-31 浙江九洲药业股份有限公司 Sitagliptin intermediate and preparation method and application thereof
EP2308847B1 (en) 2009-10-09 2014-04-02 EMC microcollections GmbH Substituted pyridines as inhibitors of dipeptidyl peptidase IV and their application for the treatment of diabetes and related diseases
WO2011058193A1 (en) 2009-11-16 2011-05-19 Mellitech [1,5]-diazocin derivatives
CA2782179C (en) 2009-11-27 2020-06-23 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin
JP5540454B2 (en) 2009-12-30 2014-07-02 シャンハイ フォチョン ファーマシューティカル カンパニー リミテッド Dipeptidyl peptidase inhibitor
KR101156587B1 (en) 2010-02-19 2012-06-20 한미사이언스 주식회사 Preparation method of sitagliptin and amine salt intermediate used therein
US8853212B2 (en) 2010-02-22 2014-10-07 Merck Sharp & Dohme Corp Substituted aminotetrahydrothiopyrans and derivatives thereof as dipeptidyl peptidase-IV inhibitors for the treatment of diabetes
JP2013520502A (en) 2010-02-25 2013-06-06 メルク・シャープ・エンド・ドーム・コーポレイション Novel cyclic benzimidazole derivatives that are useful anti-diabetic drugs
EP2542549B1 (en) 2010-03-03 2016-05-11 Probiodrug AG Inhibitors of glutaminyl cyclase
AU2011226074B2 (en) 2010-03-10 2015-01-22 Vivoryon Therapeutics N.V. Heterocyclic inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5)
CZ303113B6 (en) 2010-03-16 2012-04-11 Zentiva, K.S. Process for preparing sitagliptin
US20130109703A1 (en) 2010-03-18 2013-05-02 Boehringer Ingelheim International Gmbh Combination of a GPR119 Agonist and the DPP-IV Inhibitor Linagliptin for Use in the Treatment of Diabetes and Related Conditions
US8183373B2 (en) 2010-03-31 2012-05-22 Teva Pharmaceutical Industries Ltd. Solid state forms of sitagliptin salts
WO2011125011A1 (en) * 2010-04-05 2011-10-13 Cadila Pharmaceuticals Limited Novel hypoglycemic compounds
CA2795513A1 (en) 2010-04-06 2011-10-13 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
JP5945532B2 (en) 2010-04-21 2016-07-05 プロビオドルグ エージー Benzimidazole derivatives as inhibitors of glutaminyl cyclase
ES2629624T3 (en) 2010-04-28 2017-08-11 Sun Pharmaceutical Industries Limited Process for the preparation of chiral derivatives of beta amino carboxamide
EA033415B1 (en) 2010-05-05 2019-10-31 Boehringer Ingelheim Int Methods for treating obesity, use of dpp-4 inhibitor in these methods and method for treating patients suffering from type 2 diabetes mellitus
EP2571876B1 (en) 2010-05-21 2016-09-07 Merck Sharp & Dohme Corp. Substituted seven-membered heterocyclic compounds as dipeptidyl peptidase-iv inhibitors for the treatment of diabetes
CN102260265B (en) 2010-05-24 2015-09-02 上海阳帆医药科技有限公司 Hexahydropyrrolo [3,4-b] pyrrole derivative, Its Preparation Method And Use
EP2392575A1 (en) 2010-06-04 2011-12-07 LEK Pharmaceuticals d.d. A novel synthetic approach to ß-aminobutyryl substituted compounds
WO2011151443A1 (en) 2010-06-04 2011-12-08 Lek Pharmaceuticals D.D. A NOVEL SYNTHETIC APPROACH TO ß-AMINOBUTYRYL SUBSTITUTED COMPOUNDS
EP2397141A1 (en) 2010-06-16 2011-12-21 LEK Pharmaceuticals d.d. Process for the synthesis of beta-amino acids and derivatives thereof
MX2012014247A (en) 2010-06-24 2013-01-18 Boehringer Ingelheim Int Diabetes therapy.
