[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

AU2002319226A1 - Optimised formulation of tobramycin for aerosolization - Google Patents

Optimised formulation of tobramycin for aerosolization

Info

Publication number
AU2002319226A1
AU2002319226A1 AU2002319226A AU2002319226A AU2002319226A1 AU 2002319226 A1 AU2002319226 A1 AU 2002319226A1 AU 2002319226 A AU2002319226 A AU 2002319226A AU 2002319226 A AU2002319226 A AU 2002319226A AU 2002319226 A1 AU2002319226 A1 AU 2002319226A1
Authority
AU
Australia
Prior art keywords
tobramycin
solution
formulation
osmolarity
mosm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002319226A
Other versions
AU2002319226B2 (en
Inventor
Raffaella Garzia
Chiara Malvolti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiesi Farmaceutici SpA
Original Assignee
Chiesi Farmaceutici SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP01116071A external-priority patent/EP1273292B1/en
Application filed by Chiesi Farmaceutici SpA filed Critical Chiesi Farmaceutici SpA
Publication of AU2002319226A1 publication Critical patent/AU2002319226A1/en
Application granted granted Critical
Publication of AU2002319226B2 publication Critical patent/AU2002319226B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

OPTIMISED FORMULATION OF TOBRAMYCIN FOR
AEROSOLIZATION
The present invention relates to tobramycin formulations for delivery by aerosolization.
SUMMARY OF THE INVENTION The invention provides a tobramycin formulation for delivery by aerosolization in the form of additive- free, isotonic solution whose pH has been optimised to ensure adequate shelf-life at room temperature.
Said formulation can be advantageously used for the treatment and prophylaxis of acute and chronic endobronchial infections, in particular those caused by the bacterium Pseudomonas aeruginosa associated to lung diseases such as cystic fibrosis. PRIOR ART
Although pressurised metered dose inhalers (MDIs) and dry powder inhalers (DPIs) are the most commonly used inhalation drug delivery systems, nebulisers have become increasingly popular for the treatment of airway obstruction, particularly in young children with asthma and in patients with severe asthma or chronic airflow obstruction. Nebulisers use ultrasound or compressed gas to produce aerosol droplets in the respirable size range (1 - to 5 μm) from liquids, usually aqueous solutions or suspensions of drugs. They have the advantage over MDIs and DPIs that the drug may be inhaled during normal breathing through a mouth-piece or a face-mask. Thus, they can be employed to deliver aerosolised drug to patients, such as children, who experience difficulties using other devices.
Several types of therapeutically useful drug can be delivered by nebulisers, including β2-agonists, corticosteroids, anticholinergics, anti- allergies, mucolytics and antibiotics. The major clinical setting in which therapy with aerosolised antibiotics has been tried is the management of patients with cystic fibrosis (CF).
CF is a common genetic disease that is characterised by the inflammation and progressive destruction of lung tissue. The debilitation of the lungs in CF patients is associated with accumulation of purulent sputum produced as a result of endobronchial infections caused in particular by Pseudomonas aeruginosa. The latter ones are a major cause of morbidity and mortality among patients with CF.
Tobramycin is an aminoglycoside antibiotic specifically active against Pseudomonas aeruginosa. It penetrates endobronchial secretions (sputum) poorly, necessitating large intravenous doses to attain an efficacious concentration at the site of infection. These high doses place the patient at risk for nephrotoxic and ototoxic effects. The direct delivery of tobramycin to the lower airways by aerosol administration is attractive, since it produces high concentrations of antibiotic at the site of infection. In view of the limited absorption into the circulation, aerosol delivery of tobramycin should be associated with minimal systemic toxicity. This would allow for the development of a safer, long-term therapy.
At this regard, being its therapeutic dose quite large, nebulisation turns out to be extremely convenient due to the impossibility of formulating tobramycin into an MDI or DPI.
The clinical studies reported in the literature show contradictory results in terms of benefit from aerosolised tobramycin in patients with CF. The variability among these studies might, in part, result from the differences in the patient population, therapeutic modalities, nebulisers, formulations and their mode of administration. Furthermore, most of the studies have been carried out through the extemporaneous use of the commercially available injectable solutions. These preparations normally contain anti-oxidant and preservatives which are known to cause paradoxical reactions such as bronchospasm and cough (Nikolaizik et al Eur J Pediatr 1996, 155, 608-611; The Lancet, July 23rd 1988, 202).
For all these reasons, there is a need for standardised procedures as well as for improvement in aerosol administration of antibiotic such as tobramycin to CF patients.
Therefore, in consideration of all problems outlined, it would be highly advantageous to provide a tobramycin formulation of a therapeutically useful concentration deliverable by aerosolization into the endobronchial space which: i) could be efficiently nebulised in a relatively short time using both jet and ultrasonic nebulisers; ii) could permit generation of aerosol well-tolerated by patients; iii) is able to produce aerosol particles which can efficaciously reach the therapeutic target area; iv) is rid of substances (preservatives and others) that may give rise to undesirable side effects; v) could guarantee as long as possible a shelf-life, in particular at room temperature.