EP2407469A1 (en) 2010-07-13 2012-01-18 Chemo Ibérica, S.A. Salt of sitagliptin
EP2423178A1 (en) 2010-07-28 2012-02-29 Chemo Ibérica, S.A. Process for the production of sitagliptin
SG187226A1 (en) 2010-07-28 2013-03-28 Neuralstem Inc Methods for treating and/or reversing neurodegenerative diseases and/or disorders
EP2418196A1 (en) * 2010-07-29 2012-02-15 IMTM GmbH Dual alanyl-aminopeptidase and dipeptidyl-peptidase IV inhibitors
WO2012024183A1 (en) 2010-08-18 2012-02-23 Merck Sharp & Dohme Corp. Spiroxazolidinone compounds
EP2609099A2 (en) 2010-08-27 2013-07-03 USV Limited Sitagliptin, salts and polymorphs thereof
WO2012027331A1 (en) 2010-08-27 2012-03-01 Ironwood Pharmaceuticals, Inc. Compositions and methods for treating or preventing metabolic syndrome and related diseases and disorders
IN2010DE02164A (en) 2010-09-13 2015-07-24 Panacea Biotec Ltd
US9616097B2 (en) 2010-09-15 2017-04-11 Synergy Pharmaceuticals, Inc. Formulations of guanylate cyclase C agonists and methods of use
BR112013008100A2 (en) 2010-09-22 2016-08-09 Arena Pharm Inc "gpr19 receptor modulators and the treatment of disorders related thereto."
WO2012046254A2 (en) 2010-10-08 2012-04-12 Cadila Healthcare Limited Process for preparing an intermediate of sitagliptin via enzymatic conversion
WO2012049566A1 (en) 2010-10-14 2012-04-19 Japan Tobacco Inc. Combination therapy for use in treating diabetes
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
CN102485718B (en) 2010-12-03 2014-03-26 浙江海翔药业股份有限公司 Sitagliptin intermediate and its preparation method
EP2648517B1 (en) 2010-12-06 2015-08-05 Merck Sharp & Dohme Corp. Tricyclic heterocycles useful as dipeptidyl peptidase-iv inhibitors
WO2012076973A2 (en) 2010-12-09 2012-06-14 Aurobindo Pharma Limited Novel salts of dipeptidyl peptidase iv inhibitor
TWI494313B (en) * 2010-12-29 2015-08-01 Jiangsu Hengrui Medicine Co Pharmaceutical composition for the treatment of type 2 diabetes in mammals including human beings
US8796338B2 (en) 2011-01-07 2014-08-05 Elcelyx Therapeutics, Inc Biguanide compositions and methods of treating metabolic disorders
US11974971B2 (en) 2011-01-07 2024-05-07 Anji Pharmaceuticals Inc. Compositions and methods for treating metabolic disorders
PT2661266T (en) 2011-01-07 2020-11-30 Anji Pharma Us Llc Chemosensory receptor ligand-based therapies
US9211263B2 (en) 2012-01-06 2015-12-15 Elcelyx Therapeutics, Inc. Compositions and methods of treating metabolic disorders
US9480663B2 (en) 2011-01-07 2016-11-01 Elcelyx Therapeutics, Inc. Biguanide compositions and methods of treating metabolic disorders
US11759441B2 (en) 2011-01-07 2023-09-19 Anji Pharmaceuticals Inc. Biguanide compositions and methods of treating metabolic disorders
US9572784B2 (en) 2011-01-07 2017-02-21 Elcelyx Therapeutics, Inc. Compositions comprising statins, biguanides and further agents for reducing cardiometabolic risk
KR101290029B1 (en) 2011-01-20 2013-07-30 에스티팜 주식회사 Preparation method of intermediate of sitagliptin
SI2670486T1 (en) 2011-01-31 2016-09-30 Cadila Healthcare Limited Zydus Tower Satellite Cross Roads Treatment for lipodystrophy
US8796258B2 (en) 2011-02-25 2014-08-05 Merck Sharp & Dohme Corp. Cyclic azabenzimidazole derivatives useful as anti-diabetic agents
MX357121B (en) 2011-03-01 2018-06-27 Synergy Pharmaceuticals Inc Star Process of preparing guanylate cyclase c agonists.
SG10201405403QA (en) * 2011-03-03 2014-11-27 Cadila Healthcare Ltd Novel salts of dpp-iv inhibitor
JP6050264B2 (en) 2011-03-16 2016-12-21 プロビオドルグ エージー Benzimidazole derivatives as inhibitors of glutaminyl cyclase
EA029539B8 (en) 2011-03-29 2018-06-29 Крка, Товарна Здравил, Д.Д., Ново Место Pharmaceutical composition of sitagliptin
US20140018371A1 (en) 2011-04-01 2014-01-16 Arena Pharmaceuticals, Inc. Modulators Of The GPR119 Receptor And The Treatment Of Disorders Related Thereto
WO2012138845A1 (en) 2011-04-08 2012-10-11 Merck Sharp & Dohme Corp. Substituted cyclopropyl compounds, compositions containing such compounds and methods of treatment
EP2508506A1 (en) 2011-04-08 2012-10-10 LEK Pharmaceuticals d.d. Preparation of sitagliptin intermediates
WO2012145361A1 (en) 2011-04-19 2012-10-26 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
KR101369584B1 (en) 2011-04-19 2014-03-06 일양약품주식회사 Phenyl-isoxazol derivatives and preparation process thereof
US20140051714A1 (en) 2011-04-22 2014-02-20 Arena Pharmaceuticals, Inc. Modulators Of The GPR119 Receptor And The Treatment Of Disorders Related Thereto
WO2012145603A1 (en) 2011-04-22 2012-10-26 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
CN102757431B (en) * 2011-04-24 2016-03-30 浙江华海药业股份有限公司 A kind of novel method of synthesizing sitagliptin
ITMI20110765A1 (en) * 2011-05-05 2012-11-06 Chemo Iberica Sa PROCESS FOR SITAGLIPTINA PRODUCTION
US8524936B2 (en) 2011-05-18 2013-09-03 Milan Soukup Manufacturing process for sitagliptin from L-aspartic acid
US9359385B2 (en) * 2011-05-27 2016-06-07 Lek Pharmaceuticals D.D. Preparation of sitagliptin intermediates
EP2527320A1 (en) 2011-05-27 2012-11-28 LEK Pharmaceuticals d.d. Preparation of Sitagliptin Intermediates
CA2837517A1 (en) 2011-06-02 2012-12-06 Intervet International B.V. Imidazole derivatives
WO2012170702A1 (en) 2011-06-08 2012-12-13 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
AR086675A1 (en) * 2011-06-14 2014-01-15 Merck Sharp & Dohme PHARMACEUTICAL COMPOSITIONS OF COMBINATIONS OF INHIBITORS OF DIPEPTIDIL PEPTIDASA-4 WITH SIMVASTATIN
EP2720544B1 (en) 2011-06-16 2016-12-21 Merck Sharp & Dohme Corp. Substituted cyclopropyl compounds, compositions containing such compounds, and methods of treatment
CA2840814A1 (en) 2011-06-29 2013-01-03 Ranbaxy Laboratories Limited Solid dispersions of sitagliptin and processes for their preparation
CA2838738A1 (en) 2011-06-29 2013-01-03 Merck Sharp & Dohme Corp. Novel crystalline forms of a dipeptidyl peptidase-iv inhibitor
US20150051213A1 (en) 2011-06-30 2015-02-19 Suresh Babu Jayachandra Novel salts of sitagliptin
WO2013006526A2 (en) 2011-07-05 2013-01-10 Merck Sharp & Dohme Corp. Tricyclic heterocycles useful as dipeptidyl peptidase-iv inhibitors
ES2934843T3 (en) 2011-07-15 2023-02-27 Boehringer Ingelheim Int Substituted dimeric quinazoline derivative, its preparation and its use in pharmaceutical compositions for the treatment of type I and II diabetes
SI2736909T1 (en) * 2011-07-27 2017-08-31 Farma Grs, D.O.O. Process for the preparation of sitagliptin and its pharmaceutically acceptable salts
WO2013036213A1 (en) 2011-09-07 2013-03-14 Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi Dpp-iv inhibitor formulations
WO2013048916A1 (en) 2011-09-30 2013-04-04 Merck Sharp & Dohme Corp. Substituted cyclopropyl compounds, compositions containing such compounds and methods of treatment
ES2487271T3 (en) 2011-10-06 2014-08-20 Sanovel Ilac Sanayi Ve Ticaret A.S. DPP-IV inhibitor solid dosage formulations
WO2013055910A1 (en) 2011-10-12 2013-04-18 Arena Pharmaceuticals, Inc. Modulators of the gpr119 receptor and the treatment of disorders related thereto
WO2013054364A2 (en) * 2011-10-14 2013-04-18 Laurus Labs Private Limited Novel salts of sitagliptin, process for the preparation and pharmaceutical composition thereof
AR088352A1 (en) 2011-10-19 2014-05-28 Merck Sharp & Dohme ANTAGONISTS OF THE RECEIVER OF 2-PIRIDILOXI-4-NITRILE OREXINE
WO2013062838A1 (en) 2011-10-24 2013-05-02 Merck Sharp & Dohme Corp. Substituted piperidinyl compounds useful as gpr119 agonists
CN102603749B (en) * 2011-10-27 2017-02-08 浙江华海药业股份有限公司 Synthesis method of sitagliptin intermediate