Accordingly, in order to obtain an optimised formulation for tobramycin aerosol administration, the following parameters need to be carefully adjusted:
• The ratio dose/volume. Formulation for aerosol delivery should contain the minimal yet efficacious amount of tobramycin formulated in the smallest as possible volume of solution. In fact, the smallest the volume, the shortest the nebulisation time. A short nebulisation time, in turn, is an important determinant of patient compliance and within hospitals has implications for staff time (McCallion et al Int J Pharm 1996, 130, 1-11).
• The osmolarity. It is well known that adverse reactions to inhalation therapy may be caused by hypo- or hyper-osmolarity of drug solutions.
On the contrary, isotonic solutions remove the risk of paradoxical bronchoconstriction and cough (The Lancet, 1988, o . cit.; Mann et al Br Med J 1984, 289, 469). The osmolarity also affects the performances of the nebulisers in terms of output rate and particle size distribution (vide ultra).
• The particle size distribution upon nebulisation. The efficacy of a clinical aerosol is dependent on its ability to penetrate the respiratory tract. To penetrate to the peripheral regions, aerosols require a size from
0.8 to 5 μm, with a size of about 3 μm preferable for alveolar deposition. Particles smaller than 0.5 μm are mainly exhaled. Besides the therapeutic purposes, the size of aerosol particles is important in respect to the side effects of the drugs. Larger droplets deposited in the upper respiratory tract are indeed rapidly cleared from the lung by the mucociliary clearance process, with the effect that drug becomes available for systemic absorption and potentially adverse effects. The same problems could occur with too small aerosol particles which, due to deep lung penetration, might give rise to higher systemic exposure so enhancing the undesired systemic effects of the drugs. Several authors (Newman et al Thorax 1988, 43, 318-322; Smaldone et al J Aerosol med, 1988, 1, 113-126; Thomas et al. Eur Respir J 1991, 4, 616-622) have suggested that close attention to the droplet size of the aerosolised drug for the antibiotic treatment of CF must be paid, since penetration to the peripheral airways is particularly desirable.
• The pH of the formulation. An important requirement for an acceptable formulation is its adequate shelf-life suitable for commercial, distribution, storage and use. Generally, tobramycin intravenous solutions contain phenol or other preservatives and anti-oxidants to maintain potency and to minimise the formation of degradation products that may colour the solution. However, as already pointed out, said substances may induce unwanted reactions in patients with lung diseases such as CF. The stability of tobramycin strictly depends on the pH. Therefore, the pH of its formulations need to be carefully adjusted in order to slow or prevent degradation products formation without the aid of preservatives and/or anti-oxidants; it would also be advantageous to adjust pH in such a way as to prevent as much as possible discoloration although the depth of colour is not a reliable indicator of the extent of oxidation. Formulations provided of adequate shelf-life under environmental storage conditions (room temperature and, at the occurrence, protected form light) would be particularly preferred, since the stability at room temperature of the preparations of the prior art are rather unsatisfactory. During use, the formulation prepared according to
EP 734249 marketed under the trade-name of Tobi® could be indeed kept at room temperature for only 28 days. OBJECT OF THE INVENTION
It is an object of the invention to provide a formulation to be administered by nebulisation suitable for well-tolerated and efficacious delivery of tobramycin into the endobronchial space for treating Pseudomonas aeruginosa and/or other susceptible bacterial infections associated to pulmonary diseases such as CF.
In particular, it is an object of the invention to provide a formulation in the form of aqueous solution to be administered by nebulisation, wherein tobramycin concentration, tonicity and pH have been optimised for guaranteeing better compliance of the patients, maximal tolerance and efficacy and as long as possible a shelf-life at room temperature.
According to the present invention there is provided a formulation constituted of 7.5% w/v tobramycin in an aqueous solution having a pH of between 4.0. and 5.5 and osmolarity between 250 and 450 mOsm/1 (approximately equivalent to mOsm/kg).
In a preferred embodiment of the invention, the formulation contains 300 mg of tobramycin sulfate in 4 ml of half-saline aqueous solution (0.45% of sodium chloride) in order to have an osmolarity ranging from 280 to 350 mOsm/1 and it has a pH of 5.2.
In the prior art, several tobramycin formulations for inhalation have been proposed for the treatment of patients with CF and Pseudomonas aeruginosa infections.
Most of the commercially available tobramycin solution for injection when extemporarily used for inhalation can cause significant bronchial obstruction as they are not preservative-free but contain anti-oxidants such as sodium EDTA and/or sodium metabisulphite and preservatives such as phenol. Wall et al (The Lancet, 1983, June 11th, 1325) reported the result of a clinical study upon inhalation of 80 mg tobramycin plus 1 g ticarcillin twice daily from a hand-held nebuliser. On their own admission, one of the drawbacks of the regimen is the time required for inhalation (about 30 min). Ramsey et al (New Eng J Med 1993, 328, 1740-1746) conducted an extensive study to evaluate the safety and efficacy of aerosolised tobramycin. For reaching the target concentration (> 400 μg per gram of sputum), they used 600 mg of preservative-free tobramycin sulfate dissolved in 30 ml of half- strength physiologic saline, adjusted to a pH of 6.85 to 7.05. The large volume was required by the ultrasonic nebuliser used (DeVilbiss). Besides the long term required for inhalation, the pH is not optimal either. From a stability point of view, it is known that, at pH around neutrality, tobramycin rapidly oxidises although it is very stable towards hydrolysis (Brandl et al Drug Dev Ind Pharm 1992, 18, 1423-1436). Common Compendia (Martindale, Physician Desk Reference) suggest indeed to maintain tobramycin solution at a pH comprised between 3.0 and 6.5.