WO2013065066A1 (en) 2011-11-02 2013-05-10 Cadila Healthcare Limited Processes for preparing 4-oxo-4-[3-(trifluoromethyl)-5,6- dihydro [l,2,41-triazolo[43-a]pyrazin-7(8h)-yl]-l-(2,4,5- trifluorophenyl)butan-2-amine
WO2013068328A1 (en) 2011-11-07 2013-05-16 Intervet International B.V. Bicyclo [2.2.2] octan-1-ylcarboxylic acid compounds as dgat-1 inhibitors
WO2013068439A1 (en) 2011-11-09 2013-05-16 Intervet International B.V. 4-amino-5-oxo-7,8-dihydropyrimido[5, 4 -f] [1, 4] oxazepine compounds as dgat1 inhibitors
WO2013074388A1 (en) 2011-11-15 2013-05-23 Merck Sharp & Dohme Corp. Substituted cyclopropyl compounds useful as gpr119 agonists
EP2788352A1 (en) 2011-12-08 2014-10-15 Ranbaxy Laboratories Limited Amorphous form of sitagliptin salts
AU2012363873B2 (en) 2012-01-06 2017-11-23 Anji Pharmaceuticals Inc. Biguanide compositions and methods of treating metabolic disorders
BR112014016810A8 (en) 2012-01-06 2017-07-04 Elcelyx Therapeutics Inc compositions and methods for treating metabolic disorders
EP2615080A1 (en) 2012-01-12 2013-07-17 LEK Pharmaceuticals d.d. Preparation of Optically Pure ß-Amino Acid Type Active Pharmaceutical Ingredients and Intermediates thereof
EP2814485A4 (en) 2012-02-17 2015-08-26 Merck Sharp & Dohme Dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
ES2421956B1 (en) 2012-03-02 2014-09-29 Moehs Ibérica S.L. NEW CRYSTAL FORM OF SITAGLIPTINA SULFATE
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
CN104411710A (en) 2012-04-16 2015-03-11 卡内克制药公司 Fused aromatic phosphonate derivatives as precursors to ptp-1b inhibitors
TWI469785B (en) 2012-04-25 2015-01-21 Inovobiologic Inc Dietary fiber compositions for the treatment of metabolic disease
JP6224084B2 (en) 2012-05-14 2017-11-01 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Xanthine derivatives as DPP-4 inhibitors for the treatment of glomerular epithelial cell related disorders and / or nephrotic syndrome
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
EP2674432A1 (en) 2012-06-14 2013-12-18 LEK Pharmaceuticals d.d. New synthetic route for the preparation of ß aminobutyryl substituted 5,6,7,8-tetrahydro[1,4]diazolo[4,3-alpha]pyrazin-7-yl compounds
EP2874626A4 (en) 2012-07-23 2016-03-23 Merck Sharp & Dohme Treating diabetes with dipeptidyl peptidase-iv inhibitors
WO2014018350A1 (en) 2012-07-23 2014-01-30 Merck Sharp & Dohme Corp. Treating diabetes with dipeptidyl peptidase-iv inhibitors
US9527875B2 (en) 2012-08-02 2016-12-27 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
KR20150056541A (en) 2012-08-08 2015-05-26 시플라 리미티드 Process for the preparation of sitagliptin and intermediate compounds
CN102898387B (en) * 2012-09-26 2015-01-07 浙江工业大学 Channelized method for continuously producing N-[(2Z)-piperazine-2-subunit]-2, 2, 2-trifluoroacetyl hydrazine
TWI500613B (en) 2012-10-17 2015-09-21 Cadila Healthcare Ltd Novel heterocyclic compounds
CN103788070B (en) * 2012-10-26 2017-10-20 南京华威医药科技开发有限公司 The inhibitor class polymers of DPP 4
WO2014074668A1 (en) 2012-11-08 2014-05-15 Arena Pharmaceuticals, Inc. Modulators of gpr119 and the treatment of disorders related thereto
CZ306115B6 (en) 2012-12-04 2016-08-10 Zentiva, K.S. Process for preparing derivatives of 3-amino-4-(2,4,5-trifluorophenyl)-butanoic acid
CN103319487B (en) * 2013-01-10 2015-04-01 药源药物化学(上海)有限公司 Preparation method of sitagliptin and intermediate of sitagliptin
EP2769712A1 (en) 2013-02-21 2014-08-27 Siegfried International AG Pharmaceutical formulation comprising DPP-IV inhibitor agglomerates and DPP-IV inhibitor particles
CN104994848A (en) 2013-02-22 2015-10-21 默沙东公司 Antidiabetic bicyclic compounds
CN105669682B (en) * 2013-02-22 2019-08-30 成都先导药物开发股份有限公司 A kind of intermediate of DPP-IV inhibitor
EP2970119B1 (en) 2013-03-14 2021-11-03 Merck Sharp & Dohme Corp. Novel indole derivatives useful as anti-diabetic agents
WO2014151200A2 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Compositions useful for the treatment of gastrointestinal disorders
CA2905438A1 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase and their uses
IN2013MU00916A (en) 2013-03-20 2015-06-26 Cadila Healthcare Ltd
JP6246895B2 (en) 2013-04-22 2017-12-13 カディラ・ヘルスケア・リミテッド Novel composition for non-alcoholic fatty liver disease (NAFLD)
WO2014195967A2 (en) 2013-05-30 2014-12-11 Cadila Healthcare Limited A process for preparation of pyrroles having hypolipidemic hypocholesteremic activities
WO2014197720A2 (en) 2013-06-05 2014-12-11 Synergy Pharmaceuticals, Inc. Ultra-pure agonists of guanylate cyclase c, method of making and using same
WO2015001568A2 (en) * 2013-07-01 2015-01-08 Laurus Labs Private Limited Sitagliptin lipoate salt, process for the preparation and pharmaceutical composition thereof
TW201636015A (en) 2013-07-05 2016-10-16 卡地拉保健有限公司 Synergistic compositions
IN2013MU02470A (en) 2013-07-25 2015-06-26 Cadila Healthcare Ltd
WO2015033357A2 (en) 2013-09-06 2015-03-12 Cadila Healthcare Limited An improved process for the preparation of pyrrole derivatives
WO2015051496A1 (en) 2013-10-08 2015-04-16 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
CZ2013842A3 (en) 2013-11-01 2015-05-13 Zentiva, K.S. Stable polymorph of (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-α]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine with L-tartaric acid
KR20160094956A (en) 2013-11-05 2016-08-10 벤-구리온 유니버시티 오브 더 네게브 리서치 앤드 디벨럽먼트 어쏘러티 Compounds for the treatment of diabetes and disease complications arising from same
CN103626775B (en) * 2013-12-02 2015-05-20 南京华威医药科技开发有限公司 DPP-4 inhibitor with diazine structure
WO2015089809A1 (en) 2013-12-19 2015-06-25 Merck Sharp & Dohme Corp. Antidiabetic substituted heteroaryl compounds
WO2015114657A2 (en) 2014-01-21 2015-08-06 Cadila Healthcare Limited Amorphous form of sitagliptin free base
EP3097101B1 (en) 2014-01-24 2020-12-23 Merck Sharp & Dohme Corp. Isoquinoline derivatives as mgat2 inhibitors
IN2014MU00651A (en) 2014-02-25 2015-10-23 Cadila Healthcare Ltd
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
WO2015145333A1 (en) 2014-03-26 2015-10-01 Sun Pharmaceutical Industries Limited Process for the preparation of sitagliptin and its intermediate
AU2015247921B2 (en) 2014-04-17 2019-07-11 Merck Sharp & Dohme Llc Sitagliptin tannate complex
WO2015162506A1 (en) 2014-04-21 2015-10-29 Suven Life Sciences Limited Process for the preparation of sitagliptin and novel intermediates
WO2015170340A2 (en) * 2014-05-06 2015-11-12 Laurus Labs Private Limited Novel polymorphs of sitagliptin hydrochloride, processes for its preparation and pharmaceutical composition thereof
WO2015176267A1 (en) 2014-05-22 2015-11-26 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
JP6574474B2 (en) 2014-07-21 2019-09-11 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Process for producing chiral dipeptidyl peptidase-IV inhibitor
EP3177285B1 (en) 2014-08-08 2020-09-23 Merck Sharp & Dohme Corp. [5,6]-fused bicyclic antidiabetic compounds
CN104140430B (en) * 2014-08-08 2016-07-13 广东东阳光药业有限公司 A kind of racemization method of isomer
US10662171B2 (en) 2014-08-08 2020-05-26 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
US10968193B2 (en) 2014-08-08 2021-04-06 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
GB201415598D0 (en) 2014-09-03 2014-10-15 Univ Birmingham Elavated Itercranial Pressure Treatment
WO2016046679A1 (en) * 2014-09-28 2016-03-31 Mohan M Alapati Compositions and methods for the treatment of diabetes and pre-diabetes
AU2015336194B2 (en) 2014-10-20 2019-01-03 Neuralstem, Inc. Stable neural stem cells comprising an exogenous polynucleotide coding for a growth factor and methods of use thereof
CN116850181A (en) 2015-01-06 2023-10-10 艾尼纳制药公司 Treatment and S1P 1 Methods of receptor-related disorders
CN107428761B (en) 2015-01-08 2019-11-05 李氏制药有限公司 The method for preparing dipeptidyl peptidase-4 (DPP-4) inhibitor
CZ27930U1 (en) 2015-01-13 2015-03-10 Zentiva, K.S. Crystalline modification of 3 L-tartrate (3R)-3-amino-1-[3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4]triazolo[4,3-a]pyrazin-7-yl]-4-(2,4,5-trifluorophenyl)butan-1-one
CZ27898U1 (en) 2015-01-13 2015-03-02 Zentiva, K.S. Crystalline modification of 2 L-tartrate (3R)-3-amino-1-[3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4,]triazolo[4,3-a]pyrazin-7-yl]-4-(2,4,5-trifluorphenyl)butan-1-one
KR20220070057A (en) 2015-03-09 2022-05-27 인테크린 테라퓨틱스, 아이엔씨. Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy
MX2017013222A (en) * 2015-04-15 2018-02-15 Valent Biosciences Llc (s)-2'-vinyl-abscisic acid derivatives.