EP 734249 claims a formulation comprising from 200 mg to 400 mg of aminoglycoside dissolved in about 5 ml of solution containing 0.225% of sodium chloride (% normal saline -NS-) and having pH between 5.5 and 6.5. According to the inventors, the formulation contains minimal yet efficacious amount of aminoglycoside formulated in a small as possible a volume of physiologically acceptable solution having a salinity adjusted to permit generation of aminoglycoside aerosol well-tolerated by patients but preventing the development of secondary undesirable effects such as bronchospasm and cough (pg. 4, lines 51-55). The preferred tobramycin formulation containing % NS with 60 mg of tobramycin per ml of NS (which equates to 6% w/v) has a pH of about 6.0 and an osmolarity in the range of 165-190 mOsm/1. According to the inventors, the osmolarity range is within the safe range of aerosols administered to a cystic fibrosis patient and a further advantage of the quarter normal saline, i.e. saline containing 0.225% of sodium chloride with 60 mg/ml tobramycin is that this formulation is more efficiently nebulised by an ultrasonic nebuliser compared to tobramycin formulated in a solution 0.9% normal saline (pg. 5, lines 50-54). The inventors state that a more concentrated solution (in comparison to 60 mg per ml) will increase the osmolarity of the solution, thus decreasing the output of the formulation with both jet and ultrasonic nebulisers. Alternatively, a more concentrated solution in a smaller volume is also disadvantageous due to the typical dead space volume of the nebulisers (1 ml): that means that the last 1 ml of solution is wasted because the nebuliser is not fully performing (pg. 6, lines 35-38). The claimed pH range was found to be optimal from the storage and longer shelf-life point of view (page 7 lines 2-3) but, indeed, it allows to achieve completely stable solutions at 5° C and effectively stable ones at room temperature for 6 months; moreover the claimed formulation remain within an acceptable range of color obtained upon storage in pouch (so protected from light), but there is no data referring to its behaviour outside the pouch.
A pH between 5.5 and 6.5 was claimed because, in the Opinion of the inventors, any aerosol with a pH of less than 4.5 usually will induce bronchospasm in a susceptible individual and aerosols with a pH between 4.5 and 5.5 will occasionally cause this problem (pg. 5, line 58- pg. 6, line 1) Le Brun et al Int J Pharm 1999, 189, 205-214 disclosed a 10% w/v tobramycin solution for inhalation having a pH of 7.5. The same authors (Int J Pharm 1999, 189, 215-225), in a further study aiming at developing highly concentrated solutions, have studied the aerosolization properties of several tobramycin solutions, ranging from 5 to 30% w/v. All the solutions disclosed in this paper have a pH around the neutrality and exhibit an osmolarity far away from an isotonic value (282 mOsm/1).
In none of aforementioned documents the features of the formulation of the present invention are disclosed and none of the teaching therein disclosed fully contributes to the solution of the problem underlying the invention, to provide a concentrated solution to be delivered by aerosol in a smaller volume, with a tonicity closer to the physiological value.
The use of a more concentrated solution with respect to that reported as optimal in the prior art (7.5% vs. 6.0% w/v) allows to employ vials with a smaller volume, so allowing, in turn, to reduce the time of nebulisation. Although it is true that some nebulisers have a dead space volume of 1 ml, other have a minor one (0.5 ml or less), so the wasting of using vials of 4 ml would be only approx. 10% or less.
According to the invention, the osmolarity of the formulation is within the range of solutions considered as isotonic, whereas both the formulations of EP 734249 and Ramsey et al have an osmolarity, i.e. 165-190 mOsm/1, typical of solutions considered as hypotonic (Derbracher et al Atemwegs und Lung 1994, 20, 381-382). Although the formulations of the prior art turned out to be safe, only isotonic solutions may completely prevent the risk of paradoxical bronchoconstriction. Moreover, the results reported in the example 2 indicate that the formulations having an osmolarity in the range claimed, contrary to what stated in EP 734249, are efficiently nebulised despite their higher concentration.
The pH between 4.0 and 5.5, preferably 5.2, was found to be optimal in terms of storage and shelf-life at room temperature. Long-term stability studies show that tobramycin in the formulation of the present invention is stable for over nine months. Moreover, for all that period, its colour does not significantly change and remains within an acceptable range even if not stored in a foil overpouch. According to a further embodiment of the invention, there is also provided a process for the preparation of such formulation, said process including the steps of: i) preparing an aqueous solution containing 0.45% w/v of sodium chloride; ii) adjusting the pH with a concentrated strong acid;