KR101772898B1 (en) 2015-06-11 2017-08-31 동방에프티엘(주) Improved method of sitagliptin
KR101709127B1 (en) 2015-06-16 2017-02-22 경동제약 주식회사 Novel intermediates for preparing DPP-IV inhibitors, preparing method thereof and preparing method of DPP-IV inhibitors using the same
CN108349891B (en) 2015-06-22 2022-04-05 艾尼纳制药公司 Crystalline L-arginine salt of a compound for use in S1P1 receptor-related disorders
CN105017260B (en) * 2015-07-30 2017-04-19 新发药业有限公司 Preparation method of sitagliptin intermediate triazolopyrazine derivative
WO2017020974A1 (en) 2015-08-03 2017-02-09 Institut Pasteur Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy
BR112018004585A2 (en) * 2015-09-09 2018-09-25 C. Lau Warren methods, compositions and uses of fyn kinase inhibitors
KR20170036288A (en) 2015-09-24 2017-04-03 주식회사 종근당 Novel Salts of Sitagliptin and Preparation Method thereof
US10385017B2 (en) 2015-10-14 2019-08-20 Cadila Healthcare Limited Pyrrole compound, compositions and process for preparation thereof
ES2638266T3 (en) * 2015-10-22 2017-10-19 F.I.S.- Fabbrica Italiana Sintetici S.P.A. Improved procedure for the preparation of triazole and one of its salts
EP3383869B1 (en) 2015-11-30 2023-06-28 Merck Sharp & Dohme LLC Aryl sulfonamides as blt1 antagonists
EP3383868B1 (en) 2015-11-30 2022-10-05 Merck Sharp & Dohme LLC Aryl sulfonamides as blt1 antagonists
WO2017201683A1 (en) 2016-05-25 2017-11-30 Merck Sharp & Dohme Corp. Substituted tetrahydroisoquinoline compounds useful as gpr120 agonists
WO2017211979A1 (en) 2016-06-10 2017-12-14 Boehringer Ingelheim International Gmbh Combinations of linagliptin and metformin
WO2018034918A1 (en) 2016-08-15 2018-02-22 Merck Sharp & Dohme Corp. Compounds useful for altering the levels of bile acids for the treatment of diabetes and cardiometabolic disease
WO2018034917A1 (en) 2016-08-15 2018-02-22 Merck Sharp & Dohme Corp. Compounds useful for altering the levels of bile acids for the treatment of diabetes and cardiometabolic disease
CN106124667B (en) * 2016-08-29 2018-07-31 上海应用技术学院 A kind of methods of the separation determination Xi Gelieting in relation to substance
WO2018106518A1 (en) 2016-12-06 2018-06-14 Merck Sharp & Dohme Corp. Antidiabetic heterocyclic compounds
MX2016016260A (en) 2016-12-08 2018-06-07 Alparis Sa De Cv New solid forms of sitagliptin.
ES2894261T3 (en) 2016-12-09 2022-02-14 Cadila Healthcare Ltd Treatment of primary biliary cholangitis
WO2018107415A1 (en) 2016-12-15 2018-06-21 Merck Sharp & Dohme Corp. Hydroxy isoxazole compounds useful as gpr120 agonists
WO2018118670A1 (en) 2016-12-20 2018-06-28 Merck Sharp & Dohme Corp. Antidiabetic spirochroman compounds
US11197949B2 (en) * 2017-01-19 2021-12-14 Medtronic Minimed, Inc. Medication infusion components and systems
US10047094B1 (en) 2017-02-10 2018-08-14 F.I.S.—Fabbrica Italiana Sintetici S.p.A. Process for the preparation of triazole and salt thereof
CA3053418A1 (en) 2017-02-16 2018-08-23 Arena Pharmaceuticals, Inc. Compounds and methods for treatment of primary biliary cholangitis
WO2018162722A1 (en) 2017-03-09 2018-09-13 Deutsches Institut Für Ernährungsforschung Potsdam-Rehbrücke Dpp-4 inhibitors for use in treating bone fractures
WO2018187350A1 (en) 2017-04-03 2018-10-11 Coherus Biosciences Inc. PPARγ AGONIST FOR TREATMENT OF PROGRESSIVE SUPRANUCLEAR PALSY
KR20190139291A (en) 2017-04-24 2019-12-17 노파르티스 아게 2-amino-l- (2- (4-fluorophenyl) -3- (4-fluorophenylamino) -8,8-dimethyl-5,6-dihydroimidazo [1,2-a] pyrazine Therapeutic regimen of -7 (8h) -yl) ethanone and combinations thereof
DK3461819T3 (en) 2017-09-29 2020-08-10 Probiodrug Ag GLUTAMINYL CYCLASE INHIBITORS
US11096890B2 (en) 2017-09-29 2021-08-24 Merck Sharp & Dohme Corp. Chewable dosage forms containing sitagliptin and metformin
KR20190060235A (en) 2017-11-24 2019-06-03 제일약품주식회사 Preparation Method Camphorsulfonic acid Salt of Sitagliptin
TR201722603A2 (en) 2017-12-28 2019-07-22 Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi Tablet formulations comprising metformin and sitagliptin processed with hot-melt extrusion
CN108586346B (en) 2018-05-10 2019-10-01 北京富盛嘉华医药科技有限公司 A kind of method that biocatalysis synthesizes sitagliptin and its intermediate
WO2020167706A1 (en) 2019-02-13 2020-08-20 Merck Sharp & Dohme Corp. 5-alkyl pyrrolidine orexin receptor agonists
EP3946324A4 (en) 2019-04-04 2022-11-30 Merck Sharp & Dohme LLC Inhibitors of histone deacetylase-3 useful for the treatment of cancer, inflammation, neurodegeneration diseases and diabetes
US20230018413A1 (en) 2019-08-08 2023-01-19 Merck Sharp & Dohme Corp. Heteroaryl pyrrolidine and piperidine orexin receptor agonists
EP4045048A4 (en) 2019-10-14 2023-05-24 Santa Farma Ilaç Sanayi A.S. Oral formulations comprising sitagliptin hci monohydrate with improved pharmaceutical characteristics
KR20210057603A (en) 2019-11-12 2021-05-21 제이투에이치바이오텍 (주) Process for preparing sitagliptin
TW202227417A (en) 2020-08-18 2022-07-16 美商默沙東藥廠 Bicycloheptane pyrrolidine orexin receptor agonists
KR102589305B1 (en) 2021-04-22 2023-10-16 주식회사 메디켐코리아 Improved manufacturing method of sitagliptin phosphate salt
CN113979896A (en) * 2021-11-18 2022-01-28 浙江永太手心医药科技有限公司 Sitagliptin impurity I and preparation method thereof
WO2023139276A1 (en) 2022-01-24 2023-07-27 Zaklady Farmaceutyczne Polpharma S.A. Process for preparing crystalline sitagliptin hydrochloride monohydrate
WO2024086263A1 (en) 2022-10-21 2024-04-25 Merck Sharp & Dohme Llc Compositions of a dipeptidyl peptidase-iv inhibitor and an antioxidant
WO2024121301A1 (en) 2022-12-09 2024-06-13 Krka, D.D., Novo Mesto Process for the preparation of sitagliptin
EP4431087A1 (en) 2023-03-14 2024-09-18 Sanovel Ilac Sanayi Ve Ticaret A.S. A film coated tablet of sitagliptin or a pharmaceutically acceptable salt thereof

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166452A (en) 1976-05-03 1979-09-04 Generales Constantine D J Jr Apparatus for testing human responses to stimuli
US4256108A (en) 1977-04-07 1981-03-17 Alza Corporation Microporous-semipermeable laminated osmotic system
US4265874A (en) 1980-04-25 1981-05-05 Alza Corporation Method of delivering drug with aid of effervescent activity generated in environment of use
IL111785A0 (en) 1993-12-03 1995-01-24 Ferring Bv Dp-iv inhibitors and pharmaceutical compositions containing them
GB9324803D0 (en) * 1993-12-03 1994-01-19 Ferring Bv Enzyme inhibitors
US5705483A (en) * 1993-12-09 1998-01-06 Eli Lilly And Company Glucagon-like insulinotropic peptides, compositions and methods