Ui) adding the active ingredient and mixing to complete dissolution; iv) re-adjusting the pH to the desired value; v) filling the solution in suitable containers, preferably pre-sterilised by filtration. The aerosol formulations of the invention refer to a 7.5% w/v aqueous solution of an antibiotic of the aminoglycoside family, preferably tobramycin and salts thereof, for the treatment of lung infections due to Gram positive and negative bacteria, in pulmonary diseases such as cystic fibrosis, non-CF bronchiectasis infected with Pseudomonas aeruginosa and other chronic pneumopathies, particularly in an exacerbation phase, such as bronchiectasis,
COPD and bronchial asthma.
The osmolarity of the formulation should range between 250 and 450 mOsm/1, preferably between 260 and 400, even more preferably between 280 and 350 mOsm/1; it can be adjusted by using any physiologically acceptable salt or non-volatile compounds; preferably, tobramycin is dissolved in a 0.45% sodium chloride aqueous solution.
The pH can be adjusted by using any concentrated strong acid, preferably sulfuric acid and should range from 4.0 to 5.5, preferably from 5.0 to 5.4.
The formulations of the invention can be distributed in suitable containers such as multidose vials or pre-sterilised unit dose vials of 2 or 4ml, depending on the therapeutic indication; otherwise, the vials can be aseptically filled using the "blow, fill and seal" technology. The filling is preferably carried out under inert atmosphere. The solution formulations can be advantageously sterilised by filtration.
The invention is illustrated by the following examples. Example 1 Preparation of the 7.5% w/v Tobramycin solution at pH 5.2 and stability studies
The composition refers to 1 unit-dose vial (2 ml)
* added only if required.
Sodium chloride is dissolved into 40 1 of purified water (mix for 15 minutes to guarantee the NaCl complete dissolution). Then, 30 1 of sulphuric acid (2N H2S04) is added to the saline solution; during the operation, the solution temperature is monitored. When the solution temperature is about 25÷30°C, N2 is insufflated to obtain a value of dissolved 02 less than 1 mg/1. Afterwards, tobramycin is added and mixed to complete dissolution (for not less than 15 minutes) while the temperature is maintained below 25-30° C. The pH value is checked and, if necessary, sulphuric acid 2N or sodium hydroxide solution IM are added to obtain a pH value of 5.2 ± 0.2. When the solution temperature is 25°C ± 2°C, purified water is added to reach the final volume. The resulting solution is mixed for 15 minutes. The pH value is checked again and, if necessary, sulphuric acid 2N or sodium hydroxide solution IM are added to obtain a pH value of 5.2 ± 0.2. The solution is filtered through one 0.45 μm Nylon filter, and through two 0.2 μm Nylon filters.
The solution is distributed in 2 ml polyethylene colorless unit dose vials under nitrogen purging.
The stability of the vials was evaluated both under long-term (25°C, 60% R.H.) and accelerated conditions (40°C, 75% R.H.) [R.H. = relative humidity]. Results are reported in Tables 1 and 2, respectively. Assays of tobramycin and of its main related substances (degradation products) were determined by HPLC. Residual oxygen, pH and osmolarity were also assayed. The osmolarity was measured using a freezing-point depression osmometer.
The formulation of the invention turns out to be stable for at least 9 months at room temperature and for 6 months under accelerated conditions. pH and osmolarity remain substantially unchanged under both conditions. At room temperature, the colour of the formulation of the invention does not significantly change and remains within an acceptable range even if not stored in a foil overpouch. TABLE 1 - Stability under long-term conditions (25°C, 60% R.H.)
Analysis TECHNOLOGICAL CONTROLS CHEMICAL CONTROLS
Solution Oxygen Osmolarity Tobramyicin Related substances pH appearance mg/1 mOsm/1 mg/ml (%) %
Specification Clear pale range yellow solution (a) 260-350 67.5-82.5 4.5-5.5 (a)
Clear pale t= 0 2.8 321 75.8 (100) 5.2 6.39 yellow solution
Clear pale t= 3 months 2.9 314 76.6 (101.1) 5.2 6.35 yellow solution
Clear pale t= 6 months 3.0 304 75.4 (99.5) 5.0 5.84 yellow solution
Clear pale t= 9 months 2.8 293 76.5 (100.9) 5.1 6.27 yellow solution
(a) not established
TABLE 2 - Solution of example 1 - Stability under accelerated conditions (40c >C , 75% R.H.)
Analysis TECHNOLOGICAL CONTROLS CHEMICAL CONTROLS
Solution Oxygen Osmolarity Tobramycin Related substances pH appearance mg/1 mOsm/1 mg/ml (%) %
Specification Clear pale range yellow solution (a) 260-350 67.5-82.5 4.5-5.5 (a)
Clear pale t= 0 2.8 321 75.8 (100) 5.2 6.39 yellow solution
Clear pale t= 1 months 2.7 n.d. 78.3 (103.3) 5.1 6.42 yellow solution
Clear t= 3 months 2.8 311 75.3 (99.3) 5.1 5.48 yellow solution
Clear t= 6 months 3.2 292 77.1 (101.7) 4.7 6.17 yellow solution
(a) not established; (n.d.) not determined
Example 2
The nebulisation efficiency of the solution for inhalation of example 1, expressed as percentage of active ingredient nebulised, was evaluated using a commercial jet nebuliser (PARI-BOY) for a 5-minute nebulisation time. The size profile of the droplets produced by nebulisation of the solution, expressed as diameter (μm) below which respectively 10%, 50% and 90% of the droplets are included, was also characterised by Malvern analysis.
A formulation prepared according to the teaching of the preferred embodiment of EP 734249, i.e. containing 60 mg of active ingredient per ml of 0.225% sodium chloride aqueous solution and having a pH of about 6, was nebulised for comparison. Both formulations were filled in 2 ml unit dose vials. The results are reported in Table 3 as a mean of two determinations. TABLE 3
Osmolarity Malvern Analysis Efficiency
(mOsm/1) (μm) (%)
10% 50% 90%
Formulation
295 1.61 6.26 13.46 47.4 of ex. 1
Formulation 222 1.78 6.24 13.46 42.2 of EP 734249 The results indicate that the formulation according to example 1 having an osmolarity near isotonicity is efficiently nebulised.
The size profile of the droplets produced by nebulisation is instead practically the same.

Claims (3)

1. An aerosol formulation consisting of 75 mg/ml of tobramycin dissolved in a 0.45% sodium chloride wherein the pH is comprised between 4.0 and 5.5 and the osmolarity ranges between 250 and 450 mOsm/1.
2. An aerosol formulation according to claim 1 wherein the pH is 5.2 and the osmolarity is between 280 and 350 mOsm/1.
3. A process for the preparation of an aerosol formulation according to claim 1, said process including the steps of: i) preparing an aqueous solution containing 0.45% w/v of sodium chloride; ii) adjusting the pH with a concentrated strong acid;
Hi) adding the active ingredient and mixing to complete dissolution ; iv) re-adjusting the pH to the desired value; v) filling the solution in suitable containers, preferably pre-sterilised by filtration.
AU2002319226A 2001-07-02 2002-06-14 Optimised formulation of tobramycin for aerosolization Expired AU2002319226B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01116071.0 2001-07-02
EP01116071A EP1273292B1 (en) 2001-07-02 2001-07-02 Optimised formulation of tobramycin for aerosolization
PCT/EP2002/006544 WO2003004005A1 (en) 2001-07-02 2002-06-14 Optimised formulation of tobramycin for aerosolization

Publications (2)

Publication Number Publication Date
AU2002319226A1 true AU2002319226A1 (en) 2003-05-22
AU2002319226B2 AU2002319226B2 (en) 2006-07-06

Family

ID=8177921

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002319226A Expired AU2002319226B2 (en) 2001-07-02 2002-06-14 Optimised formulation of tobramycin for aerosolization

Country Status (27)

Country Link
US (5) US6987094B2 (en)
EP (1) EP1273292B1 (en)
JP (1) JP4262086B2 (en)
KR (1) KR100910888B1 (en)
CN (1) CN1234346C (en)
AT (1) ATE267591T1 (en)
AU (1) AU2002319226B2 (en)
BG (1) BG66328B1 (en)
BR (1) BRPI0211320B8 (en)
CA (1) CA2452638C (en)
CZ (1) CZ299348B6 (en)
DE (1) DE60103527T2 (en)
DK (1) DK1273292T3 (en)
EA (1) EA006068B1 (en)
EE (1) EE05392B1 (en)
EG (1) EG24019A (en)
ES (1) ES2222294T3 (en)
HK (1) HK1068784A1 (en)
HU (1) HU230807B1 (en)
PL (1) PL202598B1 (en)
PT (1) PT1273292E (en)
SI (1) SI1273292T1 (en)
SK (1) SK285806B6 (en)
TN (1) TNSN03149A1 (en)
TR (1) TR200401980T4 (en)
WO (1) WO2003004005A1 (en)
ZA (1) ZA200400026B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW465235B (en) 1998-09-17 2001-11-21 United Video Properties Inc Electronic program guide with digital storage
DZ2947A1 (en) * 1998-11-25 2004-03-15 Chiesi Farma Spa Pressure metered dose inhaler.
IT1317720B1 (en) * 2000-01-07 2003-07-15 Chiesi Farma Spa DEVICE FOR THE ADMINISTRATION OF AEROSOL DOSED PRESSURIZED INPROPELLENT HYDROFLUOROALKANS.
EP1273292B1 (en) * 2001-07-02 2004-05-26 CHIESI FARMACEUTICI S.p.A. Optimised formulation of tobramycin for aerosolization
TWI324518B (en) 2001-12-19 2010-05-11 Nektar Therapeutics Pulmonary delivery of aminoglycosides
EP3536344B1 (en) * 2002-03-01 2020-02-19 Chiesi Farmaceutici S.p.A. Formoterol superfine formulation
ATE350024T1 (en) * 2003-10-15 2007-01-15 Pari Gmbh LIQUID PREPARATION CONTAINING TOBRAMYCIN
US8442280B2 (en) * 2004-01-21 2013-05-14 Edda Technology, Inc. Method and system for intelligent qualitative and quantitative analysis of digital radiography softcopy reading
SI1750667T1 (en) 2004-05-17 2011-04-29 Gilead Sciences Inc Aerosolized fosfomycin/aminoglycoside combination for the treatment of bacterial respiratory infections
US8524735B2 (en) * 2005-05-18 2013-09-03 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
US7838532B2 (en) * 2005-05-18 2010-11-23 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
CN101287446A (en) 2005-09-29 2008-10-15 尼克塔治疗公司 Antibiotic formulations, unit doses, kits, and methods
US20090246146A1 (en) * 2008-01-25 2009-10-01 Botond Banfi Halides in the treatment of pathogenic infection
NZ719761A (en) 2008-10-07 2017-11-24 Raptor Pharmaceuticals Inc Aerosol fluoroquinolone formulations for improved pharmacokinetics
DK2346509T3 (en) * 2008-10-07 2020-08-03 Horizon Orphan Llc INHALATION OF LEVOFLOXACIN TO REDUCE POULTRY INFLAMMATION
CN105362256A (en) * 2009-02-18 2016-03-02 阿拉迪姆公司 PH-modulated formulations for pulmonary delivery
WO2011029059A1 (en) 2009-09-04 2011-03-10 Mpex Pharmaceuticals, Inc. Use of aerosolized levofloxacin for treating cystic fibrosis
EP2388008A1 (en) 2010-05-14 2011-11-23 Combino Pharm, S.L. Stable, preservative-free, aqueous formulation for the administration by aerosolization comprising tobramycin
CN103052392A (en) 2010-07-12 2013-04-17 赛利亚医药公司 Treatment of lung infections by administration of tobramycin by aerolisation
CN111481562A (en) * 2010-09-13 2020-08-04 苏黎世大学 Application of apramycin in preparation of bacterial infectious disease treatment
US10105356B2 (en) 2011-01-31 2018-10-23 Avalyn Pharma Inc. Aerosol pirfenidone and pyridone analog compounds and uses thereof
JP6021117B2 (en) * 2011-01-31 2016-11-02 ジェノア ファーマシューティカルズ,インク. Aerosol pirfenidone and pyridone analog compounds and uses thereof
EP2567691B1 (en) 2011-09-12 2014-12-24 Meiji Seika Pharma Co., Ltd. Aqueous compositions comprising arbekacin
GB201208080D0 (en) 2012-05-09 2012-06-20 Norton Healthcare Ltd Tobramycin formulation
CN105534961B (en) * 2015-12-30 2019-06-04 孙红娟 Tobramycin inhalation solution and preparation method thereof
CN105616345B (en) * 2016-03-01 2018-08-21 上海方予健康医药科技有限公司 A kind of tobramycin composition for inhalation and its preparation method and application
US20200069714A1 (en) * 2016-12-09 2020-03-05 Enbiotix, Inc. Aminoglycoside potentiation for treatment of pulmonary bacterial infection
CN108014099B (en) * 2017-12-15 2019-03-01 武汉兴华智慧医药科技有限公司 A kind of sucking tobramycin solution and preparation method thereof
GB2565941A (en) * 2018-11-27 2019-02-27 Norton Healthcare Ltd A process for preparing a formulation
CN113018443B (en) * 2019-12-27 2022-09-13 海南斯达制药有限公司 Pharmaceutical composition for treating respiratory system diseases and preparation method thereof
CN113952320B (en) * 2021-09-18 2022-03-18 健康元药业集团股份有限公司 Drug assembly containing tobramycin inhalation solution and application thereof

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361306A (en) * 1966-03-31 1968-01-02 Merck & Co Inc Aerosol unit dispensing uniform amounts of a medically active ingredient
US3622053A (en) * 1969-12-10 1971-11-23 Schering Corp Aerosol inhaler with flip-up nozzle
MX3864E (en) 1975-05-27 1981-08-26 Syntex Corp A PROCESS TO PREPARE THE CRYSTALLINE COMPOUND 6-FLUIRO-11B 21-DIHIROXI-16 17-ISOPROPILIDENDIOXIPREGNA-1 4-DIEN-3 20-DIONA
US4185100A (en) * 1976-05-13 1980-01-22 Johnson & Johnson Topical anti-inflammatory drug therapy
US4499108A (en) * 1983-06-08 1985-02-12 Schering Corporation Stable pleasant-tasting albuterol sulfate pharmaceutical formulations
GB8334494D0 (en) * 1983-12-24 1984-02-01 Tanabe Seiyaku Co Carbostyril derivatives
IT1196142B (en) * 1984-06-11 1988-11-10 Sicor Spa PROCEDURE FOR THE PREPARATION OF 16.17-ACETALS OF PREGNANIC DERIVATIVES AND NEW COMPOUNDS OBTAINED
US4584320A (en) * 1985-01-03 1986-04-22 David Rubin Anti-asthmatic composition and method using 8,11,14,17-eicosatetraenoic acid
US5192528A (en) * 1985-05-22 1993-03-09 Liposome Technology, Inc. Corticosteroid inhalation treatment method
US5225183A (en) * 1988-12-06 1993-07-06 Riker Laboratories, Inc. Medicinal aerosol formulations
GB8828477D0 (en) 1988-12-06 1989-01-05 Riker Laboratories Inc Medical aerosol formulations
US5006343A (en) * 1988-12-29 1991-04-09 Benson Bradley J Pulmonary administration of pharmaceutically active substances
IE67185B1 (en) 1990-02-02 1996-03-06 Fisons Plc Propellant compositions
EP0563048A1 (en) 1990-12-19 1993-10-06 Smithkline Beecham Corporation Aerosol formulations
US6006745A (en) * 1990-12-21 1999-12-28 Minnesota Mining And Manufacturing Company Device for delivering an aerosol
US5190029A (en) * 1991-02-14 1993-03-02 Virginia Commonwealth University Formulation for delivery of drugs by metered dose inhalers with reduced or no chlorofluorocarbon content
EP0504112A3 (en) 1991-03-14 1993-04-21 Ciba-Geigy Ag Pharmaceutical aerosol formulations
KR100229975B1 (en) 1991-05-21 1999-11-15 스티븐 에프. 웨인스톡 Aerosol inhalation device
CZ282972B6 (en) * 1991-08-29 1997-11-12 Broncho-Air Medizintechnik Ag Medicinal apparatus for inhaling of proportioned aerosols
IL103238A (en) 1991-09-25 1995-07-31 Fisons Plc Pressurised aerosol compositions
IL104068A (en) 1991-12-12 1998-10-30 Glaxo Group Ltd Surfactant-free pharmaceutical aerosol formulation comprising 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoro-n- propane as propellant
CA2126244C (en) 1991-12-18 2000-09-26 Robert K. Schultz Suspension aerosol formulations
DE4230876A1 (en) 1992-03-17 1993-09-23 Asta Medica Ag COMPRESSED GAS PACKS USING POLYOXYETHYLENE GLYCERYL OLEATES
PL177078B1 (en) 1992-12-09 1999-09-30 Boehringer Ingelheim Pharma Stabilised therapeutic aerosol solution preparations
SE9203743D0 (en) * 1992-12-11 1992-12-11 Astra Ab EFFICIENT USE
WO1994014490A1 (en) 1992-12-23 1994-07-07 Bernhard Hugemann Compacted drug body for use in the mechanical generation of inhalable active-substance particles
KR100321649B1 (en) 1993-03-17 2002-07-22 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 Aerosols containing dispersion aids derived from esters, amides or mercaptoesters
US6042811A (en) 1993-03-17 2000-03-28 3M Innovative Properties Company Aerosol formulation containing a diol-diacid derived dispersing aid
US6596260B1 (en) 1993-08-27 2003-07-22 Novartis Corporation Aerosol container and a method for storage and administration of a predetermined amount of a pharmaceutically active aerosol
WO1995017195A1 (en) * 1993-12-20 1995-06-29 Minnesota Mining And Manufacturing Company Flunisolide aerosol formulations
US5508269A (en) * 1994-10-19 1996-04-16 Pathogenesis Corporation Aminoglycoside formulation for aerosolization
GB9425160D0 (en) 1994-12-10 1995-02-08 Glaxo Group Ltd Medicaments
SK81197A3 (en) 1994-12-22 1997-11-05 Astra Ab Aerosol drug formulations, method for production thereof and its use
GB9426252D0 (en) 1994-12-24 1995-02-22 Glaxo Group Ltd Pharmaceutical composition
DE4446891A1 (en) 1994-12-27 1996-07-04 Falk Pharma Gmbh Stable aqueous budesonide solution
US5653961A (en) * 1995-03-31 1997-08-05 Minnesota Mining And Manufacturing Company Butixocort aerosol formulations in hydrofluorocarbon propellant
EP1166811B1 (en) 1995-04-14 2006-12-06 SmithKline Beecham Corporation Metered dose inhaler for fluticasone propionate
DE69622166T2 (en) 1995-04-14 2003-04-03 Smithkline Beecham Corp., Philadelphia DOSING INHALATOR FOR ALBUTEROL
HUP9802391A3 (en) * 1995-04-14 2000-06-28 Glaxo Wellcome Inc Res Triangl Metered dose inhaler for salmeterol
KR19980703850A (en) * 1995-04-14 1998-12-05 그레이엄브레레톤 Weighing Aspirator for Beclomethasone Dipropionate
GB9612297D0 (en) 1996-06-11 1996-08-14 Minnesota Mining & Mfg Medicinal aerosol formulations
EP0914143A1 (en) 1996-07-08 1999-05-12 Rhone-Poulenc Rorer Limited Medicinal cyclosporin-a aerosol solution formulation
AU3811897A (en) 1996-07-24 1998-02-10 Oglios Therapeutics, Inc. Antisense oligonucleotides as antibacterial agents
GB9616237D0 (en) 1996-08-01 1996-09-11 Norton Healthcare Ltd Aerosol formulations
GB9620187D0 (en) 1996-09-27 1996-11-13 Minnesota Mining & Mfg Medicinal aerosol formulations
DK1011646T3 (en) 1996-12-04 2005-09-19 Link Products Ltd Pharmaceutical compositions and devices for administration thereof
US6413496B1 (en) * 1996-12-04 2002-07-02 Biogland Ireland (R&D) Limited Pharmaceutical compositions and devices for their administration
AU718967B2 (en) * 1997-02-05 2000-05-04 Jagotec Ag Medical aerosol formulations
US6126919A (en) 1997-02-07 2000-10-03 3M Innovative Properties Company Biocompatible compounds for pharmaceutical drug delivery systems
US5891419A (en) * 1997-04-21 1999-04-06 Aeropharm Technology Limited Environmentally safe flunisolide aerosol formulations for oral inhalation
US20010031244A1 (en) * 1997-06-13 2001-10-18 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
GB2326334A (en) 1997-06-13 1998-12-23 Chiesi Farma Spa Pharmaceutical aerosol compositions
BR7702049U (en) 1997-09-05 1999-09-14 Chiesi Farma Spa Spray nozzle for use in an oral inhaler for aerosol medicines
US5954047A (en) * 1997-10-17 1999-09-21 Systemic Pulmonary Development, Ltd. Methods and apparatus for delivering aerosolized medication
US6045784A (en) * 1998-05-07 2000-04-04 The Procter & Gamble Company Aerosol package compositions containing fluorinated hydrocarbon propellants
SE9802073D0 (en) 1998-06-11 1998-06-11 Astra Ab New use
US6451285B2 (en) * 1998-06-19 2002-09-17 Baker Norton Pharmaceuticals, Inc. Suspension aerosol formulations containing formoterol fumarate and a fluoroalkane propellant
US6241969B1 (en) * 1998-06-26 2001-06-05 Elan Corporation Plc Aqueous compositions containing corticosteroids for nasal and pulmonary delivery
DE19847969A1 (en) * 1998-10-17 2000-04-20 Boehringer Ingelheim Pharma Stable liquid formulation of formoterol in solution or suspension medium, used after dilution for treatment of asthma by inhalation
DK1131059T3 (en) * 1998-11-13 2003-06-30 Jago Res Ag Dry powder for inhalation
IT1303788B1 (en) * 1998-11-25 2001-02-23 Chiesi Farma Spa MEDICINAL AEROSOL FORMULATIONS.
DZ2947A1 (en) * 1998-11-25 2004-03-15 Chiesi Farma Spa Pressure metered dose inhaler.
US6290930B1 (en) * 1998-12-18 2001-09-18 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes and budesonide
US6004537A (en) * 1998-12-18 1999-12-21 Baker Norton Pharmaceuticals, Inc. Pharmaceutical solution aerosol formulations containing fluoroalkanes, budesonide and formoterol
US6315985B1 (en) * 1999-06-18 2001-11-13 3M Innovative Properties Company C-17/21 OH 20-ketosteroid solution aerosol products with enhanced chemical stability
IT1317846B1 (en) * 2000-02-22 2003-07-15 Chiesi Farma Spa FORMULATIONS CONTAINING AN ANTICOLINERGIC DRUG FOR THE TREATMENT OF CHRONIC OBSTRUCTIVE BRONCOPNEUMOPATHY.
IT1318514B1 (en) * 2000-05-12 2003-08-27 Chiesi Farma Spa FORMULATIONS CONTAINING A GLUCOCORTICOSTEROID DRUG FOR THE TREATMENT OF BRONCOPOLMONARY DISEASES.
MXPA02011414A (en) * 2000-05-22 2003-06-06 Chiesi Farma Spa Stable pharmaceutical solution formulations for pressurised metered dose inhalers.
EP1273292B1 (en) * 2001-07-02 2004-05-26 CHIESI FARMACEUTICI S.p.A. Optimised formulation of tobramycin for aerosolization
EP3536344B1 (en) * 2002-03-01 2020-02-19 Chiesi Farmaceutici S.p.A. Formoterol superfine formulation
EP1415647A1 (en) * 2002-10-23 2004-05-06 CHIESI FARMACEUTICI S.p.A. "Long-acting beta-2 agonists ultrafine formulations"
EP1340492A1 (en) * 2002-03-01 2003-09-03 CHIESI FARMACEUTICI S.p.A. Aerosol formulations for pulmonary administration of medicaments having systemic effects
US20050083693A1 (en) * 2003-10-21 2005-04-21 Timothy Garrett Flag illumination fixture

Similar Documents

Publication Publication Date Title
US8168598B2 (en) Optimised formulation of tobramycin for aerosolization
AU2002319226A1 (en) Optimised formulation of tobramycin for aerosolization
JP3474195B2 (en) New and improved aminoglycoside formulations for aerosolization
BG108457A (en) Method and assembly for increasing hair volume
ES2406405T3 (en) Aztreonam inhalable without arginine for treatment and prevention of pulmonary bacterial infections
US20090041676A1 (en) Targeted Delivery of Lidocaine and Other Local Anesthetics and A Method For Treatment of Cough, Asthma and Tussive Attacks
JP2008513444A (en) Methods for targeted delivery of lidocaine and other local anesthetics and treatment of cough and cough attacks
WO2004052333A1 (en) Pharmaceutical compositions for the pulmonary delivery of aztreonam
US10406171B2 (en) Formulations of aminoglycosides and fosfomycin in a combination having improved chemical properties