WO1997028149A1 (en) 1996-02-02 1997-08-07 Merck & Co., Inc. Method for raising hdl cholesterol levels
US6673927B2 (en) * 1996-02-16 2004-01-06 Societe De Conseils De Recherches Et D'applications Scientifiques, S.A.S. Farnesyl transferase inhibitors
DE19616486C5 (en) 1996-04-25 2016-06-30 Royalty Pharma Collection Trust Method for lowering the blood glucose level in mammals
AR008789A1 (en) 1996-07-31 2000-02-23 Bayer Corp PIRIDINES AND SUBSTITUTED BIPHENYLS
TW492957B (en) 1996-11-07 2002-07-01 Novartis Ag N-substituted 2-cyanopyrrolidnes
US6613942B1 (en) 1997-07-01 2003-09-02 Novo Nordisk A/S Glucagon antagonists/inverse agonists
BR9810378A (en) 1997-07-01 2000-08-29 Novo Nordisk As Compound, use of the same, pharmaceutical composition, and, processes of treating type i or type ii diabetes, of treating hyperglycemia, and of decreasing blood glucose in a mammal
KR20010031983A (en) 1997-11-11 2001-04-16 우에노 도시오 Fused pyrazine compounds
CA2331122A1 (en) 1998-05-04 1999-11-11 Point Therapeutics, Inc. Hematopoietic stimulation
DE19823831A1 (en) 1998-05-28 1999-12-02 Probiodrug Ges Fuer Arzneim New pharmaceutical use of isoleucyl thiazolidide and its salts
DE19828114A1 (en) * 1998-06-24 2000-01-27 Probiodrug Ges Fuer Arzneim Produgs of unstable inhibitors of dipeptidyl peptidase IV
FR2780974B1 (en) 1998-07-08 2001-09-28 Sod Conseils Rech Applic USE OF IMIDAZOPYRAZINE DERIVATIVES FOR THE PREPARATION OF A MEDICAMENT FOR TREATING CONDITIONS RESULTING FROM THE FORMATION OF HETEROTRIMETER G PROTEIN
CO5150173A1 (en) 1998-12-10 2002-04-29 Novartis Ag COMPOUNDS N- (REPLACED GLYCLE) -2-DIPEPTIDYL-IV PEPTIDASE INHIBITING CYANOPIRROLIDINS (DPP-IV) WHICH ARE EFFECTIVE IN THE TREATMENT OF CONDITIONS MEDIATED BY DPP-IV INHIBITION
AU3033500A (en) 1999-01-15 2000-08-01 Agouron Pharmaceuticals, Inc. Non-peptide glp-1 agonists
GB9906715D0 (en) 1999-03-23 1999-05-19 Ferring Bv Compositions for promoting growth
ATE272650T1 (en) 1999-03-29 2004-08-15 Uutech Ltd ANALOGUES OF GASTIC JUICE INHIBITING PEPTIDES AND THEIR USE FOR THE TREATMENT OF DIABETES
EP1165519A1 (en) 1999-04-02 2002-01-02 Neurogen Corporation Aryl and heteroaryl fused aminoalkyl-imidazole derivatives and their use as antidiabetics
MXPA01011757A (en) 1999-05-17 2002-06-04 Novo Nordisk As Glucagon antagonists/inverse agonists.
PE20010612A1 (en) 1999-09-28 2001-07-12 Bayer Corp PITUITARY ADENYLATE CYCLASE ACTIVATOR PEPTIDE RECEPTOR 3 (R3) AGONISTS AND ITS PHARMACOLOGICAL USE
EP1228061A4 (en) 1999-11-12 2004-12-15 Guilford Pharm Inc Dipeptidyl peptidase iv inhibitors and methods of making and using dipeptidyl peptidase iv inhibitors
TW583185B (en) 2000-06-13 2004-04-11 Novartis Ag N-(substituted glycyl)-2-cyanopyrrolidines and pharmaceutical composition for inhibiting dipeptidyl peptidase-IV (DPP-IV) or for the prevention or treatment of diseases or conditions associated with elevated levels of DPP-IV comprising the same
WO2002002560A2 (en) 2000-07-04 2002-01-10 Novo Nordisk A/S Purine-2,6-diones which are inhibitors of the enzyme dipeptidyl peptidase iv (dpp-iv)
UA74912C2 (en) * 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
US7307164B2 (en) * 2002-03-25 2007-12-11 Merck & Co., Inc. β-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
ES2291680T3 (en) * 2002-10-07 2008-03-01 MERCK & CO., INC. BETA-AMINO HETEROCICLIC INHIBITING ANTIDIABETICS OF DIPEPTIDIL PEPTIDASA.
CA2513684A1 (en) * 2003-01-31 2004-08-19 Merck & Co., Inc. 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes

Similar Documents

Publication Publication Date Title
US6699871B2 (en) Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
AU2002320303A1 (en) Beta-amino tetrahydroimidazo (1, 2-A) pyrazines and tetrahydrotrioazolo (4, 3-A) pyrazines as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
EP1490335B1 (en) Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
EP1554256B1 (en) Piperidino pyrimidine dipeptidyl peptidase inhibitors for the treatment of diabetes
EP1624874B1 (en) 3-amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
EP1385508B1 (en) Dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes