AU2002316738A1 - Pharmaceutical combinations of oxycodone and naloxone - Google Patents
Pharmaceutical combinations of oxycodone and naloxoneInfo
- Publication number
- AU2002316738A1 AU2002316738A1 AU2002316738A AU2002316738A AU2002316738A1 AU 2002316738 A1 AU2002316738 A1 AU 2002316738A1 AU 2002316738 A AU2002316738 A AU 2002316738A AU 2002316738 A AU2002316738 A AU 2002316738A AU 2002316738 A1 AU2002316738 A1 AU 2002316738A1
- Authority
- AU
- Australia
- Prior art keywords
- naloxone
- oxycodone
- hydrochloride
- acceptable salt
- pharmaceutically acceptable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229960004127 naloxone Drugs 0.000 title claims description 213
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 title claims description 181
- 229960002085 oxycodone Drugs 0.000 title claims description 169
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 title description 2
- RGPDIGOSVORSAK-STHHAXOLSA-N naloxone hydrochloride Chemical compound Cl.O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C RGPDIGOSVORSAK-STHHAXOLSA-N 0.000 claims description 250
- 150000003839 salts Chemical class 0.000 claims description 144
- 239000012730 sustained-release form Substances 0.000 claims description 118
- 238000013268 sustained release Methods 0.000 claims description 116
- 239000000203 mixture Substances 0.000 claims description 103
- BQNSLJQRJAJITR-UHFFFAOYSA-N 1,1,2-trichloro-1,2-difluoroethane Chemical compound FC(Cl)C(F)(Cl)Cl BQNSLJQRJAJITR-UHFFFAOYSA-N 0.000 claims description 89
- 229960003617 oxycodone hydrochloride Drugs 0.000 claims description 89
- 239000002552 dosage form Substances 0.000 claims description 72
- 238000000034 method Methods 0.000 claims description 63
- 238000011282 treatment Methods 0.000 claims description 53
- 238000009472 formulation Methods 0.000 claims description 51
- 239000008194 pharmaceutical composition Substances 0.000 claims description 50
- 229960005250 naloxone hydrochloride Drugs 0.000 claims description 43
- 239000003814 drug Substances 0.000 claims description 42
- 238000004090 dissolution Methods 0.000 claims description 39
- 239000012530 fluid Substances 0.000 claims description 38
- 239000011159 matrix material Substances 0.000 claims description 27
- 208000002193 Pain Diseases 0.000 claims description 26
- 230000036407 pain Effects 0.000 claims description 25
- 238000013270 controlled release Methods 0.000 claims description 21
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 19
- 229940066690 talwin Drugs 0.000 claims description 19
- 230000002496 gastric effect Effects 0.000 claims description 17
- 229940105606 oxycontin Drugs 0.000 claims description 17
- 238000000338 in vitro Methods 0.000 claims description 14
- 230000001965 increasing effect Effects 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 6
- SUPXNVKKFDZJHJ-GGIGFXPDSA-N (4R,4aR,7aR,12bS)-9-hydroxy-3-prop-2-enyl-1,2,4,4a,5,6,7a,13-octahydro-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one (1S,9S,13S)-1,13-dimethyl-10-(3-methylbut-2-enyl)-10-azatricyclo[7.3.1.02,7]trideca-2(7),3,5-trien-4-ol dihydrochloride Chemical class Cl.Cl.C[C@@H]1[C@@H]2Cc3ccc(O)cc3[C@@]1(C)CCN2CC=C(C)C.Oc1ccc2C[C@@H]3[C@@H]4CCC(=O)[C@@H]5Oc1c2[C@]45CCN3CC=C SUPXNVKKFDZJHJ-GGIGFXPDSA-N 0.000 claims 3
- QNLDTXPVZPRSAM-UHFFFAOYSA-N 17146-95-1 Chemical compound CC(O)C(O)=O.C1C2=CC=C(O)C=C2C2(C)C(C)C1N(CC=C(C)C)CC2 QNLDTXPVZPRSAM-UHFFFAOYSA-N 0.000 claims 3
- 235000002639 sodium chloride Nutrition 0.000 description 147
- -1 i.e. Chemical compound 0.000 description 79
- 239000000463 material Substances 0.000 description 68
- 238000000576 coating method Methods 0.000 description 50
- 230000002209 hydrophobic effect Effects 0.000 description 47
- 229940079593 drug Drugs 0.000 description 40
- 239000011248 coating agent Substances 0.000 description 38
- 230000002411 adverse Effects 0.000 description 33
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 31
- 239000000243 solution Substances 0.000 description 31
- 229920003134 Eudragit® polymer Polymers 0.000 description 30
- 239000003826 tablet Substances 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 239000003795 chemical substances by application Substances 0.000 description 28
- 239000011324 bead Substances 0.000 description 27
- 239000006185 dispersion Substances 0.000 description 27
- 229920000642 polymer Polymers 0.000 description 25
- 239000006186 oral dosage form Substances 0.000 description 24
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 22
- 239000004014 plasticizer Substances 0.000 description 22
- 239000002585 base Substances 0.000 description 20
- 238000005469 granulation Methods 0.000 description 18
- 230000003179 granulation Effects 0.000 description 18
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 17
- VOKSWYLNZZRQPF-UHFFFAOYSA-N Talwin Chemical compound C1C2=CC=C(O)C=C2C2(C)C(C)C1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-UHFFFAOYSA-N 0.000 description 16
- 235000014113 dietary fatty acids Nutrition 0.000 description 14
- 239000000194 fatty acid Substances 0.000 description 14
- 229930195729 fatty acid Natural products 0.000 description 14
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 14
- 239000001856 Ethyl cellulose Substances 0.000 description 13
- 229920001249 ethyl cellulose Polymers 0.000 description 13
- 235000019325 ethyl cellulose Nutrition 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 229920000058 polyacrylate Polymers 0.000 description 13
- TXMZWEASFRBVKY-IOQDSZRYSA-N (4r,4as,7ar,12bs)-4a,9-dihydroxy-3-prop-2-enyl-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-one;dihydrate;hydrochloride Chemical compound O.O.Cl.O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C TXMZWEASFRBVKY-IOQDSZRYSA-N 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 12
- 229960004088 naloxone hydrochloride dihydrate Drugs 0.000 description 12
- 230000003204 osmotic effect Effects 0.000 description 12
- 229920001515 polyalkylene glycol Polymers 0.000 description 12
- 239000000829 suppository Substances 0.000 description 12
- 239000001993 wax Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 11
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 11
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 11
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000002511 suppository base Substances 0.000 description 11
- 150000004665 fatty acids Chemical class 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 10
- 150000002430 hydrocarbons Chemical class 0.000 description 10
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 10
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 9
- 206010019233 Headaches Diseases 0.000 description 9
- 206010047700 Vomiting Diseases 0.000 description 9
- 239000002775 capsule Substances 0.000 description 9
- 229920002678 cellulose Polymers 0.000 description 9
- 231100000869 headache Toxicity 0.000 description 9
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 9
- 238000001990 intravenous administration Methods 0.000 description 9
- 230000036470 plasma concentration Effects 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 206010028813 Nausea Diseases 0.000 description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 8
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 8
- 229920013820 alkyl cellulose Polymers 0.000 description 8
- 239000001913 cellulose Substances 0.000 description 8
- 235000010980 cellulose Nutrition 0.000 description 8
- 239000003086 colorant Substances 0.000 description 8
- 208000002173 dizziness Diseases 0.000 description 8
- 239000008187 granular material Substances 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 8
- 239000000314 lubricant Substances 0.000 description 8
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 8
- 230000008693 nausea Effects 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 239000011162 core material Substances 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 239000008240 homogeneous mixture Substances 0.000 description 7
- 235000019359 magnesium stearate Nutrition 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 210000001035 gastrointestinal tract Anatomy 0.000 description 6
- 239000007903 gelatin capsule Substances 0.000 description 6
- 239000008101 lactose Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000001069 triethyl citrate Substances 0.000 description 6
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 6
- 235000013769 triethyl citrate Nutrition 0.000 description 6
- 230000008673 vomiting Effects 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229920002301 cellulose acetate Polymers 0.000 description 5
- 150000002191 fatty alcohols Chemical class 0.000 description 5
- 239000001087 glyceryl triacetate Substances 0.000 description 5
- 235000013773 glyceryl triacetate Nutrition 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 231100000252 nontoxic Toxicity 0.000 description 5
- 230000003000 nontoxic effect Effects 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 5
- 229960002622 triacetin Drugs 0.000 description 5
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 4
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 4
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 4
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 150000003626 triacylglycerols Chemical class 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 241001539473 Euphoria Species 0.000 description 3
- 206010015535 Euphoric mood Diseases 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 229940127450 Opioid Agonists Drugs 0.000 description 3
- 208000003251 Pruritus Diseases 0.000 description 3
- 229920001800 Shellac Polymers 0.000 description 3
- 208000032140 Sleepiness Diseases 0.000 description 3
- 206010041349 Somnolence Diseases 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 229920002494 Zein Polymers 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012754 barrier agent Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- 235000019438 castor oil Nutrition 0.000 description 3
- 229920003086 cellulose ether Polymers 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 238000007909 melt granulation Methods 0.000 description 3
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- VOKSWYLNZZRQPF-GDIGMMSISA-N pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-GDIGMMSISA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229940069328 povidone Drugs 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 125000001453 quaternary ammonium group Chemical group 0.000 description 3
- 235000013874 shellac Nutrition 0.000 description 3
- 229940113147 shellac Drugs 0.000 description 3
- 239000004208 shellac Substances 0.000 description 3
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 230000035900 sweating Effects 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 230000024883 vasodilation Effects 0.000 description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 description 3
- 239000008158 vegetable oil Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000005019 zein Substances 0.000 description 3
- 229940093612 zein Drugs 0.000 description 3
- ACSGYQDUMAPFHC-ONHRPZMOSA-N (4r,4as,7ar,12bs)-4a,9-dihydroxy-3-prop-2-enyl-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-one;(4r,4as,7ar,12bs)-4a-hydroxy-9-methoxy-3-methyl-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-one Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C.O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C ACSGYQDUMAPFHC-ONHRPZMOSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- VKNASXZDGZNEDA-UHFFFAOYSA-N 2-cyanoethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC#N VKNASXZDGZNEDA-UHFFFAOYSA-N 0.000 description 2
- SFPNZPQIIAJXGL-UHFFFAOYSA-N 2-ethoxyethyl 2-methylprop-2-enoate Chemical class CCOCCOC(=O)C(C)=C SFPNZPQIIAJXGL-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 2
- 229920001747 Cellulose diacetate Polymers 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 2
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 208000008454 Hyperhidrosis Diseases 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000005913 Maltodextrin Substances 0.000 description 2
- 229920002774 Maltodextrin Polymers 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 208000007271 Substance Withdrawal Syndrome Diseases 0.000 description 2
- 206010047141 Vasodilatation Diseases 0.000 description 2
- 206010048010 Withdrawal syndrome Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229920003144 amino alkyl methacrylate copolymer Polymers 0.000 description 2
- 230000000202 analgesic effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 235000013871 bee wax Nutrition 0.000 description 2
- 239000012166 beeswax Substances 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 2
- 229940082500 cetostearyl alcohol Drugs 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 230000001079 digestive effect Effects 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 125000005908 glyceryl ester group Chemical group 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229940035034 maltodextrin Drugs 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 229940065778 narcan Drugs 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000003401 opiate antagonist Substances 0.000 description 2
- 239000000014 opioid analgesic Substances 0.000 description 2
- 229940005483 opioid analgesics Drugs 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 229960005301 pentazocine Drugs 0.000 description 2
- 229960003809 pentazocine hydrochloride Drugs 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- VQJMAIZOEPPELO-KYGIZGOZSA-N (1S,2S,6R,14R,15R,16R)-5-(cyclopropylmethyl)-16-(2-hydroxy-5-methylhexan-2-yl)-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol hydrochloride Chemical compound Cl.CO[C@]12CC[C@@]3(C[C@@H]1C(C)(O)CCC(C)C)[C@H]1Cc4ccc(O)c5O[C@@H]2[C@]3(CCN1CC1CC1)c45 VQJMAIZOEPPELO-KYGIZGOZSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- WLQMYDWPKCQDPQ-UHFFFAOYSA-N 2,6-ditert-butyl-4-chlorophenol Chemical compound CC(C)(C)C1=CC(Cl)=CC(C(C)(C)C)=C1O WLQMYDWPKCQDPQ-UHFFFAOYSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical class CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- MRBKEAMVRSLQPH-UHFFFAOYSA-N 3-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1 MRBKEAMVRSLQPH-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 208000002881 Colic Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical class C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229920003157 Eudragit® RL 30 D Polymers 0.000 description 1
- 229920003161 Eudragit® RS 30 D Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010035039 Piloerection Diseases 0.000 description 1
- 229920001145 Poly(N-vinylacetamide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004260 Potassium ascorbate Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical class CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- VEHZBMGMMPZMRJ-UHFFFAOYSA-N acetic acid;2-(diethylamino)acetic acid Chemical compound CC(O)=O.CCN(CC)CC(O)=O VEHZBMGMMPZMRJ-UHFFFAOYSA-N 0.000 description 1
- PPBFVJQAQFIZNS-UHFFFAOYSA-N acetic acid;ethylcarbamic acid Chemical compound CC(O)=O.CCNC(O)=O PPBFVJQAQFIZNS-UHFFFAOYSA-N 0.000 description 1
- OKTJLQBMTBEEJV-UHFFFAOYSA-N acetic acid;methylcarbamic acid Chemical compound CC(O)=O.CNC(O)=O OKTJLQBMTBEEJV-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 208000022531 anorexia Diseases 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical class C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 150000003938 benzyl alcohols Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- SFNLWIKOKQVFPB-KZCPYJDTSA-N bunavail Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C.C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 SFNLWIKOKQVFPB-KZCPYJDTSA-N 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 208000013116 chronic cough Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000007931 coated granule Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- WDEFBBTXULIOBB-WBVHZDCISA-N dextilidine Chemical compound C=1C=CC=CC=1[C@@]1(C(=O)OCC)CCC=C[C@H]1N(C)C WDEFBBTXULIOBB-WBVHZDCISA-N 0.000 description 1
- 229940099371 diacetylated monoglycerides Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- PCHPORCSPXIHLZ-UHFFFAOYSA-N diphenhydramine hydrochloride Chemical compound [Cl-].C=1C=CC=CC=1C(OCC[NH+](C)C)C1=CC=CC=C1 PCHPORCSPXIHLZ-UHFFFAOYSA-N 0.000 description 1
- 239000012738 dissolution medium Substances 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- WHYVWQHDUOALSV-UMJMSJQKSA-N ethyl (1s,2r)-2-(dimethylamino)-1-phenylcyclohex-3-ene-1-carboxylate;hydrate;dihydrochloride Chemical compound O.Cl.Cl.C=1C=CC=CC=1[C@@]1(C(=O)OCC)CCC=C[C@H]1N(C)C.C=1C=CC=CC=1[C@@]1(C(=O)OCC)CCC=C[C@H]1N(C)C WHYVWQHDUOALSV-UMJMSJQKSA-N 0.000 description 1
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010579 first pass effect Methods 0.000 description 1
- 238000009477 fluid bed granulation Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 235000019138 food restriction Nutrition 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 239000001034 iron oxide pigment Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012633 leachable Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229940063002 magnesium palmitate Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- ABSWXCXMXIZDSN-UHFFFAOYSA-L magnesium;hexadecanoate Chemical compound [Mg+2].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O ABSWXCXMXIZDSN-UHFFFAOYSA-L 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- AXLHVTKGDPVANO-UHFFFAOYSA-N methyl 2-amino-3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound COC(=O)C(N)CNC(=O)OC(C)(C)C AXLHVTKGDPVANO-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- YNTOKMNHRPSGFU-UHFFFAOYSA-N n-Propyl carbamate Chemical compound CCCOC(N)=O YNTOKMNHRPSGFU-UHFFFAOYSA-N 0.000 description 1
- 239000003887 narcotic antagonist Substances 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 239000012735 once-a-day formulation Substances 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 229940100688 oral solution Drugs 0.000 description 1
- 239000007935 oral tablet Substances 0.000 description 1
- 229940096978 oral tablet Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- MUZQPDBAOYKNLO-RKXJKUSZSA-N oxycodone hydrochloride Chemical compound [H+].[Cl-].O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C MUZQPDBAOYKNLO-RKXJKUSZSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- OQGYMIIFOSJQSF-DTOXXUQYSA-N pentazocine hcl Chemical compound Cl.C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 OQGYMIIFOSJQSF-DTOXXUQYSA-N 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002744 polyvinyl acetate phthalate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000019275 potassium ascorbate Nutrition 0.000 description 1
- 229940017794 potassium ascorbate Drugs 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- CONVKSGEGAVTMB-RXSVEWSESA-M potassium-L-ascorbate Chemical compound [K+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] CONVKSGEGAVTMB-RXSVEWSESA-M 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000002106 pulse oximetry Methods 0.000 description 1
- 230000001179 pupillary effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- CSMWJXBSXGUPGY-UHFFFAOYSA-L sodium dithionate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)S([O-])(=O)=O CSMWJXBSXGUPGY-UHFFFAOYSA-L 0.000 description 1
- 235000010352 sodium erythorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium erythorbate Chemical compound [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005563 spheronization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229960001402 tilidine Drugs 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000009528 vital sign measurement Methods 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 238000004018 waxing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000005550 wet granulation Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
Description
PHARMACEUTICAL COMBINATIONS OF OXYCODONE AND
NALOXONE
BACKGROUND OF THE INVENTION
Oxycodone fonnulations are sometimes the subject of abuse. A particular dose of oxycodone may be more potent when administered parenterally as compared to the same dose administered orally. One mode of abuse of oral oxycodone formulations involves putting the active agent in solution and injecting it. Opioid antagonists have been combined with certain opioid agonists in order to deter the parenteral abuse of these drugs.
In the prior art, the combination of immediate release pentazocine and naloxone has been utilized in tablets available in the United States, commercially available as Talwin®Nx from Sanofi- inthrop. TalwinTMx contains immediate release pentazocine hydrochloride equivalent to 50 mg base and naloxone hydrochloride equivalent to 0.5 mg base. A fixed combination therapy comprising tilidine (50 mg) and naloxone (4 mg) has been available in Germany for the management of pain since 1978 (Valoron®N, Goedecke). A fixed combination of buprenorphine and naloxone was introduced in 1991 in New Zealand (Temgesic®Nx, Reckitt & Colman) for the treatment of pain.
Purdue Pharma L.P currently has marketed sustained-release oxycodone in dosage forms containing 10, 20, 40, 80 and 160 mg oxycodone hydrochloride under the tradename OxyContin®.
U.S. Patent Nos. 5,266,331; 5,508,042; 5,549,912 and 5,656,295 disclose sustained release oxycodone formulations.
U.S. Patent Nos. 4,769,372 and 4,785,000 to Kreek purport to describe methods of treating patients suffering from chronic pain or chronic cough without provoking intestinal dysmotility by administering 1 to 2 dosage units comprising from about 1.5 to about 100 mg of opioid analgesic or antitussive and from about 1 to about 18 mg of an opioid antagonist having little to no systemic antagonist activity when administered orally, from 1 to 5 times daily.
U.S. Patent No. 5,472,943 to Grain et al. purports to describe methods of enhancing the analgesic potency of bimodally acting opioid agonists by administering the agonist with an opioid antagonist.
U.S. Patent No. 3,773,955 purports to describe immediate release formulations comprising opioid agonists in combination with .1 to 2.5 mg naloxone.
All documents cited herein, including the foregoing are incorporated by reference in their entireties for all purposes.
OBJECTS AND SUMMARY OF THE INVENTION
It is an object of the invention to provide an oral dosage form comprising oxycodone or a salt thereof.
It is an object of certain embodiments of the invention to provide an oral dosage form of oxycodone or salt thereof which is subject to less parenteral abuse than other dosage foπns.
It is an object of certain embodiments of the invention to provide an oral dosage form of oxycodone or salt thereof which is less attractive to addicts than other dosage forms.
It is an object of certain embodiments of the invention to provide an oral dosage form of oxycodone or salt thereof which is subject to less diversion than other dosage forms.
It is an object of certain embodiments of the invention to provide a method of treating pain in human patients with an oral dosage form of oxycodone or salt thereof while reducing the abuse potential ofthe dosage form.
It is an object of certain embodiments of the invention to provide a method of manufacturing an oral dosage form of oxycodone or salt thereof such that it has less abuse potential.
These objects and others are achieved by the present invention, which is directed to a phaπnaceutical composition comprising from 10 to 40 mg of oxycodone or a pharmaceutically acceptable salt thereof and 0.65 to 0.90 mg naloxone or a pharmaceutically acceptable salt thereof.
In certain embodiments, the invention is directed to a pharmaceutical composition comprising about 10 mg oxycodone hydrochloride and 0.80 to 0.90 mg naloxone hydrochloride in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments, the invention is directed to a pharmaceutical composition comprising about 20 mg oxycodone hydrochloride and 0.80 to 0.90 mg
naloxone hydrochloride in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments, the invention is directed to a pharmaceutical composition comprising about 40 mg oxycodone hydrochloride and 0.80 to 0.90 mg naloxone hydrochloride in a dosage fonn that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments, the invention is directed to a pharmaceutical composition comprising about 10 mg oxycodone hydrochloride and 0.80 to 0.90 mg naloxone hydrochloride dihydrate in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments, the invention is directed to a pharmaceutical composition comprising about 20 mg oxycodone hydrochloride and 0.80 to 0.90 mg naloxone hydrochloride dihydrate in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments, the invention is directed to a pharmaceutical composition comprising about 40 mg oxycodone hydrochloride and 0.80 to 0.90 mg naloxone hydrochloride dihydrate in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments ofthe invention disclosed herein, the dosage form provides sustained release ofthe naloxone or pharmaceutically acceptable salt thereof.
In certain embodiments which provide sustained release of the oxycodone or salt thereof and the naloxone or salt thereof, the dosage form when tested in-vitro by the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXIV (2000) at 100 rpm ' in 900 ml simulated gastric fluid (SGF) at 37°C provides a dissolution of the naloxone or pharmaceutically acceptable salt thereof which is within + 30% relative to the dissolution rate of the oxycodone or pharmaceutically acceptable salt thereof at 1 hour, 4 hours and 12 hours. For example, if the dissolution rate of the oxycodone or pharmaceutically acceptable salt thereof is 40% at 1 hour, the dissolution rate of the naloxone or pharmaceutically acceptable salt thereof would be from 28% to 52%.
In certain of the above embodiments, the naloxone or pharmaceutically acceptable salt thereof has an in-vitro dissolution rate at the 1 hour, 4 hour and 12 hour time points within ± 20% relative to the dissolution rate of the oxycodone or pharmaceutically acceptable salt thereof; alternatively within + 10% relative to the
dissolution rate of the oxycodone or pharmaceutically acceptable salt thereof; or alternatively within ± 5% relative to the dissolution rate of the oxycodone or pharmaceutically acceptable salt thereof.
In other embodiments which provide sustained release of the oxycodone or salt thereof and the naloxone or salt thereof, the in-vitro dissolution rate of the oxycodone or pharmaceutically acceptable salt thereof and naloxone or pharmaceutically acceptable salt thereof when measured by the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXIV (2000) at 100 rpm in 900 ml simulated gastric fluid (SGF) at 37°C is from about 20 to about 60 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and from about 20 to about 60 % (by weight) naloxone or pharmaceutically acceptable salt thereof released at 1 hour; from about 30 to about 75 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and from about 30 % to about 75 % (by weight) naloxone or pharmaceutically acceptable salt thereof released at 2 hours; from about 40 to about 90 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and from about 40 to about 90 % (by weight) naloxone or pharmaceutically acceptable salt thereof released at 4 hours; greater than about 60 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and greater than about 60 % (by weight) naloxone or pharmaceutically acceptable salt thereof released at 8 hours; and greater than about 70 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and greater than about 70% (by weight) naloxone or pharmaceutically acceptable salt thereof released at 12 hours.
In other embodiments which provide sustained release of the oxycodone or salt thereof and the naloxone or salt thereof, the in-vitro dissolution rate of the oxycodone or pharmaceutically acceptable salt thereof and naloxone or pharmaceutically acceptable salt thereof when measured by the USP Apparatus I (Basket) method of U.S. Pharmacopeia XX1N (2000) at 100 rpm in 900 ml simulated gastric fluid (SGF) at 37°C is from about 30 to 60 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and from about 30 to about 60 % (by weight) naloxone or pharmaceutically acceptable salt thereof released at 1 hour; from about 40 to about 70 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and from about 40 % to about 70 % (by weight) naloxone or pharmaceutically acceptable salt thereof released at 2 hours; from about 55 to about 90 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and from about 55 to about 90 % (by
weight) naloxone or pharmaceutically acceptable salt thereof released at 4 hours; greater than about 70 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and greater than about 70 % (by weight) naloxone or pharmaceutically acceptable salt thereof released at 8 hours; and greater than about 80 % (by weight) oxycodone or pharmaceutically acceptable salt thereof and greater than about 80% (by weight) naloxone or pharmaceutically acceptable salt thereof released at 12 hours.
In certain embodiments, the pharmaceutical composition of the present invention provides a mean AUC of plasma oxycodone within 80% to 125% of the mean AUC of plasma oxycodone provided by an oxycodone base equivalent amount of a controlled release reference product (OxyContin® as described in the Physician's Desk Reference 2002) upon single dose administration to a population of human subjects. In other embodiments, the mean AUC of plasma oxycodone is within 90% to 110%), or 95% to 105% of the mean AUC of plasma oxycodone provided by an oxycodone base equivalent amount of the controlled release reference product upon single dose administration to a population of human subjects.
In certain embodiments, the pharmaceutical composition of the present invention provides a mean Cmax of plasma naloxone which is at least 50% less than the mean Cmax of plasma naloxone provided by a naloxone base equivalent amount of an immediate release reference product containing naloxone hydrochloride, i.e., Talwin® Nx as described in the Physician's Desk Reference 2002. In other embodiments, the mean Cmax of plasma naloxone is at least 65% less than, or at least 80% less than the mean Cmax of plasma naloxone provided by a naloxone base equivalent amount of the immediate release reference product containing naloxone hydrochloride, i.e., Talwin® Nx as described in the Physician's Desk Reference 2002.
In certain embodiments, the pharmaceutical composition of the present invention provides a mean Cmax of plasma naloxone of less than 180 pg/ml, less than 150 pg/ml or less than 100 pg/ml upon single dose administration to a population of human subjects. In more preferced embodiments, the mean Cmax of plasma naloxone is less than 50 pg/ml, less than 10 pg/ml or less than 5 pg/ml upon single dose administration to a population of human subjects.
In certain embodiments, the pharmaceutical composition ofthe present invention contains any amount of naloxone or a pharmaceutically acceptable salt thereof to provide a mean Cmax of plasma naloxone of less than 5 pg/ml upon single dose administration to a population of human subjects.
In certain embodiments of the invention disclosed herein, the dosage form provides effective pain relief for at least 12 hours after steady state oral administration to human patients.
In certain embodiments ofthe invention disclosed herein, the dosage form provides effective pain relief for at least 24 hours after steady state oral administration to human patients.
In certain embodiments ofthe invention disclosed herein, the dosage form comprises a matrix comprising the oxycodone hydrochloride and the naloxone hydrochloride interdispersed in a sustained release excipient.
In certain embodiments, the invention is directed to a method of reducing the potential of parenteral abuse of an oxycodone formulation comprising preparing the compositions disclosed herein.
In certain embodiments, the invention is directed to a method of treating pain in a human patient comprising orally administering a sustained release oral dosage form as described herein.
In certain embodiments, the invention is directed to a method of treating pain in a human patient comprising orally administering a sustained release oral dosage form as described every 12 hours at least until steady state is achieved.
In certain embodiments, the invention is directed to a method of treating pain in a human patient comprising orally administering a sustained release oral dosage form as described every 24 hours at least until steady state is achieved.
In certain embodiments, the invention is directed to a method of treating pain in a human patient comprising orally administering a pharmaceutical composition as disclosed herein that provides effective pain relief for at least 12 hours after steady state oral administration to the patient.
In certain embodiments, the invention is directed to a method of treating pain in a human patient comprising orally administering a pharmaceutical composition as disclosed herein that provides effective pain relief for at least 24 hours after steady state oral administration to the patient.
In certain embodiments, the invention is directed to a method of manufacturing a sustained release oral dosage form comprising combining oxycodone or a pharmaceutically acceptable salt thereof with a sustained release excipient to form a oxycodone/excipient combination; adding naloxone or a pharmaceutically acceptable salt thereof to the oxycodone/excipient combination; and forming a
sustained release oral dosage form of oxycodone or a pharmaceutically acceptable salt thereof and naloxone or a pharmaceutically acceptable salt thereof. Alternatively, the naloxone can be combined first with excipient, with the oxycodone added to the naloxone/excipient mixture. In other embodiments, the oxycodone and the naloxone can be combined concurrently or before combination with the excipient. h certain embodiments, one agent is not pretreated to be in sustained release form prior to combination with the other agent.
In certain embodiments, the invention is directed to a method of treating pain comprising administering a pharmaceutical composition comprising an amount of oxycodone or pharmaceutically acceptable salt thereof equivalent to about 10 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride and thereafter increasing the dosage by administering a pharmaceutical composition comprising an amount of oxycodone or pharmaceutically acceptable salt thereof equivalent to about 20 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments, the invention is directed to a method of treating pain comprising administering a pharmaceutical composition comprising an amount of oxycodone or pharmaceutically acceptable salt thereof equivalent to about 20 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride and thereafter increasing the dosage by administering a pharmaceutical composition comprising an amount of oxycodone or pharmaceutically acceptable salt thereof equivalent to about 40 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments, the invention is directed to a method of treating pain comprising administering a pharmaceutical composition comprising an amount of oxycodone or pharmaceutically acceptable salt thereof equivalent to about 10 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride and thereafter increasing the dosage by administering a pharmaceutical composition comprising an amount of oxycodone or pharmaceutically
acceptable salt thereof equivalent to about 20 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride and thereafter increasing the dosage by administering a pharmaceutical composition comprising an amount of oxycodone or phaπnaceutically acceptable salt thereof equivalent to about 40 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
In certain embodiments, the invention is directed to a kit for the treatment of pain comprising a container comprising at least one formulation comprising about 10 to about 40 mg oxycodone or a pharmaceutically acceptable salt thereof and naloxone or a pharmaceutically acceptable salt thereof; the kit further comprising indicia indicating the use of the formulation, hi certain embodiments, the formulation of the kit comprises from 0.65 to 0.9 mg naloxone or a pharmaceutically acceptable salt thereof and in certain embodiments the indicia indicates that the use is to reduce the parenteral abuse of the formulation.
The term "sustained release" is defined for purposes of the present invention as the release of the oxycodone or salt thereof to maintain blood (e.g., plasma) concentrations within the therapeutic range but below toxic levels over an extended period of time as compared to an immediate release product, e.g., from about 12 to about 24 hours. Preferably the sustained release is sufficient to provide a twice-a-day or a once-a-day formulation. In certain embodiments, the release rate of the naloxone or salt thereof is within ± 30% relative to the dissolution rate of the oxycodone or pharmaceutically acceptable salt thereof at 1 hour, 4 hours and 12 hours.
The teπn "parenterally" as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, infusion techniques or other methods of injection known in the art.
Unless otherwise noted, the term "oxycodone" means oxycodone base. Unless otherwise noted, the term "naloxone" means naloxone base. The term salt means a pharmaceutically acceptable salt.
The term "steady state" means that the amount ofthe drug reaching the system is approximately the same as the amount of the drug leaving the system. Thus at "steady state", the patient's body eliminates the drug at approximately the same rate
that the drug becomes available to the patient's system through absorption into the blood stream.
The term "parenterally effective amount of naloxone or pharmaceutically acceptable salt thereof means that the naloxone or pharmaceutically acceptable salt thereof is in an amount that is sufficient to antagonize or partially antagonize the effect ofthe oxycodone upon parenteral administration ofthe dosage form and below an amount that antagonizes or partially antagonizes the effect of the oxycodone upon oral administration ofthe dosage form.
The term "mean" unless otherwise specified refers to the arithmetic mean.
The term "human subject" means a healthy human subject with normal metabolism as understood by one skilled in the art.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a flow diagram of a method of producing an embodiment ofthe present invention.
Figures 2A, 2B, 2C, and 2D are graphical representations ofthe mean ofthe observed plasma concentration-time profiles for naloxone for the four treatment arms of Example 8.
Figures 3A, 3B, 3C and 3D are a graphical representations ofthe observed individual plasma concentration-time profiles for naloxone for the four treatment arms.
Figure 4 is a graphical representation ofthe mean plasma concentrations of oxycodone over time following both treatments in Example 9.
Figure 5 is a graphical representation ofthe mean observed plasma concentration over time for naloxone for all subjects evaluable for safety.
Figure 6 is a graphical representation ofthe mean observed plasma concentration over time by gender for naloxone for all subjects evaluable for safety.
DETAILED DESCRIPTION OF THE INVENTION
The dosage form of the present invention contains an amount of oxycodone or pharmaceutically acceptable salts thereof equivalent to about 10 to about 40 mg of oxycodone hydrochloride. Particularly preferred dosages of oxycodone hydrochloride are about 10 mg, about 20 mg, about 30 mg or about 40 mg. The oxycodone or salt
thereof is formulated with suitable pharmaceutically acceptable excipients to provide a sustained release ofthe oxycodone.
The dosage form ofthe present invention contains about 0.65 to about 0.90 mg of naloxone or pharmaceutically acceptable salts thereof. Particularly preferred dosage ranges of naloxone salt are about 0.82 to about 0.88 mg, and about 0.84 to about 0.86 mg. Particularly preferred dosages have about 0.85 mg of naloxone salt. Particularly preferred dosage ranges of naloxone base are about 0.65 to about 0.75 mg, and about 0.67 to about 0.73 mg. Particularly preferred dosages have about 0.70 mg of naloxone base.
The dosage form of the present invention contains an amount of naloxone or pharmaceutically acceptable salts thereof equivalent to about 0.65 to about 0.90 mg of naloxone hydrochloride dihydrate. Particularly preferred dosage ranges of naloxone hydrochloride dihydrate are about 0.82 to about 0.88 mg, or about 0.84 to about 0.86 mg. Particularly preferred dosages have about 0.85 mg of naloxone hydrochloride dihydrate. Particularly preferred dosage ranges of naloxone base are about 0.65 to about 0.75 mg, or an equivalent amount of a salt thereof and about 0.67 to about 0.73 mg or an equivalent amount of a salt thereof. Particularly preferred dosages have about 0.70 mg of naloxone base or an equivalent amount of a salt thereof.
The naloxone or salt thereof can be formulated to provide immediate release or can be combined with suitable pharmaceutically acceptable excipients to provide a sustained release of the naloxone or salt thereof. The rate of sustained release of the naloxone or salt thereof can be the same or different than the rate of sustained release of the oxycodone or salt thereof. Particularly preferred embodiments of the present invention are dosage forms which comprise 10 mg oxycodone hydrochloride and 0.85 mg naloxone hydrochloride; 20 mg oxycodone hydrochloride and 0.85 mg naloxone hydrochloride; 30 mg oxycodone hydrochloride and 0.85 mg naloxone hydrochloride; 40 mg oxycodone hydrochloride and 0.85 mg naloxone hydrochloride; or equivalent amounts of oxycodone base, naloxone base or other pharmaceutically acceptable salts thereof. Hydrochloride salts of oxycodone and naloxone are particularly prefeπed.
Other particularly preferred embodiments of the present invention are dosage forms which comprise 10 mg oxycodone hydrochloride and 0.85 mg naloxone hydrochloride dihydrate; 20 mg oxycodone hydrochloride and 0.85 mg naloxone hydrochloride dihydrate; 30 mg oxycodone hydrochloride and 0.85 mg naloxone
hydrochloride dihydrate; or 40 mg oxycodone hydrochloride and 0.85 mg naloxone hydrochloride dihydrate.
In embodiments wherein the agents are both in sustained release, the dosage form preferably releases the oxycodone or phaπnaceutically acceptable salt thereof and the naloxone or pharmaceutically acceptable salt thereof to provide in-vitro dissolution rates when measured by the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXIV (2000) at 100 rpm in 900 ml simulated gastric fluid (SGF) at 37°C in accordance with the objects ofthe invention.
The disclosed range of naloxone or salt thereof in the present invention is a parenterally effective amount to deter intravenous abuse by at least partially blocking the opioid effects of oxycodone if the formulation is dissolved and parenterally administered. Preferably the amount is also sufficient upon parenteral administration in most physically dependent individuals, to precipitate a moderate to severe withdrawal syndrome that is very similar to that seen after abrupt withdrawal of opioids. The most common symptoms of the withdrawal syndrome include anorexia, weight loss, pupillary dilation, chills alternating with excessive sweating, abdominal cramps, nausea, vomiting, muscle spasms, hyperimtability, lachrymation, rinoπhea, goose flesh and increased heart rate. The amount of naloxone should not cause an adverse effect or a reduction in analgesic efficacy upon oral administration to a patient in pain.
SUSTAINED RELEASE DOSAGE FORMS
The oxycodone (or oxycodone salt) and optionally the naloxone (or naloxone salt) is formulated as a sustained release oral formulation in any suitable tablet, coated tablet or multiparticulate formulation known to those skilled in the art. The sustained release dosage form may include a sustained release material which is incorporated into a matrix along with the oxycodone or salt thereof with or without the naloxone or salt thereof. For example, oxycodone salt can be incorporated in a sustained release matrix and naloxone salt can be separate from the matrix or can be incorporated into the matrix.
The sustained release dosage form may optionally comprise particles containing oxycodone or salt thereof with or without the naloxone or salt thereof. In certain embodiments, the particles have a diameter from about 0.1 mm to about 2.5
mm, preferably from about 0.5 mm to about 2 mm. The naloxone or naloxone salt may be incorporated into particles which contain oxycodone or oxycodone salt, or may be incorporated into a tablet or capsule containing oxycodone or oxycodone salt particles. Preferably, the particles are film coated with a material that permits release of the active(s) at a sustained rate in an aqueous medium. The film coat is chosen so as to achieve, in combination with the other stated properties, a desired in-vitro release rate. The sustained release coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and
COATED BEADS
In certain embodiments of the present invention a hydrophobic material is used to coat inert pharmaceutical beads such as nu pariel 18/20 beads, and a plurality of the resultant solid sustained release beads may thereafter be placed in a gelatin capsule in an amount sufficient to provide an effective sustained release dose when ingested and contacted by an environmental fluid, e.g., gastric fluid or dissolution media. In certain embodiments the naloxone or naloxone salt may be coated onto a sustained release bead containing oxycodone or oxycodone salt, or may be placed in a capsule with the sustained release oxycodone or oxycodone salt beads.
The sustained release bead formulations of the present invention slowly release the agent(s) of the present invention, e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids. The sustained release profile of the formulations of the invention can be altered, for example, by varying the amount of overcoating with the hydrophobic material, altering the manner in which a plasticizer is added to the hydrophobic material, by varying the amount of plasticizer relative to hydrophobic material, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc. The dissolution profile of the ultimate product may also be modified, for example, by increasing or decreasing the thickness ofthe retardant coating.
Spheroids or beads coated with the agent(s) of the present are prepared, e.g., by dissolving the agent(s) in water and then spraying the solution onto a substrate, for example, nu pariel 18/20 beads, using a Wuster insert. Optionally, additional ingredients are also added prior to coating the beads in order to assist the binding of
the agent(s) to the beads, and/or to color the solution, etc. For example, a product which includes hydroxypropylmethylcellulose, etc. with or without colorant (e.g., Opadry®, commercially available from Colorcon, Inc.) may be added to the solution and the solution mixed (e.g., for about 1 hour) prior to application of the same onto the beads. The resultant coated substrate, in this example beads, may then be optionally overcoated with a barrier agent, to separate the active(s) from the hydrophobic sustained release coating. An example of a suitable barrier agent is one which comprises hydroxypropylmethylcellulose. However, any film-former known in the art may be used. It is prefeπed that the barrier agent does not affect the dissolution rate of the final product.
The beads may then be overcoated with an aqueous dispersion of the hydrophobic material. The aqueous dispersion of hydrophobic material preferably further includes an effective amount of plasticizer, e.g. triethyl citrate. Pre-formulated aqueous dispersions of ethylcellulose, such as Aquacoat® or Surelease®, may be used. If Surelease® is used, it is not necessary to separately add a plasticizer. Alternatively, pre-formulated aqueous dispersions of acrylic polymers such as Eudragit® can be used.
The coating solutions of the present invention preferably contain, in addition to the film-former, plasticizer, and solvent system (i.e., water), a colorant to provide elegance and product distinction. Color may be added to the solution of the therapeutically active agent instead, or in addition to the aqueous dispersion of hydrophobic material. For example, color may be added to Aquacoat® via the use of alcohol or propylene glycol based color dispersions, milled aluminum lakes and opacifiers such as titanium dioxide by adding color with shear to water soluble polymer solution and then using low shear to the plasticized Aquacoat®. Alternatively, any suitable method of providing color to the formulations of the present invention may be used. Suitable ingredients for providing color to the formulation when an aqueous dispersion of an acrylic polymer is used include titanium dioxide and color pigments, such as iron oxide pigments. The incorporation of pigments, may, however, increase the retard effect ofthe coating.
Plasticized hydrophobic material may be applied onto the substrate comprising the agent(s) by spraying using any suitable spray equipment known in the art. In a preferred method, a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the core material and effects drying while the acrylic
polymer coating is sprayed on. A sufficient amount of the hydrophobic material to obtain a predetermined sustained release of the agent(s) when the coated substrate is exposed to aqueous solutions, e.g. gastric fluid, may be applied. After coating with the hydrophobic material, a further overcoat of a film-former, such as Opadry®, is optionally applied to the beads. This overcoat is provided, if at all, in order to substantially reduce agglomeration ofthe beads.
The release of the agent(s) from the sustained release formulation of the present invention can be further influenced, i.e., adjusted to a desired rate, by the addition of one or more release-modifying agents, or by providing one or more passageways through the coating. The ratio of hydrophobic material to water soluble material is determined by, among other factors, the release rate required and the solubility characteristics ofthe materials selected.
The release-modifying agents which function as pore-formers may be organic or inorganic, and include materials that can be dissolved, extracted or leached from the coating in an environment of use. The pore-formers may comprise one or more hydrophilic materials such as hydroxypropylmethylcellulose.
The sustained release coatings of the present invention can also include erosion-promoting agents such as starch and gums.
The sustained release coatings of the present invention can also include materials useful for making microporous lamina in the environment of use, such as polycarbonates comprised of linear polyesters of carbonic acid in which carbonate groups reoccur in the polymer chain.
The release-modifying agent may also comprise a semi-permeable polymer.
In certain prefeπed embodiments, the release-modifying agent is selected from hydroxypropylmethylcellulose, lactose, metal stearates, and mixtures of any of the foregoing.
The sustained release coatings of the present invention may also include an exit means comprising at least one passageway, orifice, or the like. The passageway may be formed by such methods as those disclosed in U.S. Patent Nos. 3,845,770; 3,916,899; 4,063,064; and 4,088,864 . The passageway can have any shape such as round, triangular, square, elliptical, irregular, etc.
MATRIX FORMULATIONS
In other embodiments of the present invention, the sustained release formulation is achieved via a matrix optionally having a sustained release coating as set forth herein. The materials suitable for inclusion in a sustained release matrix may depend on the method used to form the matrix.
For example, a matrix in addition to the oxycodone (or oxycodone salt) and optional naloxone (or naloxone salt) may include:
Hydrophilic and/or hydrophobic materials, such as gums, cellulose ethers, acrylic resins, protein derived materials; the list is not meant to be exclusive, and any phaπnaceutically acceptable hydrophobic material or hydrophilic material which is capable of imparting sustained release of the agent(s) and which melts (or softens to the extent necessary to be extruded) may be used in accordance with the present invention.
Digestible, long chain (C8-C50, especially Cι2-C 0), substituted or unsubstituted hydrocarbons, such as fatty acids, fatty alcohols, glyceryl esters of fatty acids, mineral and vegetable oils and waxes, and stearyl alcohol; and polyalkylene glycols.
Of these polymers, acrylic polymers, especially Eudragit® RSPO - the cellulose ethers, especially hydroxyalkylcelluloses and carboxyalkylcelluloses, are prefeπed. The oral dosage form may contain between 1% and 80% (by weight) of at least one hydrophilic or hydrophobic material.
When the hydrophobic material is a hydrocarbon, the hydrocarbon preferably has a melting point of between 25° and 90 °C. Of the long chain hydrocarbon materials, fatty (aliphatic) alcohols are prefeπed. The oral dosage form may contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.
Preferably, the oral dosage form contains up to 60% (by weight) of at least one polyalkylene glycol.
The hydrophobic material is preferably selected from the group consisting of alkylcelluloses, acrylic and methacrylic acid polymers and copolymers, shellac, zein, hydrogenated castor oil, hydrogenated vegetable oil, or mixtures thereof. In certain prefeπed embodiments of the present invention, the hydrophobic material is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers,. methyl methacrylate, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl
methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamine copolymer, poly(methyl methacrylate), poly(methacrylic acid)(anlιydride), polymethacrylate, polyacrylamide, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers. In other embodiments, the hydrophobic material is selected from materials such as hydroxyalkylcelluloses such as hydroxypropylmethylcellulose and mixtures ofthe foregoing.
Prefeπed hydrophobic materials are water-insoluble with more or less pronounced hydrophilic and/or hydrophobic trends. Preferably, the hydrophobic materials useful in the invention have a melting point from about 25° to about 200 °C, preferably from about 45 °C to about 90 °C. Specifically, the hydrophobic material may comprise natural or synthetic waxes, fatty alcohols (such as lauryl, myristyl, stearyl, cetyl or preferably cetostearyl alcohol), fatty acids, including but not limited to fatty acid esters, fatty acid glycerides (mono-, di-, and tri-glycerides), hydrogenated fats, hydrocarbons, normal waxes, stearic aid, stearyl alcohol and hydrophobic and hydrophilic materials having hydrocarbon backbones. Suitable waxes include, for example, beeswax, glycowax, castor wax and carnauba wax. For purposes of the present invention, a wax-like substance is defined as any material which is normally solid at room temperature and has a melting point of from about 25° to about 100°C.
Suitable hydrophobic materials which may be used in accordance with the present invention include digestible, long chain (C8-C5o, especially Cι2-C4u), substituted or unsubstituted hydrocarbons, such as fatty acids, fatty alcohols, glyceryl esters of fatty acids, mineral and vegetable oils and natural and synthetic waxes. Hydrocarbons having a melting point of between 25° and 90 °C are prefeπed. Of the long chain hydrocarbon materials, fatty (aliphatic) alcohols are prefeπed in certain embodiments. The oral dosage form may contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.
Preferably, a combination of two or more hydrophobic materials are included in the matrix formulations. If an additional hydrophobic material is included, it is preferably selected from natural and synthetic waxes, fatty acids, fatty alcohols, and mixtures of the same. Examples include beeswax, carnauba wax, stearic acid and stearyl alcohol. This list is not meant to be exclusive.
One particular suitable matrix comprises at least one water soluble hydroxyalkyl cellulose, at least one Cι2-C36, preferably Cι -C22, aliphatic alcohol and,
optionally, at least one polyalkylene glycol. The at least one hydroxyalkyl cellulose is preferably a hydroxy (Ci to C6) alkyl cellulose, such as hydroxypropylcellulose, hydroxypropylmethylcellulose and, especially, hydroxyethylcellulose. The amount of the at least one hydroxyalkyl cellulose in the present oral dosage form will be determined, inter alia, by the precise rate of oxycodone release required. The at least one aliphatic alcohol may be, for example, lauryl alcohol, myristyl alcohol or stearyl alcohol. In particularly prefeπed embodiments of the present oral dosage form, however, the at least one aliphatic alcohol is cetyl alcohol or cetostearyl alcohol. The amount of the at least one aliphatic alcohol in the present oral dosage form will be determined, as above, by the precise rate of oxycodone release required. It will also depend on whether at least one polyalkylene glycol is present in or absent from the oral dosage foπn. In the absence of at least one polyalkylene glycol, the oral dosage form preferably contains between 20% and 50% (by wt) of the at least one aliphatic alcohol. When at least one polyalkylene glycol is present in the oral dosage form, then the combined weight of the at least one aliphatic alcohol and the at least one polyalkylene glycol preferably constitutes between 20% and 50% (by wt) of the total dosage. hi one embodiment, the ratio of, e.g., the at least one hydroxyalkyl cellulose or acrylic resin to the at least one aliphatic alcohol/ polyalkylene glycol determines, to a (w/w) of the at least one hydroxyalkyl cellulose to the at least one aliphatic alcohol/polyalkylene glycol of between 1 :2 and 1 :4 is prefeπed, with a ratio of between 1:3 and 1 :4 being particularly prefeπed.
The at least one polyalkylene glycol may be, for example, polypropylene glycol or, which is prefeπed, polyethylene glycol. The number average molecular weight of the at least one polyalkylene glycol is prefeπed between 1,000 and 15,000 especially between 1,500 and 12,000.
Another suitable sustained release matrix would comprise an alkylcellulose (especially ethyl cellulose), a Cι2 to C3o- aliphatic alcohol and, optionally, a polyalkylene glycol.
In another prefeπed embodiment, the matrix includes a pharmaceutically acceptable combination of at least two hydrophobic materials.
In addition to the above ingredients, a sustained release matrix may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders,
granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art.
MATRIX - PARTICULATES
In order to facilitate the preparation of a solid, sustained release, oral dosage form according to this invention, any method of preparing a matrix formulation known to those skilled in the art may be used. For example incorporation in the matrix may be effected, for example, by (a) forming granules comprising at least one water soluble hydroxyalkyl cellulose, and the oxycodone (or oxycodone salt) and optionally the naloxone (or naloxone salt); (b) mixing the hydroxyalkyl cellulose containing granules with at least one Cι2 - C36 aliphatic alcohol; and (c) optionally, compressing and shaping the granules. Preferably, the granules are formed by wet granulating the hydroxalkyl cellulose granules with water.
In yet other alternative embodiments, a spheronizing agent, together with the oxycodone (or oxycodone salt) and optionally the naloxone (or naloxone salt) can be spheronized to form spheroids. Microcrystalline cellulose is a prefeπed spheronizing agent. A suitable microcrystalline cellulose is, for example, the material sold as Avicel PH 101 (Trade Mark, FMC Corporation). In such embodiments, in addition to the active ingredient and spheronizing agent, the spheroids may also contain a binder. Suitable binders, such as low viscosity, water soluble polymers, will be well known to those skilled in the pharmaceutical art. However, water soluble hydroxy lower alkyl cellulose, such as hydroxypropylcellulose, are prefeπed. Additionally (or alternatively) the spheroids may contain a water insoluble polymer, especially an acrylic polymer, an acrylic copolymer, such as a methacrylic acid-ethyl acrylate copolymer, or ethyl cellulose. In such embodiments, the sustained release coating will generally include a hydrophobic material such as (a) a wax, either alone or in admixture with a fatty alcohol; or (b) shellac or zein.
MELT EXTRUSION MATRIX
Sustained release matrices can also be prepared via melt-granulation or melt- extrusion techniques. Generally, melt-granulation techniques involve melting a normally solid hydrophobic material, e.g. a wax, and incorporating a powdered drug therein. To obtain a sustained release dosage form, it may be necessary to incorporate an additional hydrophobic substance, e.g. ethylcellulose or a water-insoluble acrylic
polymer, into the molten wax hydrophobic material. Examples of sustained release formulations prepared via melt-granulation techniques are found in U.S. Patent No. 4,861,598.
The additional hydrophobic material may comprise one or more water- insoluble wax-like thermoplastic substances possibly mixed with one or more waxlike thermoplastic substances being less hydrophobic than said one or more water- insoluble wax-like substances. In order to achieve constant release, the individual wax-like substances in the formulation should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases. Useful water- insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
In addition to the above ingredients, a sustained release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art. The quantities of these additional materials will be sufficient to provide the desired effect to the desired formulation.
In addition to the above ingredients, a sustained release matrix incorporating melt-extruded multiparticulates may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight ofthe particulate if desired.
Specific examples of phaπnaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association (1986).
MELT EXTRUSION MULTIPARTICULATES
The preparation of a suitable melt-extruded matrix according to the present invention may, for example, include the steps of blending the oxycodone (or oxycodone salt) and/or the naloxone (or naloxone salt) together with at least one hydrophobic material and preferably the additional hydrophobic material to obtain a homogeneous mixture. The homogeneous mixture is then heated to a temperature sufficient to at least soften the mixture sufficiently to extrude the same. The. resulting homogeneous mixture is then extruded to form strands. The extrudate is preferably cooled and cut into multiparticulates by any means known in the art. The strands are
cooled and cut into multiparticulates. The multiparticulates are then divided into unit doses. The extrudate preferably has a diameter of from about 0.1 to about 5 mm and provides sustained release ofthe therapeutically active agent for a time period of from about 8 to about 24 hours.
An optional process for preparing the melt extrusions of the present invention includes directly metering into an extruder a hydrophobic material, the oxycodone (or oxycodone salt) and optionally the naloxone (or naloxone salt), and an optional binder; heating the homogenous mixture; extruding the homogenous mixture to thereby form strands; cooling the strands containing the homogeneous mixture; cutting the strands into particles having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses. In this aspect of the invention, a relatively continuous manufacturing procedure is realized.
The diameter of the extruder aperture or exit port can also be adjusted to vary the thickness of the extruded strands. Furthermore, the exit part of the extruder need not be round; it can be oblong, rectangular, etc. The exiting strands can be reduced to particles using a hot wire cutter, guillotine, etc.
The melt extruded multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice. For purposes of the present invention, the terms "melt-extruded multiparticulate(s)" and "melt- extruded multiparticulate system(s)" and "melt-extruded particles" shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a hydrophobic material as described herein. In this regard, the melt-extruded multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.1 to about 5 mm. In addition, it is to be understood that the melt-extruded multiparticulates can be any geometrical shape within this size range. Alternatively, the extrudate may simply be cut into desired lengths and divided into unit doses of the therapeutically active agent without the need of a spheronization step.
In one prefeπed embodiment, oral dosage forms are prepared to include an effective amount of melt-extruded multiparticulates within a capsule. For example, a plurality of the melt-extruded multiparticulates may be placed in a gelatin capsule in an amount sufficient to provide an effective sustained release dose when ingested and contacted by gastric fluid.
In another prefeπed embodiment, a suitable amount of the multiparticulate extrudate is compressed into an oral tablet using conventional tableting equipment using standard techniques. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences, (Arthur Osol, editor), 1553-1593 (1980).
In yet another prefeπed embodiment, the extrudate can be shaped into tablets as set forth in U.S. Patent No. 4,957,681 (Klimesch, et. al.), described in additional detail above.
Optionally, the sustained release melt-extruded multiparticulate systems or tablets can be coated, or the gelatin capsule can be further coated, with a sustained release coating such as the sustained release coatings described above. Such coatings preferably include a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the desired release rate, among other things.
The melt-extruded unit dosage forms of the present invention may further include combinations of melt-extruded particles (e.g., one group of particles with oxycodone (or oxycodone salt) and one group of particles with naloxone (or naloxone salt)) before being encapsulated. Furthermore, the unit dosage forms can also include an amount of an immediate release agent for prompt release. The immediate release agent may be incorporated, e.g., as separate pellets within a gelatin capsule, or may be coated on the surface of the multiparticulates after preparation of the dosage forms (e.g., sustained release coating or matrix-based). The unit dosage forms of the present invention may also contain a combination of sustained release beads and matrix multiparticulates to achieve a desired effect.
The sustained release formulations of the present invention preferably slowly release the agent(s), e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids. The sustained release profile of the melt-extruded formulations of the invention can be altered, for example, by varying the amount of retardant, i.e., hydrophobic material, by varying the amount of plasticizer relative to hydrophobic material, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc.
In other embodiments of the invention, the melt extruded material is prepared without the inclusion of the oxycodone (or oxycodone salt) and the naloxone (or naloxone salt), which can be added thereafter to the extrudate. Such formulations
typically will have the agents blended together with the extruded matrix material, and then the mixture would be tableted in order to provide a slow release formulation.
COATINGS
The dosage forms of the present invention may optionally be coated with one or more materials suitable for the regulation of release or for the protection of the formulation. In one embodiment, coatings are provided to permit either pH-dependent or pH-independent release. A pH-dependent coating serves to release the oxycodone in desired areas of the gastro-intestinal (GI) tract, e.g., the stomach or small intestine, such that an absorption profile is provided which is capable of providing at least about eight hours and preferably about twelve hours to up to about twenty-four hours of analgesia to a patient. When a pH-independent coating is desired, the coating is designed to achieve optimal release regardless of pH-changes in the environmental fluid, e.g., the GI tract. It is also possible to formulate compositions which release a portion of the dose in one desired area of the GI tract, e.g., the stomach, and release the remainder ofthe dose in another area of the GI tract, e.g., the small intestine.
Formulations according to the invention that utilize pH-dependent coatings to obtain formulations may also impart a repeat-action effect whereby unprotected drug is coated over the enteric coat and is released in the stomach, while the remainder, being protected by the enteric coating, is released further down the gastrointestinal tract. Coatings which are pH-dependent may be used in accordance with the present invention include shellac, cellulose acetate phthalate (CAP), polyvinyl acetate phthalate (PVAP), hydroxypropylmethylcellulose phthalate, and methacrylic acid ester copolymers, zein, and the like.
In certain prefeπed embodiments, the substrate (e.g., tablet core bead, matrix particle) containing the oxycodone or salt thereof and optionally the naloxone or salt thereof is coated with a hydrophobic material selected from (i) an alkylcellulose; (ii) an acrylic polymer; or (iii) mixtures thereof. The coating may be applied in the form of an organic or aqueous solution or dispersion. The coating may be applied to obtain a weight gain from about 2 to about 25% of the substrate in order to obtain a desired sustained release profile. Coatings derived from aqueous dispersions are described, e.g., in detail in U.S. Patent Nos. 5,273,760 and 5,286,493.
Other examples of sustained release formulations and coatings which may be used in accordance with the present invention include U.S. Patent Nos. 5,324,351; 5,356,467, and 5,472,712.
ALKYLCELLULOSE POLYMERS
Cellulosic materials and polymers, including alkylcelluloses, provide hydrophobic materials well suited for coating the beads according to the invention. Simply by way of example, one prefeπed alkylcellulosic polymer is ethylcellulose, although the artisan will appreciate that other cellulose and/or alkylcellulose polymers may be readily employed, singly or in any combination, as all or part of a hydrophobic coating according to the invention.
One commercially-available aqueous dispersion of ethylcellulose is Aquacoat® (FMC Corp., Philadelphia, Pennsylvania, U.S.A.). Aquacoat® is prepared by dissolving the ethylcellulose in a water-immiscible organic solvent and then emulsifying the same in water in the presence of a surfactant and a stabilizer. After homogenization to generate submicron droplets, the organic solvent is evaporated under vacuum to form a pseudolatex. The plasticizer is not incorporated in the pseudolatex during the manufacturing phase. Thus, prior to using the same as a coating, it is necessary to intimately mix the Aquacoat® with a suitable plasticizer prior to use. Another aqueous dispersion of ethylcellulose is commercially available as Surelease® (Colorcon, Inc., West Point, Pennsylvania, U.S.A.). This product is prepared by incorporating plasticizer into the dispersion during the manufacturing process. A hot melt of a polymer, plasticizer (dibutyl sebacate), and stabilizer (oleic acid) is prepared as a homogeneous mixture, which is then diluted with an alkaline solution to obtain an aqueous dispersion which can be applied directly onto substrates.
ACRYLIC POLYMERS
In other prefeπed embodiments of the present invention, the hydrophobic material comprising the sustained release coating is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
In certain prefeπed embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers. Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
In order to obtain a desirable dissolution profile, it may be necessary to incorporate two or more ammonio methacrylate copolymers having differing physical properties, such as different molar ratios of the quaternary ammonium groups to the neutral (meth)acrylic esters.
Certain methacrylic acid ester-type polymers are useful for preparing pH- dependent coatings which may be used in accordance with the present invention. For example, there are a family of copolymers synthesized from diethylaminoethyl methacrylate and other neutral methacrylic esters, also known as methacrylic acid copolymer or polymeric methacrylates, commercially available as Eudragit® from Rohm Tech, Inc. There are several different types of Eudragit . For example, Eudragit® E is an example of a methacrylic acid copolymer which swells and dissolves in acidic media. Eudragit® L is a methacrylic acid copolymer which does not swell at about pH < 5.7 and is soluble at about pH > 6. Eudragit® S does not swell at about pH < 6.5 and is soluble at about pH > 7. Eudragit® RL and Eudragit® RS are water swellable, and the amount of water absorbed by these polymers is pH- dependent, however, dosage forms coated with Eudragit® RL and RS are pH- independent. hi certain prefeπed embodiments, the acrylic coating comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit® RL30D and Eudragit® RS30D, respectively. Eudragit® RL30D
and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D. The mean molecular weight is about 150,000. The code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, coatings formed from the same are swellable and permeable in aqueous solutions and digestive fluids.
The Eudragit® RL/RS dispersions of the present invention may be mixed together in any desired ratio in order to ultimately obtain a sustained release formulation having a desirable dissolution profile. Desirable sustained release formulations may be obtained, for instance, from a retardant coating derived from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:Eudragit® 90% RS. Of course, one skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L.
PLASTICIZERS
In embodiments of the present invention where the coating comprises an aqueous dispersion of a hydrophobic material, the inclusion of an effective amount of a plasticizer in the aqueous dispersion of hydrophobic material will further improve the physical properties of the sustained release coating. For example, because ethylcellulose has a relatively high glass transition temperature and does not form flexible films under normal coating conditions, it is preferable to incorporate a plasticizer into an ethylcellulose coating containing sustained release coating before using the same as a coating material. Generally, the amount of plasticizer included in a coating solution is based on the concentration of the film-former, e.g., most often from about 1 to about 50 percent by weight of the film-former. Concentration of the plasticizer, however, can only be properly determined after careful experimentation with the particular coating solution and method of application.
Examples of suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl
citrate is an especially prefeπed plasticizer for the aqueous dispersions of ethyl cellulose ofthe present invention.
Examples of suitable plasticizers for the acrylic polymers of the present invention include, but are not limited to citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol. Other plasticizers which have proved to be suitable for enhancing the elasticity of the films formed from acrylic films such as Eudragit® RL/RS lacquer solutions include polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin. Triethyl citrate is an especially prefeπed plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
It has further been found that the addition of a small amount of talc reduces the tendency of the aqueous dispersion to stick during processing, and acts as a polishing agent.
SUSTAINED RELEASE OSMOTIC DOSAGE FORM
Sustained release dosage forms according to the present invention may also be prepared as osmotic dosage formulations. The osmotic dosage forms preferably include a bilayer core comprising a drug layer (containing the oxycodone (or oxycodone salt) and optionally the naloxone (or naloxone salt)) and a delivery or push layer (which may contain the naloxone (or naloxone salt)), wherein the bilayer core is suπounded by a semipermeable wall and optionally having at least one passageway disposed therein.
The expression "passageway" as used for the purpose of this invention, includes aperture, orifice, bore, pore, porous element through which oxycodone or oxycodone salt (with or without the naloxone or naloxone salt) can be pumped, diffuse or migrate through a fiber, capillary tube, porous overlay, porous insert, microporous member, or porous composition. The passageway can also include a compound that erodes or is leached from the wall in the fluid environment of use to produce at least one passageway. Representative compounds for forming a passageway include erodible poly(glycolic) acid, or poly(lactic) acid in the wall; a gelatinous filament; a water-removable poly(vinyl alcohol); leachable compounds such as fluid-removable pore-forming polysaccharides, acids, salts or oxides. A passageway can be formed by leaching a compound from the wall, such as sorbitol, sucrose, lactose, maltose, or fructose, to form a sustained-release dimensional pore-
passageway. The passageway can have any shape, such as round, triangular, square and elliptical, for assisting in the sustained metered release of oxycodone or oxycodone salt from the dosage form. The dosage form can be manufactured with one or more passageways in spaced-apart relation on one or more surfaces of the dosage form. A passageway and equipment for forming a passageway are disclosed in U.S. Patent Nos. 3,845,770; 3,916,899; 4,063,064 and 4,088,864. Passageways comprising sustained-release dimensions sized, shaped and adapted as a releasing-pore formed by aqueous leaching to provide a releasing-pore of a sustained-release rate are disclosed in U.S. Patent Nos. 4,200,098 and 4,285,987. •
In certain embodiments, the bilayer core comprises a drug layer with oxycodone or a salt thereof and a displacement or push layer containing the naloxone or a salt thereof. In certain embodiments the drug layer may also comprise at least one polymer hydrogel. The polymer hydrogel may have an average molecular weight of between about 500 and about 6,000,000. Examples of polymer hydrogels include but are not limited to a maltodextrin polymer comprising the formula (C6 H12 05)nΗ20, wherein n is 3 to 7,500, and the maltodextrin polymer comprises a 500 to 1,250,000 number-average molecular weight; a poly(alkylene oxide) represented by, e.g., a poly(ethylene oxide) and a poly(propylene oxide) having a 50,000 to 750,000 weight- average molecular weight, and more specifically represented by a poly(ethylene oxide) of at least one of 100,000, 200,000, 300,000 or 400,000 weight-average molecular weights; an alkali carboxyalkylcellulose, wherein the alkali is sodium or potassium, the alkyl is methyl, ethyl, propyl, or butyl of 10,000 to 175,000 weight- average molecular weight; and a copolymer of ethylene-acrylic acid, including methacrylic and ethacrylic acid of 10,000 to 500,000 number-average molecular weight.
In certain embodiments ofthe present invention, the delivery or push layer comprises an osmopolymer. Examples of an osmopolymer include but are not limited to a member selected from the group consisting of a polyalkylene oxide and a carboxyalkylcellulose. The polyalkylene oxide possesses a 1,000,000 to 10,000,000 weight-average molecular weight. The polyalkylene oxide may be a member selected from the group consisting of polymethylene oxide, polyethylene oxide, polypropylene oxide, polyethylene oxide having a 1,000,000 average molecular weight, polyethylene oxide comprising a 5,000,000 average molecular weight, polyethylene oxide comprising a 7,000,000 average molecular weight, cross-linked polymethylene oxide
possessing a 1,000,000 average molecular weight, and polypropylene oxide of 1,200,000 average molecular weight. Typical osmopolymer carboxyalkylcellulose comprises a member selected from the group consisting of alkali carboxyalkylcellulose, sodium carboxymethylcellulose, potassium carboxy methylcellulose, sodium carboxyethylcellulose, lithium carboxymethylcellulose, sodium carboxyethyl- cellulose, carboxyalkylhydroxyalkylcellulose, carboxy methylhydroxyethyl cellulose, carboxyethylhydroxyethylcellulose and carboxymethylhydroxypropylcellulose. The osmopolymers used for the displacement layer exhibit an osmotic pressure gradient across the semipermeable wall. The osmopolymers imbibe fluid into dosage foπn, thereby swelling and expanding as an osmotic hydrogel (also known as osmogel), whereby they push the oxycodone or pharmaceutically acceptable salt thereof from the osmotic dosage form.
The push layer may also include one or more osmotically effective compounds also known as osmagents and as osmotically effective solutes. They imbibe an environmental fluid, for example, from the gastrointestinal tract, into dosage form and contribute to the delivery kinetics of the displacement layer. Examples of osmotically active compounds comprise a member selected from the group consisting of osmotic salts and osmotic carbohydrates. Examples of specific osmagents include but are not limited to sodium chloride, potassium chloride, magnesium sulfate, lithium phosphate, lithium chloride, sodium phosphate, potassium sulfate, sodium sulfate, potassium phosphate, glucose, fructose and maltose.
The push layer may optionally include a hydroxypropylalkylcellulose possessing a 9,000 to 450,000 number-average molecular weight. The hydroxypropylalkylcellulose is represented by a member selected from the group consisting of hydroxypropylmethylcellulose, hydroxypropylethylcellulose, hydroxypropyl isopropyl cellulose, hydroxypropylbutylcellulose, and hydroxypropylpentylcellulose.
The push layer optionally may comprise a nontoxic colorant or dye. Examples of colorants or dyes include but are not limited to Food and Drug Administration Colorant (FD&C), such as FD&C No. 1 blue dye, FD&C No. 4 red dye, red ferric oxide, yellow feπic oxide, titanium dioxide, carbon black, and indigo.
The push layer may also optionally comprise an antioxidant to inhibit the oxidation of ingredients. Some examples of antioxidants include but are not limited to a member selected from the group consisting of ascorbic acid, ascorbyl palmitate,
butylated hydroxyanisole, a mixture of 2 and 3 tertiary-butyl-4-hydroxyanisole, butylated hydroxytoluene, sodium isoascorbate, dihydroguaretic acid, potassium sorbate, sodium bisulfate, sodium metabisulfate, sorbic acid, potassium ascorbate, vitamin E, 4-chloro-2,6-ditertiary butylphenol, alphatocopherol, and propylgallate. hi certain alternative embodiments, the dosage form comprises a homogenous core comprising oxycodone or a pharmaceutically acceptable salt thereof, the naloxone or pharmaceutically acceptable salt thereof, a pharmaceutically acceptable polymer (e.g., polyethylene oxide), optionally a disintegrant (e.g., polyvinylpyrrolidone), optionally an absoφtion enhancer (e.g., a fatty acid, a surfactant, a chelating agent, a bile salt, etc.). The homogenous core is suπounded by a semipermeable wall having a passageway (as defined above) for the release of the oxycodone or pharmaceutically acceptable salt thereof.
In certain embodiments, the semipermeable wall comprises a member selected from the group consisting of a cellulose ester polymer, a cellulose ether polymer and a cellulose ester-ether polymer. Representative wall polymers comprise a member selected from the group consisting of cellulose acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose diacetate, cellulose triacetate, mono-, di- and tricellulose alkenylates, and mono-, di- and tricellulose alkinylates. The poly(cellulose) used for the present invention comprises a number-average molecular weight of 20,000 to 7,500,000.
Additional semipermeable polymers for the puφose of this invention comprise acetaldehyde dimethycellulose acetate, cellulose acetate ethylcarbamate, cellulose acetate methylcarbamate, cellulose diacetate, propylcarbamate, cellulose acetate diethylaminoacetate; semipermeable polyamide; semipermeable polyurethane; semipermeable sulfonated polystyrene; semipermeable cross-linked polymer formed by the coprecipitation of a polyanion and a polycation as disclosed in U.S. Patent Nos. 3,173,876; 3,276,586; 3,541,005; 3,541,006 and 3,546,876; semipermeable polymers as disclosed by Loeb and Sourirajan in U.S. Patent No. 3,133,132; semipermeable crosslinked polystyrenes; semipermeable cross-linked poly(sodium styrene sulfonate); semipermeable crosslinked poly(vinylbenzyltrimethyl ammonium chloride); and semipermeable polymers possessing a fluid permeability of 2.5xl0"8 to 2.5xl0"2 (cm2 /hr-atm) expressed per atmosphere of hydrostatic or osmotic pressure difference across the semipermeable wall. Other polymers useful in the present invention are known in the art in U.S. Patent Nos. 3,845,770; 3,916,899 and 4,160,020; and in
Handbook of Common Polymers, Scott, J. R. and W. J. Roff, 1971, CRC Press, Cleveland, Ohio.
In certain embodiments, preferably the semipermeable wall is nontoxic, inert, and it maintains its physical and chemical integrity during the dispensing life of the drug. In certain embodiments, the dosage form comprises a binder. An example of a binder includes, but is not limited to a therapeutically acceptable vinyl polymer having a 5,000 to 350,000 viscosity-average molecular weight, represented by a member selected from the group consisting of poly-n-vinylamide, poly-n- vinylacetamide, poly(vinyl pyπolidone), also known as poly-n-vinylpyπolidone, poly-n-vinylcaprolactone, poly-n-vinyl-5-methyl-2-pyπolidone, and poly-n-vinylpyπolidone copolymers with a member selected from the group consisting of vinyl acetate, vinyl alcohol, vinyl chloride, vinyl fluoride, vinyl butyrate, vinyl laureate, and vinyl stearate. Other binders include for example, acacia, starch, gelatin, and hydroxypropylalkylcellulose of 9,200 to 250,000 average molecular weight.
In certain embodiments, the dosage form comprises a lubricant, which may be used during the manufacture of the dosage form to prevent sticking to die wall or punch faces. Examples of lubricants include but are not limited to magnesium stearate, sodium stearate, stearic acid, calcium stearate, magnesium oleate, oleic acid, potassium oleate, caprylic acid, sodium stearyl fumarate, and magnesium palmitate.
In certain prefeπed embodiments, the present invention includes a therapeutic composition comprising 10 to 40 mg of the oxycodone or pharmaceutically acceptable salt thereof, 25 to 500 mg of poly(alkylene oxide) having a 150,000 to 500,000 average molecular weight, 1 to 50 mg of polyvinylpyπolidone having a 40,000 average molecular weight, 0 to about 7.5 mg of a lubricant and 0.80 to 0.90 mg of naloxone or salt thereof . The 0.80 to 0.90 mg of naloxone or salt thereof is preferably in the drug layer.
SUPPOSITORIES
The sustained release formulations ofthe present invention may be formulated as a pharmaceutical suppository for rectal administration comprising a suitable suppository base, oxycodone (or oxycodone salt) and naloxone (or naloxone salt) in the dosages disclosed herein. Preparation of sustained release suppository formulations is described in, e.g., U.S. Patent No. 5,215,758.
Prior to absoφtion, the drug must be in solution. In the case of suppositories, solution must be preceded by dissolution ofthe suppository base, or the melting of the base and subsequent partition of the drug from the suppository base into the rectal fluid. The absoφtion of the drug into the body may be altered by the suppository base. Thus, the particular suppository base to be used in conjunction with a particular drug must be chosen giving consideration to the physical properties of the drug. For example, lipid-soluble drugs will not partition readily into the rectal fluid, but drugs that are only slightly soluble in the lipid base will partition readily into the rectal fluid.
Among the different factors affecting the dissolution time (or release rate) of the drugs are the surface area of the drug substance presented to the dissolution solvent medium, the pH of the solution, the solubility of the substance in the specific solvent medium, and the driving forces of the saturation concentration of dissolved materials in the solvent medium. Generally, factors affecting the absoφtion of drugs from suppositories administered rectally include suppository vehicle, absoφtion site pH, drug pKa, degree of ionization, and lipid solubility.
The suppository base chosen should be compatible with the agents(s) of the present invention.' Further, the suppository base is preferably non-toxic and noniπitating to mucous membranes, melts or dissolves in rectal fluids, and is stable during storage.
In certain prefeπed embodiments of the present invention for both water- soluble and water-insoluble drugs, the suppository base comprises a fatty acid wax selected from the group consisting of mono-, di- and triglycerides of saturated, natural fatty acids ofthe chain length Cι2 to C]8.
In preparing the suppositories of the present invention other excipients may be used. For example, a wax may be used to form the proper shape for administration via the rectal route. This system can also be used without wax, but with the addition of diluent filled in a gelatin capsule for both rectal and oral administration.
Examples of suitable commercially available mono-, di- and triglycerides include saturated natural fatty acids of the 12-18 carbon atom chain sold under the trade name Novata TM (types AB, AB, B,BC, BD, BBC, E, BCF, C, D and 299), manufactured by Henkel, and Witepsol TM (types H5, HI 2, HI 5, HI 75, HI 85, HI 9, H32, H35, H39, H42, W25, W31, W35, W45, S55, S58, E75, E76 and E85), manufactured by Dynamit Nobel.
Other pharmaceutically acceptable suppository bases may be substituted in whole or in part for the above-mentioned mono-, di- and triglycerides. The amount of base in the suppository is deteπnined by the size (i.e. actual weight) of the dosage form, the amount of base (e.g., alginate) and dmg used. Generally, the amount of suppository base is from about 20 percent to about 90 percent by weight of the total weight of the suppository. Preferably, the amount of suppository base in the suppository is from about 65 percent to about 80 percent, by weight of the total weight of the suppository.
OTHER FORMS
The invention disclosed herein is meant to encompass all pharmaceutically acceptable salts thereof of the oxycodone and naloxone. The pharmaceutically acceptable salts include, but are not limited to, metal salts such as sodium salt, potassium salt, secium salt and the like; alkaline earth metals such as calcium salt, . magnesium salt and the like; organic amine salts such as triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,N'-dibenzylethylenediamine salt and the like; inorganic acid salts such as hydrochloride, hydrobromide, sulfate, phosphate, terephthalate and the like; organic acid salts such as foπnate, acetate, trifluoroacetate, maleate, tartrate and the like; sulfonates such as methanesulfonate, benzenesulfonate, p-toluenesulfonate, and the like; amino acid salts such as arginate, asparginate, glutamate and the like.
The combination of the oxycodone (or oxycodone salt) and the naloxone (or naloxone salt) can be employed in admixtures with conventional excipients, i.e., phaπnaceutically acceptable organic or inorganic carrier substances suitable for oral administration, known to the art in order to provide a sustained release of at least the oxycodone or salt thereof. Suitable phaπnaceutically acceptable caπiers include but are not limited to, alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelate, carbohydrates such as lactose, amylose or starch, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, hydroxymethylcellulose, polyvinylpyπolidone, etc. The pharmaceutical preparations can be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, disintegrants, preservatives, stabilizers, wetting agents, emulsifϊers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like. The compositions
intended for oral use may be prepared according to any method known in the art and such compositions may contain one or more agents selected from the group consisting of inert, non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. Such excipients include, for example an inert diluent such as lactose; granulating and disintegrating agents such as cornstarch; binding agents such as starch; and lubricating agents such as magnesium stearate. The tablets may be uncoated or they may be coated by known techniques for elegance or to delay release of the active ingredients. Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert diluent.
The oral dosage forms of the present invention may be in the form of tablets, troches, lozenges, powders or granules, hard or soft capsules, microparticles (e.g., microcapsules, microspheres and the like), buccal tablets, suppositories, etc. The oxycodone (or oxycodone salt) and nalaxone (or nalaxone salt) may be substantially interdespersed with one another.
In certain embodiments, the present invention provides for a method of deteπing parenteral abuse of an oral oxycodone dosage form (or oxycodone salt) by preparing the dosage forms as described above.
In certain embodiments, the present invention provides for a method of deteπing diversion of an oral oxycodone dosage form comprising preparing the dosage forms as described above.
In certain embodiments, the present invention provides for a method of treating pain by administering to a human patient the dosage forms described above.
The following examples illustrate various aspects of the present invention. They are not to be construed to limit the claims in any manner whatsoever.
EXAMPLE 1
Sustained Release Oxycodone hydrochloride formulations containing naloxone hydrochloride are prepared with the formula in Table 1 below:
TABLE 1
In this example, the naloxone hydrochloride dihydrate is added to the formulation during the granulation process. The process is set forth below:
1. Dispersion: Naloxone HCI is dissolved in water and the solution is added to a Eudragit/Triacetin dispersion.
2. Granulation: Spray the Eudragit/Triacetin dispersion onto an Oxycodone HCI, Spray Dried Lactose and Povidone mixture using a fluid bed granulator.
3. Milling: Discharge the granulation and pass through a mill with approximately 1 mm openings (18 mesh screen).
4. Waxing: Melt the stearyl alcohol at about 50 degrees C and add to the milled granulation using a high shear mixer. Allow to cool at room temperature on trays or a fluid bed.
5. Milling: Pass the cooled granulation tlirough a mill with approximately 18 mesh screen.
6. Lubrication: Lubricate the granulation with talc and magnesium stearate using a mixer.
7. Compression: Compress the granulation into tablets using a Kilian® tablet press.
8. Film Coating: Apply an aqueous film coat to the tablets using a rotaiy pan.
EXAMPLE 2
Oxycodone salt /naloxone salt sustained release osmotic tablets are produced with the formula set forth in Table 2 below:
TABLE 2
The dosage form having the above formulation is prepared according to the following procedure:
First, the oxycodone hydrochloride, the naloxone hydrochloride dihydrate, poly(ettiylene oxide) possessing a 200,000 average molecular weight, and polyvinylpyπolidone having a 40,000 average molecular weight is added to a mixer and mixed for 10 minutes. Then, denatured anhydrous alcohol is added to the blended materials with continuous mixing for 10 minutes. Then, the wet granulation is passed through a 20 mesh screen, allowed to dry at room temperature for 20 hours, and then
passed tlirough a 16 mesh screen. Next, the granulation is transfeπed to the mixer, mixed and lubricated with magnesium stearate.
Then, the displacement or push composition for pushing the oxycodone HCl/naloxone HCL composition from the dosage foπn is prepared as follows: first 3910 g of hydroxypropylmethylcellulose possessing a 11,200 average molecular weight is dissolved in 45,339 g of water. Then, 101 g of butylated hydroxytoluene is dissolved in 650 g of denatured anhydrous alcohol. Next, 2.5 kg ofthe hydroxypropylmethylcellulose aqueous solution is added with continuous mixing to the butylated hydroxytoluene alcohol solution. Then, binder solution preparation is completed by adding with continuous mixing the remaining hydroxypropylmethylcellulose aqueous solution to the butylated hydroxytoluene alcohol solution.
Next, 36,000 g of sodium chloride is sized using a Quadro Comil® mill equipped with a 21 mesh screen. Then, 1200 g of feπic oxide is passed tlirough a 40 mesh screen. Then, the screened materials, 76,400 g of pharmaceutically acceptable polyethylene oxide) possessing a 7,500,000 average molecular weight, 2500 g of hydroxypropylmethylcellulose having a 11,200 average molecular weight are added to a Glatt® Fluid Bed Granulation's bowl. The bowl is attached to the granulator and the granulation process is initiated for effecting granulation. Next, the dry powders are air suspended and mixed for 10 minutes. Then, the binder solution is sprayed from 3 nozzles onto the powder. The granulating is monitored during the process as follows: total solution spray rate of 800 g/min; inlet temperature 43 °C and air flow 4300 m3/hr. At the end of solution spraying, 45,033 g, the resultant coated granulated particles are subjected to a drying process for 35 minutes.
The coated granules are sized using a Quadro Comil® mill with. an 8 mesh screen. The granulation is transfeπed to a Tote® Tumbler, mixed and lubricated with 281.7 g of magnesium stearate.
Next, the drug composition comprising the oxycodone hydrochloride/naloxone hydrochloride and the push composition are compressed into bilayer tablets on a Kilian® Tablet press. First, the dmg composition is added to the die cavity and precompressed, then, 135 mg of the push composition is added and the layers are pressed under a pressure head of 3 metric tons into a 11/32 inch (0.873 cm) diameter contacting layer aπangement.
The bilayered aπangements are coated with a semipermeable wall. The wall forming composition comprises 100% cellulose acetate having a 39.8% acetyl content. The wall-forming composition is dissolved in acetone:water (95:5 wt:wt) cosolvent to make a 4% solid solution. The wall-foπning composition is sprayed onto and around the bilayers in a 24 inch (60 cm) Vector® Hi-Coater. Next, one 20 mil (0.508 mm) exit passageway is drilled through the semipermeable wall to connect the dmg oxycodone layer with the exterior of the dosage form. The residual solvent is removed by drying for 72 hours at 45 °C and 45% humidity. Next, the osmotic dosage systems are dried for 4 hours at 45 °C to remove excess moisture.
EXAMPLE 3
Oxycodone 10 mg/naloxone 0.85 mg sustained release capsules are prepared with the formula set forth in Table 4 below:
Table 4
The formulation above is prepared according to the following procedure:
1. Pass the stearyl alcohol flakes through an impact mill.
2. Blend the Oxycodone HCI, Naloxone HCI, stearic acid, stearyl alcohol and the Eudragit RSPO in a suitable blender/mixer.
3. Continuously feed the blended material into a twin screw extruder at elevated temperatures, and collect the resultant strands on a conveyor.
4. Allow the strands to cool on the conveyor.
5. Cut the strands into 1 mm pellets using a pelletizer.
6. Screen the pellets for fines and oversized pellets to an acceptable range of about 0.8 - 1.4 mm in size.
7. Fill into capsules with a fill weight of 120 mg/capsule (fill into size 2 capsules).
EXAMPLE 4
Oxycodone 10 mg/naloxone 0.85 mg sustained release capsules are prepared according to the following procedure:
Initially, immediate release oxycodone beads are prepared with the formula set forth in Table 5 below:
Table 5
Process
1. Dmg layering solution: Dissolve oxycodone HCI and Opadry Clear in water.
2. Dmg loading: Spray the dmg solution onto NuPareil beads in a fluid bed dryer.
3. Coating: Disperse Opadry Butterscotch in water. Spray onto the dmg loaded beads.
Sustained Release Beads are then prepared with the formula set forth in Table 6 below:
Table 6
Process
1. Controlled release coating solution: Homogenize triethyl citrate in water. Add the dispersion to Eudragit®RS 30 D and Eudragit® RL 30 D then add Cab-O-Sil® to mixture.
2. Seal coat solution: Dissolve Opadry® Clear in water.
3. Coating: Apply the control release coating solution followed by the seal coat solution onto Oxycodone HCI IR beads using a fluidized bed bottom-spray technique.
4. Curing: Place the coated beads on tray and cure in oven for 24 hours at 45°C.
To develop Oxycodone/Naloxone sustained release beads 0.85mg of Naloxone per unit can be included.in the above formulation. It can be dissolved together with the Oxycodone HCI in the purified water before being sprayed onto the NuPareil beads.
EXAMPLE 5
Sustained release 10 mg oxycodone hydrochloride formulations containing naloxone hydrochloride were prepared with the formula in Table 7 below:
TABLE 7
♦utilized as 36.7 kg of an aqueous dispersion
The formulation in Table 7 was prepared according to the following procedure:
1. Blend Oxycodone HCI, Lactose and a portion of Povidone in Niro MP-6 Fluid Bed Processor (Glatt GPCG-60/120 may be substituted).
2. Mix Eudragit®RS30D and Triacetin in a stainless steel vessel using a Lightin' Air mixer.
3. Granulate the blend from Step 1 in the Niro MP-6 (or Glatt GPCG-60/120) Fluid Bed Processor by spraying the Eudragit® dispersion from Step 2.
4. Mix remaining Povidone, Naloxone HCI and water to form a clear solution in a stainless steel vessel using a Lightin' Air mixer.
5. Spray Naloxone HCI solution from Step 4 onto granulation from Step 3 in the Niro MP-6 (or Glatt GPCG-60/120) Fluid Bed Processor.
6. Screen the granulation from Step 5 using a Quadro Comil.
7. Incoφorate Stearyl Alcohol (previously melted in a steam-jacketed kettle) with screened granulation from Step 6 in a Collette Granulator/Mixer.
8. Cool the waxed granulation from Step 7 in the Niro MP-6 (or Glatt GPCG- 60/120) Fluid Bed Processor, or, alternatively, on stainless steel trays.
9. De-lump cooled granulation from Step 8 using a Quadro Comil.
10. Blend granulation from Step 8 with Talc and Magnesium Stearate in the Collette Granulator/Mixer.
11. Compress granulation into tablets using a Kilian S-250 Tablet Press.
12. Coat Tablets with Opadry in a 48" Accela-Cota Coating Pan.
The tablets were then tested for dissolution using the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXIV (2000) at 100 φm in 900 ml simulated gastric fluid (SGF) at 37°C.
The dissolution results are set forth in Table 7A below:
Table 7A
EXAMPLE 6
Sustained release 20 mg oxycodone hydrochloride formulations containing naloxone hydrochloride were prepared with the formula in Table 8 below:
TABLE 8
♦utilized as 36 7 kg of an aqueous dispersion
The formulation in Table .8 was prepared according to the same procedure as in Example 5.
The tablets were then tested for dissolution using the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXIV (2000) at 100 φm in 900 ml simulated gastric fluid (SGF) at 37°C.
The dissolution results are set forth in Table 8A below:
Table 8A
EXAMPLE 7
Sustained release 40 mg oxycodone hydrochloride formulations containing naloxone hydrochloride were prepared with the formula in Table 9 below:
TABLE 9
♦utilized as 51.4 kg of an aqueous dispersion
The formulation in Table 9 was prepared according to the same procedure as in Example 5.
The tablets were then tested for dissolution using the USP Apparatus I (Basket) method of U.S. Phaπnacopeia XX1N (2000) at 100 rpm in 900 ml simulated gastric fluid (SGF) at 37°C.
The dissolution results are set forth in Table 9A below:
Table 9A
EXAMPLE 8
In Example 8, a single-center, open-label, randomized, 4-period, 4-sequence, 4-treatment crossover study in 18 normal, healthy, young adult, male and female subjects under fasted conditions was conducted. The study was conducted to compare the pharmacokinetic parameters of naloxone in a single tablet dose of Talwin® Nx (containing -0.55 mg naloxone hydrochloride), 1.5 mg oral naloxone hydrochloride as a single dose, 1.5 mg oral naloxone hydrochloride as divided doses (0.75 mg, -0.25 mg, -0.25 mg, and -0.25 mg at times 0, 3, 6, and 9 hours respectively), and 0.5 mg of 0.4 mg/ml intravenous naloxone hydrochloride. Subjects were randomly assigned to four sequences with periods consisting ofthe following:
Period 1 was Days 1-8 (from the time ofthe first dose until the time ofthe second dose),
Period 2 was Days 8-15 (from the time of the second dose until the third dose),
Period 3 was Days 15-22 (from the third dose until the fourth dose), and
Period 4 was Days 22 (from the time ofthe last dose until the end ofthe study).
The randomization sequences of administration are listed in Table 10 below:
TABLE 10
Nx = naloxone. Oral Nx was administered as a single 1.5 mg solution or in divided doses of 0.75, ~0.25, ~0.25, and -0.25 at times 0, 3, 6, and 9 respectively.
Subjects were admitted to the study facility on the evenings of Days 0, 7, 14 and 21, at least 12 hours prior to dosing and were confined until at least 6 hours after dosing (and at least 12 hours after dosing for the group receiving divided doses of oral naloxone HCI). Dosing took place on Days 1, 8, 15, and 22. For the duration ofthe study, subjects were instructed not to engage in heavy exercise.
Stock solutions and medications used in the study consisted of 2 ml vials of 1 mg/ml naloxone HCI injection USP purchased from Sabex Inc., 10 ml vials of 0.4 mg/ml naloxone HCI injection USP purchased from Sabex Inc., and Talwin® Nx (tablets of pentazocine and naloxone hydrochloride, USP, equivalent to 50 mg base and 0.5 mg base respectively. The 1 mg/ml naloxone concentration was used for an intravenous naloxone challenge test at screening, and the 0.4 mg/ml concentration was used for intravenous dosing during the study. For oral dosing, the 1 mg/ml stock was diluted with water to 0.02 mg/ml. Doses were as follows: 1 tablet of Talwin® Nx, 0.5 mg intravenous naloxone HCI (1.25 ml of 0.4 mg/ml), 1.5 mg of oral naloxone HCI as a single 75 ml oral dose (concentration of 0.02 mg/ml), and 1.5 mg of naloxone HCI as divided oral doses with 50% (0.75 mg), 17% (-0.25 mg), 17% (-0.25 mg), and 16% (-0.25 mg) ofthe dose administered at time 0, 3, 6, and 9 hours respectively.
Talwin® Nx was administered with 8 ounces of water, which the subjects drank completely. Afterwards, mouth inspections were done to ensure that each subject swallowed the tablet.
Following the single oral dose of naloxone, subjects drank two additional 75 ml rinses of water, for a total volume of 225 ml. For divided doses (also 0.02 mg/ml), the first dose was followed by two 94 ml rinses of water, and subsequent doses were followed by two 75 ml rinses of water.
Intravenous naloxone was administered by IV push. Following IN naloxone, subjects were observed by staff members continuously for at least 20 minutes.
Each subject received each treatment one time. Each treatment followed an overnight fast (excluding water) of at least 10 hours, and after dosing, the subjects fasted for an additional 4 hours. Except for the days of dosings, there were no food restrictions. While subjects were confined to the clinical unit all meals were served at standardized times, and the content was standardized throughout the study and between subjects. Meal records were maintained, including content. No caffeine or xanthine-containing beverages were served while the subjects were in the clinical facility.
In the study, 17 ofthe 18 randomized subjects completed all four treatments. One subject randomized to sequence 4 withdrew consent after completing the first treatment phase (single-dose oral naloxone).
Pharmacokinetic Results
A summary ofthe Pharmacokinetic data (AUCt) AUCo-t≠, CmaXj /2; tmaX; CI and Vss were done) for the study is listed in Table 11 below:
Table 11
CI: Plasma clearance estimated as the ratio (Dose/AUCo-∞)
Vss: Volume of distribution at steady-state estimated as the ratio (Dose^AUMC0.∞)/(AUCo-∞)2 where AUMC0.∞is the area under the curve ofthe product of time and drug concentration from time zero to infinity (first moment ofthe plasma concentration-time curve). a 15 subjects - Subjects 9 and 15 could not be used. b 18 subjects ct'/;and AUCo-∞ could not be estimated/reported for 15 ofthe 17 subjects d CI and Vss were calculated for the IV treatment arm only e Xχ/t and AUCQ-OO could not be estimated/reported for any of he 17 subjects
Table 12 below lists a summary ofthe Pharmacokinetic data which is Dose Normalized to 0.5 mg IV Naloxone HCI dose.
Table 12
F: Absolute Bioavailability, estimated as the ratio ofthe dose-normalized AU of the selected treatment and the AUC0.∞from the IV treatment arm. If AUC for the IV treatment was NE (not estimable), AUCt was used. a 15 subjects b IS subjects
^and AUCo.ooCould not be estimated/reported for 15 ofthe 17 subjects dty,and AUQj.∞ could not be estimated/reported for any ofthe 17 subjects
Arithmetic mean observed plasma concentration-time profiles for naloxone for the four treatment arms are presented in Figures 2A-D. Spaghetti plots ofthe observed individual plasma concentration-time profiles for naloxone for the four treatment aπns are presented in Figures 3A-D. A rapid increase to naloxone peak plasma concentrations was observed for all four treatments tested. The time to peak plasma concentrations was, as expected, lowest for the IV formulation (0.14 h, ~ 9 min) followed by Talwin® Nx (0.71 h), the single oral solution dose of naloxone (0.78 h), and Finally the divided oral doses of naxolone (3.18 h). Mean peak plasma exposures (Cmax) of 6252 pg/ml, 23.0 pg/ml, 13.4 pg/ml, and 8.00 pg/ml were observed for 0.5 mg IV naloxone HCI, 1.5 mg single oral dose of naloxone HCI, 1.5 mg divided oral doses of naloxone HCI and Talwin® Nx (containing 0.55 mg of naloxone HCI), respectively.
The mean apparent terminal elimination half-life (ti/2)for the IV treatment arm was 0.92 h. The terminal portion of the plasma concentration time curves 9 and 15 could not be used to deteπnine the half-life values). The terminal elimination half-life was not estimable for the three oral treatments (since λ, the apparent terminal elimination rate constant, could not be accurately determined based on "saw tooth" concentration time profiles ofthe majority ofthe subjects).
Mean total naloxone exposure (AUCt) ofthe 1.5 mg single oral dose (47.4 pg-h/ml) was approximately 73% of the 1.5 mg divided oral doses of naloxone (64.9 pg-h/ml). The 0.5 mg TV dose of naloxone, as expected, produced the highest mean total exposure of 3199 pg-h/ml while the Talwin® Nx treatment produced a mean total exposure value of 5.92 pg-h/ml. The mean total exposure (AUCo-∞) extrapolated to infinity for the 0.5 mg IV treatment arm was 3051 pg.h/ml while AUCo-∞was not estimable for the three oral treataients since terminal elimination half-life could not be estimated for 15 ofthe 17 subjects.
Mean plasma clearance and volume of distribution at steady-state were estimated to be 2854 ml/min and 217 L, respectively, for the IV treatment arm.
Mean absolute bioavailabihty (F,) (based on AUCt) ofthe single oral dose of 1.5 mg naloxone HCI was 0.47% (range: 0.15-1.11%), that ofthe divided oral doses of 1.5 mg naloxone HCI was 0.66% (range: 0.01-2. Q8%), and that ofthe single tablet dose of Talwin® Nx (containing 0.55 mg of naloxone HCI) was 0.17% (range: 0.0- 0.79%). These low bioavailabihty values reflect the significant first pass metabolism that occurs when naloxone is administered orally.
Overall, there was significant variability, in terms of %CV, associated with the naloxone Cmax values across all treatments range: 52-72%. The AUCt values were less variable for the IV treatment, %CV-26%, where as the oral treatments were highly variable %CV range: 68-122%.
Adverse Events
There were no deaths or serious adverse events. No subjects discontinued because of adverse events. The majority of drug-related adverse events occuπed when subjects were dosed with Talwin® Nx. These included nausea, vomiting, dizziness, and headache. One subject withdrew consent due to a schedule conflict.
Eleven of 18 subjects experienced a total of 25 adverse events, none serious. Seven of these subjects experienced adverse events described as possibly, probably, or definitely related to the study medication. Overall, adverse events were more frequently reported in subjects receiving Talwin® Nx, consistent with expected adverse events related to pentazocine. All subjects recovered from all adverse events. No action (e.g., discontinuation) was taken with regard to the study drug.
Following dosing with Talwin® Nx, 6 subjects reported adverse events, all described as probably or definitely related to the study medication, including dizziness (N=5), nausea (N=2), vomiting (N=l), and fatigue (N=l). Severe adverse events among subjects receiving Talwin® Nx including dizziness (N=l) and nausea (N=2).
During the other three treatments, no subjects reported severe adverse events which were possibly, probably, or definitely related to study medication and no subjects reported dizziness or any severity. Also during the other three treatment groups, only two adverse events were considered possibly, probably, or definitely related to study drug: headache possibly related to oral naloxone in divided doses, and nausea possibly related to intravenous naloxone. No adverse events were observed during the naloxone challenge test among the 18 subjects randomized.
The most commonly reported adverse events were dizziness and headache. Headache was reported by 5 subjects, none during the Talwin® Nx dosing period. For 1 of the subjects, headache occuπed prior to randomization, for 3 subjects it occuπed during only 1 treatment period, and for 1 subject it occuπed during 2 periods. It was considered possibly, probably, or definitely related to study drug in only 1 subject, after oral naloxone in divided doses, and the severity was mild. None ofthe other subjects reported the onset of headache on a dosing day after administration of study drug.
Conclusions from the study
The absolute bioavailability of naloxone was <1% for all three oral treatments studied. Plasma naloxone concentrations were highly variable for all treatments. Mean naloxone peak exposure was 8 pg/ml, range 0-16.6 pg/ml, approximately 0.1% of that following i.v. administration of naloxone. The terminal half-life of naloxone was short, approximately lh.
Naloxone, HCI given alone is well tolerated at total doses of 0.5 mg IV and up to 1.5 mg orally.
EXAMPLE 9
In Example 9, a single-dose, randomized, open-label, 2-period, 2-treatment crossover study in normal, healthy, adult, male and female subjects conducted to assess the bioequivalence of OxyContin® 40 mg and the oxycodone/naloxone
controlled-release dosage form (40 mg/0.85 mg) of Example 7 was performed. Up to 96 subjects were to be enrolled in order to complete a minimum of 48 subjects who were evaluable for pharmacokinetics. Subjects satisfying the screening requirements were admitted to the study center on Day-1 and underwent a Narcan® (naloxone hydrochloride solution) challenge test on Day 1. Subjects successfully completing the Narcan® challenge were randomly assigned to 1 of 2 crossover treatment sequences (reference to test or test to reference) with a 5-day washout period separating dosing in the 2 periods. Subjects were confined to the study facility continuously from Day - 1 until Day 10. Subjects were dosed with one ofthe treatments at approximately 8:00 AM on Days 2 and 7, per the randomization code. All doses were administered with 8 ounces of water after an overnight fast (excluding water). Following dosing on Days 2 and 7, serial blood samples were collected over the interval from predose to 72 hours postdose. Plasma concentrations of oxycodone and naloxone (as applicable) were determined, and phaπnacokinetic metrics were calculated and analyzed. Safety measurements consisted of reports of adverse events, vital sign measurements, pulse oximetry, clinical laboratory parameters, electrocordiograms (ECG), and physical examinations. For the purpose of statistical analyses, Period 1 was defined as the time from administration ofthe first dose (Day 2) to just prior to administration ofthe second dose (Day 7). Period 2 was defined as the time from administration ofthe second dose (Day 7) to the time ofthe 72-hour postdose blood collection on Day 10. Evaluable subjects (in terms of bioequivalence assessments) must have not had any incidence of emesis for at least 12 hours following each ofthe 2 study treatment.
Pharmacokinetic metrics (mean ± SD) for oxycodone controlled-release with naloxone and OxyContin® are summarized in Table 13 below. For each pharmacokinetic metric determined and calculated, mean values were similar following test and reference treatments and arithmetic means (± SD) of all parameters were within approximately 10%) of each other.
Table 13
Pharmacokinetic metrics (mean ± SD) for naloxone are summarized in Table 14 below.
Table 14
Subject 21 was dosed with oxycodone controlled-release with naloxone in both periods in error. Metrics from Subject 21 are excluded from this analysis because the subject had emesis in both periods prior to 12 hours.
The bioequivalence of oxycodone controlled-release with naloxone (test) versus Oxycontin® (reference was assessed using bioequivalence criteria based on the LS (least squares) mean AUC and Cmax values for each treatment are listed in Table 15 below. Confidence intervals (90%) around the ratios of exponentiated LS means for Cmax and AUC values are also presented in Table 15 below.
Table 15
Subject 21 was dosed with oxycodone controlled-release with naloxone in both periods in error. Metrics from Subject 21 are excluded from this analysis because the subject had emesis in both periods prior to 12 hours.
Log-transformed parameters were used in calculating the ratio and 90% CI and then exponentiated back. The ratio and 90% CI were based on exponentiated LS means with effects for sequence, subject (sequence), period, and treatment in the ANOVA model.
As can be seen from the table above, for AU , AUCco, and Cmax, the upper limit of the 90% confidence intervals ofthe ratios was less than 125% (100%), 100%, and 108% for AUCtj AUC∞, and Cmaχ, respectively), while the lower limit ofthe 90% confidence intervals ofthe ratios was above 80% (94%, 93%, and 100% for AUCt>
AUCoo, and Cmaχ> respectively). These results indicate that 40 mg oxycodone controlled-release with naloxone is bioequivalent to 40 mg OxyContin®.
Safety Analysis
The safety parameters in this study were consistent with parameters utilized to assess safety in Phase 1 studies of opioids. Overall, oxycodone controlled-release with naloxone was well tolerated by healthy subjects. There were no deaths or serious adverse events reported. Two subjects were discontinued from the study because of adverse events. The most common adverse events were pruritus, nausea, dizziness, somnolence, and vomiting. All adverse events were mild to moderate in intensity. All adverse events, with the exception of an adverse event for one subject (whose increased cough was not considered related to study drug and continued after the end ofthe study), resolved by the completion ofthe study. All study drug-related adverse events were consistent with the known safety profile of oxycodone. Changes in clinical laboratory values were sporadic and considered to be unrelated to study medication. There were no clinically meaningful drug-related changes in physical examinations, vital signs, or electrocardiograms (ECGs).
The overall incidence of adverse events (greater than 10%) is presented in Table 16 below.
Table 1
Following each treatment, 85 subjects reported adverse events. The incidence of adverse events was similar between treatments (85 [91.4%] following oxycodone controlled-release with naloxone compared with 85 [90.4%] following OxyContin®). There were 413 adverse events reported by 85 subjects following treatment with oxycodone controlled-release with naloxone (test) compared with 415 adverse events reported by 85 subjects following treatment with OxyContin® (reference). Pruritus, nausea, dizziness, somnolence, and vomiting were the most frequently reported adverse events following either treatment. These adverse events are consistent with the expected adverse event profile ofthe opioid analgesic class of drugs represented by oxycodone controlled-release with naloxone and OxyContin .
Other common adverse events reported following either treatment included euphoria, headache, vasodilatation, and sweating. There were a greater number of subjects reporting vasodilatation, following oxycodone controlled-release with naloxone treatment (23/93, 24.7%) compared with OxyContin® (14/94, 14.9%). After treatment with oxycodone controlled-release with naloxone and OxyContin®,
respectively, the following adverse events were reported with similar percentages: headache (23.7%, 22.3%), euphoria (31.2%, 26.6%), and sweating (10.8%, 8.5%).
Overall, no notable differences between the incidence of any specific adverse events reported in Periods 1 and 2 were observed.
Of the events considered at least possibly related to treatment, those reported with the highest incidence following treatment with oxycodone controlled-release with naloxone and OxyContin®, respectively, were: pruritus (52.7%>, 50.0%); nausea (47.3%, 36.2%); dizziness (36.6%, 45.7%); somnolence (40.9%, 39.4%); vomiting (33.3%, 30.9%); euphoria (31.2%, 26.6%); vasodilation (23.7%, 14.9%), and headache (19.4% , 19.1%).
Overall, no notable differences between the incidence of adverse events considered at least possibly related to treatment reported in Periods 1 and 2 were observed.
Plasma Concentration-Time Curves
Figure 4 displays the mean plasma concentrations of oxycodone over time following both treatments.
Figures 5 and 6 display the mean observed plasma concentration-time curves for naloxone for all subjects evaluable for safety.
Approximately two-thirds of subjects evaluated had plasma naloxone concentrations that were below the limit of quantitation (BLQ [5 pg/mL]) at the majority of time points. In general, mean plasma naloxone concentrations were low and highly variable. Mean naloxone concentrations over time were <1 pg/mL at all time points. However, there were individual subjects who had plasma levels as high as 26 pg/mL.
Conclusions from the study
The test treatment (oxycodone controlled-release 40 mg with naloxone 0.85 nig tablet) is bioequivalent to the reference treatment (OxyContin® 40 mg tablet) for oxycodone.
Mean oxycodone AUCt) AUC„> Cmaχ, , and t>/2 values were similar following test and reference treatments, with all values within approximately 10% of each other.
Mean plasma naloxone concentrations were generally low (<1 pg/mL) and highly variable, ranging from approximately 0 to 26 pg/mL in some subjects. Approximately two-thirds of subjects evaluated had plasma naloxone concentrations that were BLQ (5 pg/mL). There was no clinically significant difference in pharmacokinetic data between male and female patients.
Oxycodone controlled-release 40 mg with naloxone 0.85 mg and OxyContin® 40 mg exhibited a similar safety profile. Both were well tolerated by healthy male and female volunteers.
Many other variations ofthe present invention will be apparent to those skilled in the art and are meant to be within the scope ofthe claims appended hereto.
Claims (41)
1. A phamiaceutical composition comprising about 10 mg oxycodone hydrochloride and 0.80 to 0.90 mg naloxone hydrochloride in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
2. A pharmaceutical composition comprising about 20 mg oxycodone hydrochloride and 0.80 to 0.90 mg naloxone hydrochloride in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
3. A pharmaceutical composition comprising about 40 mg oxycodone hydrochloride and 0.80 to 0.90 mg naloxone hydrochloride in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
4. The pharmaceutical composition of any of claims 1 -3, wherein said composition when tested in-vitro by the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXIV (2000) at 100 φm in 900 ml simulated gastric fluid (SGF) at 37°C provides a dissolution rate of said naloxone hydrochloride which is within ± 30% relative to the dissolution rate of said oxycodone hydrochloride at 1 hour, 4 hours and 12 hours.
5. The pharmaceutical composition of any of claims 1-3, wherein the dosage form provides effective pain relief for at least 12 hours after steady state oral administration to human patients.
6. The pharmaceutical composition of any of claims 1-3, wherein the oxycodone hydrochloride and the naloxone hydrochloride are substantially interdispersed in a matrix further comprising a sustained release excipient.
7. The pharmaceutical composition of claim 4, wherein said naloxone hydrochloride has an in-vitro dissolution rate which is within ± 20%> relative to the dissolution rate of said oxycodone hydrochloride at 1 hour, 4 hours and 12 hours.
8. The phaπnaceutical composition of claim 4, wherein said naloxone hydrochloride has an in-vitro dissolution rate which is within ± 10%> relative to the dissolution rate of said oxycodone hydrochloride at at 1 hour, 4 hours and 12 hours.
9. The phannaceutical composition of any of claims 1-3, wherein the in- vitro dissolution rate of the oxycodone hydrochloride and naloxone hydrochloride is from about 20 to about 60 % (by weight) oxycodone hydrochloride and from about 20 to about 60 % (by weight) naloxone hydrochloride released at 1 hour; from about 30 to about 75 % (by weight) oxycodone hydrochloride and from about 30 % to about 75 % (by weight) naloxone hydrochloride released at 2 hours; from about 40 to about 90 % (by weight) oxycodone hydrochloride and from about 40 to about 90 % (by weight) naloxone hydrochloride released at 4 hours; greater than about 60 % (by weight) oxycodone hydrochloride and greater than about 60 % (by weight) naloxone hydrochloride released at 8 hours; and greater than about 70 % (by weight) oxycodone hydrochloride and greater than about 70% (by weight) naloxone hydrochloride released at 12 hours.
10. The pharmaceutical composition of any of claims 1-3, wherein the in- vitro dissolution rate of the oxycodone hydrochloride and naloxone hydrochloride is from about 30 to 60 % (by weight) oxycodone hydrochloride and from about 30 to about 60 % (by weight) naloxone hydrochloride released at 1 hour; from about 40 to about 70 % (by weight) oxycodone hydrochloride and from about 40 % to about 70 % (by weight) naloxone hydrochloride released at 2 hours; from about 55 to about 90 % (by weight) oxycodone hydrochloride and from about 55 to about 90 % (by weight) naloxone hydrochloride released at 4 hours; greater than about 70 % (by weight) oxycodone hydrochloride and greater than about 70 % (by weight) naloxone hydrochloride released at 8 hours; and greater than about 80 % (by weight) oxycodone hydrochloride and greater than about 80% (by weight) naloxone hydrochloride released at 12 hours.
11. A pharmaceutical composition comprising about 10 mg to about 40 mg oxycodone or a pharmaceutically acceptable salt thereof and 0.65 to 0.90 mg naloxone or a pharmaceutically acceptable salt thereof in a dosage form, wherein said composition when tested in-vitro by the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXTV (2000) at 100 φm in 900 ml simulated gastric fluid (SGF) at 37°C provides a dissolution rate of said naloxone or pharmaceutically acceptable salt thereof which is within ± 20% relative to the dissolution rate of said oxycodone or pharmaceutically acceptable salt thereof at 1 hour, 4 hours and 12 hours.
12. The pharmaceutical composition of any of claims 1-3, which provides a mean AUC of plasma oxycodone within 80%> to 125%) of the mean AUC of plasma oxycodone provided by an oxycodone base equivalent amount of OxyContin® (oxycodone hydrochloride controlled release) upon single dose administration to a population of human subjects.
13. The pharmaceutical composition of any of claims 1 -3 which provides a mean AUC of plasma oxycodone within 90% to 110% of the mean AUC of plasma oxycodone provided by an oxycodone base equivalent amount of OxyContin® (oxycodone hydrochloride controlled release) upon single dose administration to a population of human subjects.
14. The pharmaceutical composition of any of claims 1-3, which provides a mean AUC of plasma oxycodone within 95% to 105%) of the mean AUC of plasma oxycodone provided by an oxycodone base equivalent amount of OxyContin® (oxycodone hydrochloride controlled release) upon single dose administration to a population of human subjects.
15. The phaπnaceutical composition of any of claims 1-3, which provides a mean Cmax of plasma naloxone which is at least 50% less than the mean Cmax of plasma naloxone provided by a naloxone base equivalent amount of Talwin® Nx (pentazocine and naloxone hydrochlorides) upon single dose administration to a population of human subjects.
16. The pharmaceutical composition of any of claims 1-3, which provides a mean Cmax of plasma naloxone which is at least 65% less than the mean Cmax of plasma naloxone provided by a naloxone base equivalent amount of Talwin® Nx (pentazocine and naloxone hydrochlorides) upon single dose administration to a population of human subjects).
17. The pharmaceutical composition of any of claims 1-3, which provides a mean Cmax of plasma naloxone which is at least 80% less than the mean Cmax of plasma naloxone provided by a naloxone base equivalent amount of Talwin® Nx (pentazocine and naloxone hydrochlorides) upon single dose administration to a population of human subjects.
18. The pharmaceutical composition of any of claims 1-3, which provides a mean Cmax of plasma naloxone of less than 180 pg/ml upon single dose administration to a population of human subjects.
19. The pharmaceutical composition of any of claims 1-3, which provides a mean Cmax of plasma naloxone of less than 150 pg/ml upon single dose administration to a population of human subjects.
20. The pharmaceutical composition of any of claims 1-3, which provides a mean Cmax of plasma naloxone of less than 100 pg/ml upon single dose administration to a population of human subjects.
21. The pharmaceutical composition of any of claims 1-3, which provides a mean Cmax of plasma naloxone of less than 50 pg/ml upon single dose administration to a population of human subjects.
22. The pharmaceutical composition of any of claims 1 -3 , which provides a mean Cmax of plasma naloxone of less than 10 pg/ml upon single dose administration to a population of human subjects.
23. The pharmaceutical composition of any of claims 1-3, which provides a mean Cmax of plasma naloxone of less than 5 pg/ml upon single dose administration to a population of human subjects.
24. A pharmaceutical composition comprising about 10 mg to about 40 mg oxycodone or a pharmaceutically acceptable salt thereof in sustained release form and an amount of naloxone or a pharmaceutically acceptable salt thereof to provide a mean Cmax of plasma naloxone of less than 5 pg/ml upon single dose administration to a population of human subjects.
25. A pharmaceutical composition comprising oxycodone or a phaπnaceutically acceptable salt thereof in an amount that is the oxycodone base equivalent of about 10-40 mg oxycodone hydrochloride and naloxone or a pharmaceutically acceptable salt thereof in an amount that is the equivalent of 0.65 to 0.75 mg naloxone base in a dosage form that provides sustained release of at least the oxycodone or pharmaceutically acceptable salt thereof.
26. The pharmaceutical composition of claim 1 or 25 comprising 10 mg oxycodone hydrochloride.
27. The pharmaceutical composition of claim 2 or 25 comprising 20 mg oxycodone hydrochloride.
28. The pharmaceutical composition of claim 3 or 25 comprising 40 mg oxycodone hydrochloride.
29. A method of treating pain in a human patient comprising orally administering a pharmaceutical composition comprising about 10 mg to about 40 mg oxycodone or a phaπnaceutically acceptable salt thereof and 0.65 to 0.90 mg naloxone or a pharmaceutically acceptable salt thereof to a patient in pain, said composition providing a sustained release of at least the oxycodone or pharmaceutically acceptable salt thereof.
30. The method of claim 29, further comprising orally administering said composition every 12 hours at least until steady state is achieved.
31. A method of preparing a sustained release dosage foπn comprising incoφorating 0.65 to 0.90 mg naloxone or a pharmaceutically acceptable salt thereof into a pharmaceutical composition comprising about 10 to about 40 mg oxycodone or , pharmaceutically acceptable salt thereof, said composition providing a sustained release of at least the oxycodone or pharmaceutically acceptable salt thereof.
32. A method of reducing the parenteral abuse of an oxycodone sustained release product comprising incoφorating 0.65 to 0.90 mg naloxone or a pharmaceutically acceptable salt thereof into an oxycodone sustained release product comprising about 10 to about 40 mg oxycodone or pharmaceutically acceptable salt thereof.
33. The use of naloxone or a pharmaceutically acceptable salt thereof in the preparation of a medicament to reduce the parenteral abuse of an oxycodone sustained release product, said medicament comprising 0.65 to 0.90 mg naloxone or a pharmaceutically acceptable salt thereof.
34. A method of treating pain comprising administering a phaπnaceutical composition comprising about 10 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride and thereafter increasing the dosage by administering a pharmaceutical composition comprising about 20 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
35. A method of treating pain comprising administering a pharmaceutical composition comprising about 20 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride and thereafter increasing the dosage by administering a phaπnaceutical composition comprising about 40 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
36. A method of treating pain comprising administering a pharmaceutical composition comprising about 10 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or phaπnaceutically acceptable salt thereof in a dosage foπn that provides sustained release of at least the oxycodone hydrochloride and thereafter increasing the dosage by administering a pharmaceutical composition comprising about 20 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride and thereafter increasing the dosage by administering a phaπnaceutical composition comprising about 40 mg oxycodone hydrochloride and 0.65 to 0.90 mg naloxone or pharmaceutically acceptable salt thereof in a dosage form that provides sustained release of at least the oxycodone hydrochloride.
37. A kit for the treatment of pain comprising: a container comprising at least one formulation comprising about 10 to about 40 g oxycodone or a phaπnaceutically acceptable salt thereof and naloxone or a pharmaceutically acceptable salt thereof; said kit further comprising indicia indicating the use of said foπnulation.
38. The kit of claim 37, wherein said formulation comprises from 0.65 to 0.9 mg naloxone or a phaπnaceutically acceptable salt thereof.
39. The kit of claim 37, wherein said indicia indicates that said use is to reduce the parenteral abuse of said formulation.
40. The pharmaceutical formulation of claim 9 wherein said composition when tested in-vitro by the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXTV (2000) at 100 φm in 900 ml simulated gastric fluid (SGF) at 37°C provides a dissolution rate of said naloxone hydrochloride which is within + 30% relative to the dissolution rate of said oxycodone hydrochloride at 1 hour, 4 hours and 12 hours.
41. The pharmaceutical foπnulation of claim 10 wherein said composition when tested in-vitro by the USP Apparatus I (Basket) method of U.S. Pharmacopeia XXIV (2000) at 100 φm in 900 ml simulated gastric fluid (SGF) at 37°C provides a dissolution rate of said naloxone hydrochloride which is within ± 30% relative to the dissolution rate of said oxycodone hydrochloride at 1 hour, 4 hours and 12 hours.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30630101P | 2001-07-18 | 2001-07-18 | |
US60/306,301 | 2001-07-18 | ||
PCT/US2002/023126 WO2003007802A2 (en) | 2001-07-18 | 2002-07-18 | Pharmaceutical combinations of oxycodone and naloxone |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2002316738A1 true AU2002316738A1 (en) | 2003-05-22 |
AU2002316738B2 AU2002316738B2 (en) | 2009-01-08 |
Family
ID=23184689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002316738A Expired AU2002316738B2 (en) | 2001-07-18 | 2002-07-18 | Pharmaceutical combinations of oxycodone and naloxone |
Country Status (15)
Country | Link |
---|---|
US (1) | US7943173B2 (en) |
EP (1) | EP1416842B1 (en) |
JP (2) | JP4256259B2 (en) |
AT (1) | ATE419039T1 (en) |
AU (1) | AU2002316738B2 (en) |
CA (1) | CA2454328C (en) |
CY (1) | CY1108918T1 (en) |
DE (1) | DE60230632D1 (en) |
DK (1) | DK1416842T3 (en) |
ES (1) | ES2319620T3 (en) |
IL (2) | IL159917A0 (en) |
MX (1) | MXPA04000584A (en) |
PT (1) | PT1416842E (en) |
SI (1) | SI1416842T1 (en) |
WO (1) | WO2003007802A2 (en) |
Families Citing this family (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6375957B1 (en) | 1997-12-22 | 2002-04-23 | Euro-Celtique, S.A. | Opioid agonist/opioid antagonist/acetaminophen combinations |
EP1685839B8 (en) * | 1997-12-22 | 2013-06-26 | Euro-Celtique S.A. | Pharmaceutical oral dosage form comprising a combination of an opioid agonist and opioid antagonist |
EP2092936B1 (en) | 2000-02-08 | 2013-03-20 | Euro-Celtique S.A. | Tamper-resistant oral opioid agonist formulations |
DE60238756D1 (en) | 2001-05-11 | 2011-02-10 | Endo Pharmaceuticals Inc | OPIOID CONTAINING ARZNEIFORM AGAINST MISUSE |
US7276250B2 (en) * | 2001-07-06 | 2007-10-02 | Penwest Pharmaceuticals Company | Sustained release formulations of oxymorphone |
US8329216B2 (en) | 2001-07-06 | 2012-12-11 | Endo Pharmaceuticals Inc. | Oxymorphone controlled release formulations |
CN1551770A (en) * | 2001-07-06 | 2004-12-01 | ������ҩ������˾ | Sustained release formulations of oxymorphone |
PT1416842E (en) * | 2001-07-18 | 2009-03-31 | Euro Celtique Sa | Pharmaceutical combinations of oxycodone and naloxone |
US7157103B2 (en) | 2001-08-06 | 2007-01-02 | Euro-Celtique S.A. | Pharmaceutical formulation containing irritant |
US7332182B2 (en) | 2001-08-06 | 2008-02-19 | Purdue Pharma L.P. | Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant |
DE60232417D1 (en) | 2001-08-06 | 2009-07-02 | Euro Celtique Sa | OPIOID AGONIST FORMULATIONS WITH FREEZER AND SEQUESTRATED ANTAGONIST |
CA2459976A1 (en) * | 2001-09-26 | 2003-04-03 | Penwest Pharmaceuticals Company | Opioid formulations having reduced potential for abuse |
US20070281003A1 (en) | 2001-10-12 | 2007-12-06 | Fuisz Richard C | Polymer-Based Films and Drug Delivery Systems Made Therefrom |
US11207805B2 (en) | 2001-10-12 | 2021-12-28 | Aquestive Therapeutics, Inc. | Process for manufacturing a resulting pharmaceutical film |
US8603514B2 (en) | 2002-04-11 | 2013-12-10 | Monosol Rx, Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US8765167B2 (en) | 2001-10-12 | 2014-07-01 | Monosol Rx, Llc | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US20190328679A1 (en) | 2001-10-12 | 2019-10-31 | Aquestive Therapeutics, Inc. | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US8900497B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for making a film having a substantially uniform distribution of components |
US10285910B2 (en) | 2001-10-12 | 2019-05-14 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US8900498B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US20110033542A1 (en) | 2009-08-07 | 2011-02-10 | Monosol Rx, Llc | Sublingual and buccal film compositions |
US7357891B2 (en) | 2001-10-12 | 2008-04-15 | Monosol Rx, Llc | Process for making an ingestible film |
LT2425825T (en) | 2002-04-05 | 2017-02-27 | Euro-Celtique S.A. | Pharmaceutical preparation containing oxycodone and naloxone |
US8017150B2 (en) * | 2002-04-11 | 2011-09-13 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US7776314B2 (en) | 2002-06-17 | 2010-08-17 | Grunenthal Gmbh | Abuse-proofed dosage system |
EP2422772A3 (en) * | 2002-09-20 | 2012-04-18 | Alpharma, Inc. | Sequestering subunit and related compositions and methods |
US7524515B2 (en) | 2003-01-10 | 2009-04-28 | Mutual Pharmaceuticals, Inc. | Pharmaceutical safety dosage forms |
US20040202717A1 (en) | 2003-04-08 | 2004-10-14 | Mehta Atul M. | Abuse-resistant oral dosage forms and method of use thereof |
MY135852A (en) * | 2003-04-21 | 2008-07-31 | Euro Celtique Sa | Pharmaceutical products |
US8790689B2 (en) * | 2003-04-30 | 2014-07-29 | Purdue Pharma L.P. | Tamper resistant transdermal dosage form |
MXPA05011703A (en) | 2003-04-30 | 2006-01-23 | Purdue Pharma Lp | Tamper-resistant transdermal dosage form comprising an active agent component and an adverse agent component at the distal site of the active agent layer. |
US8067430B1 (en) * | 2003-07-29 | 2011-11-29 | University Of South Florida | Anti-HIV activity of the opioid antagonist naloxone |
US8075872B2 (en) | 2003-08-06 | 2011-12-13 | Gruenenthal Gmbh | Abuse-proofed dosage form |
DE10336400A1 (en) | 2003-08-06 | 2005-03-24 | Grünenthal GmbH | Anti-abuse dosage form |
DE102005005446A1 (en) * | 2005-02-04 | 2006-08-10 | Grünenthal GmbH | Break-resistant dosage forms with sustained release |
DE102004020220A1 (en) * | 2004-04-22 | 2005-11-10 | Grünenthal GmbH | Process for the preparation of a secured against misuse, solid dosage form |
US20070048228A1 (en) | 2003-08-06 | 2007-03-01 | Elisabeth Arkenau-Maric | Abuse-proofed dosage form |
DE10361596A1 (en) * | 2003-12-24 | 2005-09-29 | Grünenthal GmbH | Process for producing an anti-abuse dosage form |
DE502004004205D1 (en) * | 2003-08-06 | 2007-08-09 | Gruenenthal Gmbh | AGAINST MISUSE SECURED PHARMACEUTICAL FORM |
US20060194826A1 (en) * | 2003-09-25 | 2006-08-31 | Euro-Celtique S.A. | Pharmaceutical combinations of hydrocodone and naltrexone |
TWI365880B (en) | 2004-03-30 | 2012-06-11 | Euro Celtique Sa | Process for preparing oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone and oxycodone hydrochloride composition,pharmaceutical dosage form,sustained release oeal dosage form and pharmaceutically acceptable package having less than 25 pp |
EP1604666A1 (en) * | 2004-06-08 | 2005-12-14 | Euro-Celtique S.A. | Opioids for the treatment of the Chronic Obstructive Pulmonary Disease (COPD) |
EP1604667A1 (en) * | 2004-06-08 | 2005-12-14 | Euro-Celtique S.A. | Opioids for the treatment of the restless leg syndrome |
DE102004032103A1 (en) * | 2004-07-01 | 2006-01-19 | Grünenthal GmbH | Anti-abuse, oral dosage form |
DE102004032049A1 (en) * | 2004-07-01 | 2006-01-19 | Grünenthal GmbH | Anti-abuse, oral dosage form |
KR20090029856A (en) * | 2005-01-28 | 2009-03-23 | 유로-셀띠끄 소시에떼 아노님 | Alcohol Resistant Formulations |
DE102005005449A1 (en) * | 2005-02-04 | 2006-08-10 | Grünenthal GmbH | Process for producing an anti-abuse dosage form |
EP1702558A1 (en) | 2005-02-28 | 2006-09-20 | Euro-Celtique S.A. | Method and device for the assessment of bowel function |
EP1695700A1 (en) * | 2005-02-28 | 2006-08-30 | Euro-Celtique S.A. | Dosage form containing oxycodone and naloxone |
US20070212414A1 (en) * | 2006-03-08 | 2007-09-13 | Penwest Pharmaceuticals Co. | Ethanol-resistant sustained release formulations |
PT2719378T (en) | 2006-06-19 | 2016-11-02 | Alpharma Pharmaceuticals Llc | Pharmaceutical compositions |
WO2008011595A2 (en) * | 2006-07-21 | 2008-01-24 | Lab International Srl | Hydrophobic abuse deterrent delivery system |
EA017832B1 (en) | 2006-08-04 | 2013-03-29 | Этифарм | Granule and orally disintegrating tablet comprising oxycodone |
EP1897543A1 (en) | 2006-08-30 | 2008-03-12 | Euro-Celtique S.A. | Buprenorphine- wafer for drug substitution therapy |
EP2073797A2 (en) * | 2006-10-11 | 2009-07-01 | Alpharma, Inc. | Pharmaceutical compositions |
US20080171762A1 (en) * | 2007-01-16 | 2008-07-17 | Ockert David M | Treatment of pain with naloxone |
DE102007011485A1 (en) | 2007-03-07 | 2008-09-11 | Grünenthal GmbH | Dosage form with more difficult abuse |
US20090124650A1 (en) * | 2007-06-21 | 2009-05-14 | Endo Pharmaceuticals, Inc. | Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol |
EP2207533B1 (en) * | 2007-10-10 | 2021-01-06 | Avantor Performance Materials, LLC | Directly compressible high functionality granular microcrystalline cellulose based excipient, manufacturing process and use thereof |
US20100055180A1 (en) * | 2007-10-10 | 2010-03-04 | Mallinckrodt Baker, Inc. | Directly Compressible Granular Microcrystalline Cellulose Based Excipient, Manufacturing Process and Use Thereof |
US8623418B2 (en) | 2007-12-17 | 2014-01-07 | Alpharma Pharmaceuticals Llc | Pharmaceutical composition |
EP2224805A4 (en) * | 2007-12-17 | 2013-10-16 | Alpharma Pharmaceuticals Llc | Pharmaceutical composition |
RU2493830C2 (en) | 2008-01-25 | 2013-09-27 | Грюненталь Гмбх | Drug form |
CN102123701B (en) | 2008-05-09 | 2013-03-27 | 格吕伦塔尔有限公司 | Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step |
SI2317991T1 (en) * | 2008-07-07 | 2017-09-29 | Euro-Celtique S.A. | Use of opioid antagonists for treating urinary retention |
HRP20182124T1 (en) | 2009-03-10 | 2019-03-08 | Euro-Celtique S.A. | CURRENT RELEASE PHARMACEUTICAL COMPOSITIONS CONTAINING OXYCODONE AND NALOXONE |
ES2534908T3 (en) * | 2009-07-22 | 2015-04-30 | Grünenthal GmbH | Hot melt extruded controlled release dosage form |
WO2011009603A1 (en) | 2009-07-22 | 2011-01-27 | Grünenthal GmbH | Tamper-resistant dosage form for oxidation-sensitive oploids |
US8475832B2 (en) | 2009-08-07 | 2013-07-02 | Rb Pharmaceuticals Limited | Sublingual and buccal film compositions |
MY165149A (en) * | 2010-08-13 | 2018-02-28 | Euro Celtique Sa | Use of binders for manufacturing storage stable formulations |
KR20130137627A (en) | 2010-09-02 | 2013-12-17 | 그뤼넨탈 게엠베하 | Tamper resistant dosage form comprising an anionic polymer |
ES2486791T3 (en) | 2010-09-02 | 2014-08-19 | Grünenthal GmbH | Tamper resistant dosage form comprising an inorganic salt |
US9149959B2 (en) | 2010-10-22 | 2015-10-06 | Monosol Rx, Llc | Manufacturing of small film strips |
KR101632858B1 (en) * | 2010-12-28 | 2016-06-22 | 유로-셀티큐 에스.에이. | A combination of an opioid agonist and an opioid antagonist in the treatment of parkinson's disease |
CA2839126A1 (en) | 2011-07-29 | 2013-02-07 | Grunenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
HUE034711T2 (en) | 2011-07-29 | 2018-02-28 | Gruenenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
PH12014500316B1 (en) | 2011-09-19 | 2018-10-03 | Orexo Ab | New abuse-resistant pharmaceutical composition for the treatment of opioid dependence |
AU2012320496C1 (en) * | 2011-10-06 | 2017-09-28 | Grünenthal GmbH | Tamper-resistant oral pharmaceutical dosage form comprising opioid agonist and opioid antagonist |
JP6117249B2 (en) | 2012-02-28 | 2017-04-19 | グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Tamper resistant dosage forms comprising a pharmacologically active compound and an anionic polymer |
AR090695A1 (en) | 2012-04-18 | 2014-12-03 | Gruenenthal Gmbh | PHARMACEUTICAL DOSAGE FORM RESISTANT TO ADULTERATION AND RESISTANT TO IMMEDIATE RELEASE OF DOSE |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
AU2013291725B2 (en) | 2012-07-16 | 2016-07-28 | Rhodes Technologies | Process for improved opioid synthesis |
UA117226C2 (en) * | 2012-07-16 | 2018-07-10 | Родес Текнолоджіс | Process for improved opioid synthesis |
BR112015029616A2 (en) | 2013-05-29 | 2017-07-25 | Gruenenthal Gmbh | tamper-resistant dosage form with bimodal release profile |
EP3003279A1 (en) | 2013-05-29 | 2016-04-13 | Grünenthal GmbH | Tamper-resistant dosage form containing one or more particles |
CN105682643B (en) | 2013-07-12 | 2019-12-13 | 格吕伦塔尔有限公司 | Tamper-Resistant Dosage Form Containing Ethylene Vinyl Acetate Polymer |
CA2918004C (en) | 2013-07-23 | 2018-11-20 | Euro-Celtique S.A. | A combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation |
WO2015023675A2 (en) | 2013-08-12 | 2015-02-19 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded immediate release abuse deterrent pill |
EP3073994A1 (en) | 2013-11-26 | 2016-10-05 | Grünenthal GmbH | Preparation of a powdery pharmaceutical composition by means of cryo-milling |
WO2015086528A1 (en) | 2013-12-11 | 2015-06-18 | Develco Pharma Schweiz Ag | Naloxone mono-product and multi-layer tablet |
US10105360B2 (en) | 2013-12-11 | 2018-10-23 | Develco Pharma Schweiz Ag | Method and composition for the treatment of opioid induced constipation |
US10172797B2 (en) | 2013-12-17 | 2019-01-08 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
US9492444B2 (en) | 2013-12-17 | 2016-11-15 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
CN106029670A (en) | 2014-01-15 | 2016-10-12 | 罗德科技公司 | Improved method for the synthesis of oxycodone |
ES2672795T3 (en) | 2014-01-15 | 2018-06-18 | Rhodes Technologies | Process for the improved synthesis of oxymorphone |
MX2016014738A (en) | 2014-05-12 | 2017-03-06 | Gruenenthal Gmbh | Tamper resistant immediate release capsule formulation comprising tapentadol. |
US9872835B2 (en) | 2014-05-26 | 2018-01-23 | Grünenthal GmbH | Multiparticles safeguarded against ethanolic dose-dumping |
CA2910865C (en) | 2014-07-15 | 2016-11-29 | Isa Odidi | Compositions and methods for reducing overdose |
AU2015290098B2 (en) | 2014-07-17 | 2018-11-01 | Pharmaceutical Manufacturing Research Services, Inc. | Immediate release abuse deterrent liquid fill dosage form |
JP2017531026A (en) * | 2014-10-20 | 2017-10-19 | ファーマシューティカル マニュファクチュアリング リサーチ サービシズ,インコーポレーテッド | Sustained release abuse deterrent liquid filler form |
WO2016091805A2 (en) * | 2014-12-08 | 2016-06-16 | Develco Pharma Schweiz Ag | Naloxone monopreparation and multi-layer tablet |
EP3285745A1 (en) | 2015-04-24 | 2018-02-28 | Grünenthal GmbH | Tamper-resistant dosage form with immediate release and resistance against solvent extraction |
WO2017042325A1 (en) | 2015-09-10 | 2017-03-16 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
US9943513B1 (en) | 2015-10-07 | 2018-04-17 | Banner Life Sciences Llc | Opioid abuse deterrent dosage forms |
US10335405B1 (en) | 2016-05-04 | 2019-07-02 | Patheon Softgels, Inc. | Non-burst releasing pharmaceutical composition |
WO2017192921A1 (en) | 2016-05-05 | 2017-11-09 | Monosol Rx, Llc | Enhanced delivery epinephrine compositions |
US11273131B2 (en) | 2016-05-05 | 2022-03-15 | Aquestive Therapeutics, Inc. | Pharmaceutical compositions with enhanced permeation |
US10647045B1 (en) * | 2016-11-03 | 2020-05-12 | Specialty Earth Sciences, Llc | Shaped or sized encapsulated reactant and method of making |
US10335375B2 (en) | 2017-05-30 | 2019-07-02 | Patheon Softgels, Inc. | Anti-overingestion abuse deterrent compositions |
WO2019169108A1 (en) * | 2018-02-28 | 2019-09-06 | Celista Pharmaceuticals Llc | Oxycodone and methylnaltrexone multi-particulates and suspensions containing them |
CN115252583B (en) * | 2022-07-11 | 2023-08-08 | 河北奥星集团药业有限公司 | Compound telithromycin hydrochloride slow-release preparation and preparation method thereof |
CN115120568B (en) * | 2022-07-11 | 2023-08-22 | 河北奥星集团药业有限公司 | Compound tilidine hydrochloride sustained-release tablet and preparation method thereof |
Family Cites Families (197)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2770569A (en) | 1952-08-01 | 1956-11-13 | Hoffmann La Roche | Analgesic compositions |
US3173876A (en) * | 1960-05-27 | 1965-03-16 | John C Zobrist | Cleaning methods and compositions |
NL271831A (en) * | 1960-11-29 | |||
US3493657A (en) * | 1961-03-14 | 1970-02-03 | Mozes Juda Lewenstein | Therapeutic compositions of n-allyl-14-hydroxy - dihydronormorphinane and morphine |
US3332950A (en) | 1963-03-23 | 1967-07-25 | Endo Lab | 14-hydroxydihydronormorphinone derivatives |
US3276586A (en) | 1963-08-30 | 1966-10-04 | Rosaen Filter Co | Indicating means for fluid filters |
US3541006A (en) | 1968-07-03 | 1970-11-17 | Amicon Corp | Ultrafiltration process |
US3541005A (en) | 1969-02-05 | 1970-11-17 | Amicon Corp | Continuous ultrafiltration of macromolecular solutions |
US3773955A (en) | 1970-08-03 | 1973-11-20 | Bristol Myers Co | Analgetic compositions |
US3879555A (en) * | 1970-11-16 | 1975-04-22 | Bristol Myers Co | Method of treating drug addicts |
US3676557A (en) | 1971-03-02 | 1972-07-11 | Endo Lab | Long-acting narcotic antagonist formulations |
GB1390772A (en) * | 1971-05-07 | 1975-04-16 | Endo Lab | Oral narcotic composition |
US3965256A (en) * | 1972-05-16 | 1976-06-22 | Synergistics | Slow release pharmaceutical compositions |
US3916899A (en) | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US3966940A (en) * | 1973-11-09 | 1976-06-29 | Bristol-Myers Company | Analgetic compositions |
US4077407A (en) | 1975-11-24 | 1978-03-07 | Alza Corporation | Osmotic devices having composite walls |
JPS5951223B2 (en) | 1977-03-15 | 1984-12-12 | 電気音響株式会社 | rotor |
US4175119A (en) | 1978-01-11 | 1979-11-20 | Porter Garry L | Composition and method to prevent accidental and intentional overdosage with psychoactive drugs |
US4176186A (en) | 1978-07-28 | 1979-11-27 | Boehringer Ingelheim Gmbh | Quaternary derivatives of noroxymorphone which relieve intestinal immobility |
US4285987A (en) | 1978-10-23 | 1981-08-25 | Alza Corporation | Process for manufacturing device with dispersion zone |
US4200098A (en) * | 1978-10-23 | 1980-04-29 | Alza Corporation | Osmotic system with distribution zone for dispensing beneficial agent |
US4237140A (en) | 1979-05-18 | 1980-12-02 | E. I. Du Pont De Nemours And Company | Analgesic mixture of nalbuphine and acetaminophen |
IE49324B1 (en) | 1979-12-19 | 1985-09-18 | Euro Celtique Sa | Controlled release compositions |
US4457933A (en) * | 1980-01-24 | 1984-07-03 | Bristol-Myers Company | Prevention of analgesic abuse |
US4464378A (en) | 1981-04-28 | 1984-08-07 | University Of Kentucky Research Foundation | Method of administering narcotic antagonists and analgesics and novel dosage forms containing same |
US4587118A (en) * | 1981-07-15 | 1986-05-06 | Key Pharmaceuticals, Inc. | Dry sustained release theophylline oral formulation |
US4401672A (en) | 1981-10-13 | 1983-08-30 | Regents Of The University Of Minnesota | Non-addictive narcotic antitussive preparation |
US4608376A (en) | 1981-10-16 | 1986-08-26 | Carolyn McGinnis | Opiate agonists and antagonists |
US4987136A (en) * | 1982-03-16 | 1991-01-22 | The Rockefeller University | Method for controlling gastrointestinal dysmotility |
US4443428A (en) * | 1982-06-21 | 1984-04-17 | Euroceltique, S.A. | Extended action controlled release compositions |
US4451470A (en) * | 1982-07-06 | 1984-05-29 | E. I. Du Pont De Nemours And Company | Analgesic, antagonist, and/or anorectic 14-fluoromorphinans |
US4803208A (en) * | 1982-09-30 | 1989-02-07 | Sloan-Kettering Institute For Cancer Research | Opiate agonists and antagonists |
GB8332556D0 (en) * | 1983-12-06 | 1984-01-11 | Reckitt & Colmann Prod Ltd | Analgesic compositions |
US5266574A (en) * | 1984-04-09 | 1993-11-30 | Ian S. Zagon | Growth regulation and related applications of opioid antagonists |
DE3434946A1 (en) * | 1984-09-22 | 1986-04-03 | Basf Ag, 6700 Ludwigshafen | DIARYLACETYLENE, THEIR PRODUCTION AND USE |
US4573995A (en) * | 1984-10-09 | 1986-03-04 | Alza Corporation | Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine |
GB8430346D0 (en) * | 1984-11-30 | 1985-01-09 | Reckitt & Colmann Prod Ltd | Analgesic compositions |
US4806341A (en) * | 1985-02-25 | 1989-02-21 | Rutgers, The State University Of New Jersey | Transdermal absorption dosage unit for narcotic analgesics and antagonists and process for administration |
ZA861211B (en) | 1985-02-25 | 1987-10-28 | Lilly Co Eli | Analgesic composition |
GB8514665D0 (en) | 1985-06-11 | 1985-07-10 | Eroceltique Sa | Oral pharmaceutical composition |
FR2585246A1 (en) * | 1985-07-26 | 1987-01-30 | Cortial | PROCESS FOR OBTAINING SOLID PHARMACEUTICAL FORMS WITH PROLONGED RELEASE |
GB8521350D0 (en) | 1985-08-28 | 1985-10-02 | Euro Celtique Sa | Analgesic composition |
US4889860A (en) | 1985-09-23 | 1989-12-26 | Nova Pharmaceutical Corporation | Oximes of oxymorphone, naltrexone and naloxone as potent, selective opioid receptor agonists and antagonists |
US4760069A (en) | 1985-09-23 | 1988-07-26 | Nova Pharmaceutical Corporation | Oximes of oxymorphone, naltrexone and naloxone as potent, selective opioid receptor agonists and antagonists |
US4730048A (en) * | 1985-12-12 | 1988-03-08 | Regents Of The University Of Minnesota | Gut-selective opiates |
US4719215A (en) * | 1986-03-07 | 1988-01-12 | University Of Chicago | Quaternary derivatives of noroxymorphone which relieve nausea and emesis |
US4861781A (en) | 1986-03-07 | 1989-08-29 | The University Of Chicago | Quaternary derivatives of noroxymorphone which relieve nausea and emesis |
US5316759A (en) | 1986-03-17 | 1994-05-31 | Robert J. Schaap | Agonist-antagonist combination to reduce the use of nicotine and other drugs |
GB8613688D0 (en) * | 1986-06-05 | 1986-07-09 | Euro Celtique Sa | Pharmaceutical composition |
GB8613689D0 (en) * | 1986-06-05 | 1986-07-09 | Euro Celtique Sa | Pharmaceutical composition |
DE3750145T2 (en) * | 1986-06-10 | 1994-11-03 | Euro Celtique Sa | Controlled release composition of dihydrocodeine. |
US4769372A (en) * | 1986-06-18 | 1988-09-06 | The Rockefeller University | Method of treating patients suffering from chronic pain or chronic cough |
US4785000A (en) | 1986-06-18 | 1988-11-15 | The Rockefeller University | Method of treating patients suffering from chronic pain or chronic cough |
US4861598A (en) | 1986-07-18 | 1989-08-29 | Euroceltique, S.A. | Controlled release bases for pharmaceuticals |
US4970075A (en) | 1986-07-18 | 1990-11-13 | Euroceltique, S.A. | Controlled release bases for pharmaceuticals |
US5356900A (en) | 1986-10-07 | 1994-10-18 | Bernard Bihari | Method of treating chronic herpes virus infections using an opiate receptor antagonist |
GB8626098D0 (en) * | 1986-10-31 | 1986-12-03 | Euro Celtique Sa | Controlled release hydromorphone composition |
US4806543A (en) * | 1986-11-25 | 1989-02-21 | Board Of Trustees Of The Leland Stanford Junior University | Method and compositions for reducing neurotoxic injury |
GB8628728D0 (en) | 1986-12-02 | 1987-01-07 | Euro Celtique Sa | Spheroids |
GB8705083D0 (en) | 1987-03-04 | 1987-04-08 | Euro Celtique Sa | Spheroids |
GB8728294D0 (en) | 1987-12-03 | 1988-01-06 | Reckitt & Colmann Prod Ltd | Treatment compositions |
US4873076A (en) | 1988-04-29 | 1989-10-10 | Baker Cummins Pharmaceuticals, Inc. | Method of safely providing anesthesia or conscious sedation |
GB8813064D0 (en) * | 1988-06-02 | 1988-07-06 | Euro Celtique Sa | Controlled release dosage forms having defined water content |
US4882335A (en) | 1988-06-13 | 1989-11-21 | Alko Limited | Method for treating alcohol-drinking response |
JPH0653683B2 (en) * | 1988-07-14 | 1994-07-20 | ザ ロックフェラー ユニバーシティ | Oral composition for treating chronic pain or cough |
EP0352361A1 (en) | 1988-07-29 | 1990-01-31 | The Rockefeller University | Method of treating patients suffering from chronic pain or chronic cough |
US5236714A (en) | 1988-11-01 | 1993-08-17 | Alza Corporation | Abusable substance dosage form having reduced abuse potential |
CA2002492A1 (en) | 1988-11-11 | 1990-05-11 | Sandra T. A. Malkowska | Pharmaceutical ion exchange resin composition |
US5102887A (en) * | 1989-02-17 | 1992-04-07 | Arch Development Corporation | Method for reducing emesis and nausea induced by the administration of an emesis causing agent |
US5096715A (en) * | 1989-11-20 | 1992-03-17 | Alko Ltd. | Method and means for treating alcoholism by extinguishing the alcohol-drinking response using a transdermally administered opiate antagonist |
US5075341A (en) | 1989-12-01 | 1991-12-24 | The Mclean Hospital Corporation | Treatment for cocaine abuse |
US5086058A (en) * | 1990-06-04 | 1992-02-04 | Alko Ltd. | Method for treating alcoholism with nalmefene |
FR2669336B1 (en) | 1990-11-20 | 1993-01-22 | Adir | NOVEL OXAZOLO PYRIDINES DERIVATIVES, PROCESSES FOR THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM. |
HU208633B (en) * | 1991-02-04 | 1993-12-28 | Alkaloida Vegyeszeti Gyar | Process for production of analgetic compositions as applicable for blocking of opioid-binding spaces /2-receptors/ causing respiration depression |
US5486362A (en) * | 1991-05-07 | 1996-01-23 | Dynagen, Inc. | Controlled, sustained release delivery system for treating drug dependency |
US5149538A (en) | 1991-06-14 | 1992-09-22 | Warner-Lambert Company | Misuse-resistive transdermal opioid dosage form |
KR100221695B1 (en) * | 1991-08-12 | 1999-09-15 | 그린 마틴, 브라이언 쥐 테슬리 | Pharmaceutical Formulation Formulations |
CA2095523C (en) | 1991-09-06 | 2004-06-22 | Robert B. Raffa | Composition comprising a tramadol material and acetaminophen and its use |
US5215758A (en) * | 1991-09-11 | 1993-06-01 | Euroceltique, S.A. | Controlled release matrix suppository for pharmaceuticals |
US5225440A (en) | 1991-09-13 | 1993-07-06 | The United States Of America As Represented By The Department Of Health And Human Services | Attenuation of the opioid withdrawal syndrome by inhibitors of nitric oxide synthase |
US5226331A (en) | 1991-10-03 | 1993-07-13 | General Electric Company | Apparatus and method for measuring the particle number rate and the velocity distribution of a sprayed stream |
US5266331A (en) * | 1991-11-27 | 1993-11-30 | Euroceltique, S.A. | Controlled release oxycodone compositions |
US5656295A (en) | 1991-11-27 | 1997-08-12 | Euro-Celtique, S.A. | Controlled release oxycodone compositions |
US5681585A (en) | 1991-12-24 | 1997-10-28 | Euro-Celtique, S.A. | Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer |
US5478577A (en) | 1993-11-23 | 1995-12-26 | Euroceltique, S.A. | Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level |
US5472712A (en) | 1991-12-24 | 1995-12-05 | Euroceltique, S.A. | Controlled-release formulations coated with aqueous dispersions of ethylcellulose |
US5968551A (en) | 1991-12-24 | 1999-10-19 | Purdue Pharma L.P. | Orally administrable opioid formulations having extended duration of effect |
US5958459A (en) | 1991-12-24 | 1999-09-28 | Purdue Pharma L.P. | Opioid formulations having extended controlled released |
US5286493A (en) * | 1992-01-27 | 1994-02-15 | Euroceltique, S.A. | Stabilized controlled release formulations having acrylic polymer coating |
US5580578A (en) * | 1992-01-27 | 1996-12-03 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5273760A (en) | 1991-12-24 | 1993-12-28 | Euroceltigue, S.A. | Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer |
GB9203689D0 (en) * | 1992-02-20 | 1992-04-08 | Euro Celtique Sa | Pharmaceutical composition |
GB9204354D0 (en) | 1992-02-28 | 1992-04-08 | Biokine Tech Ltd | Compounds for medicinal use |
US5780051A (en) * | 1992-04-02 | 1998-07-14 | Dynagen, Inc. | Methods and articles of manufacture for nicotine cessation and monitoring nicotine use |
DE69334237D1 (en) * | 1992-06-22 | 2008-09-25 | State Of Oregon Through Oregon | GLYCINE RECEPTOR ANTAGONISTS AND THEIR USE |
US5352680A (en) | 1992-07-15 | 1994-10-04 | Regents Of The University Of Minnesota | Delta opioid receptor antagonists to block opioid agonist tolerance and dependence |
US5256669A (en) | 1992-08-07 | 1993-10-26 | Aminotek Sciences, Inc. | Methods and compositions for treating acute or chronic pain and drug addiction |
US5324351A (en) * | 1992-08-13 | 1994-06-28 | Euroceltique | Aqueous dispersions of zein and preparation thereof |
US6096756A (en) * | 1992-09-21 | 2000-08-01 | Albert Einstein College Of Medicine Of Yeshiva University | Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists |
US5633259A (en) * | 1992-09-21 | 1997-05-27 | United Biomedical, Inc. | Method for identification of low/non-addictive opioid analgesics and the use of said analgesics for treatment of opioid addiction |
US5580876A (en) * | 1992-09-21 | 1996-12-03 | Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University | Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists |
US20010006967A1 (en) | 1992-09-21 | 2001-07-05 | Stanley M. Crain | Method of simultaneously enhancing analgesic potency and attenuating adverse side effects caused by tramadol and other bimodally-acting opioid agonists |
US5512578A (en) * | 1992-09-21 | 1996-04-30 | Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University | Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by exogenous and endogenous opiod agonists |
US5472943A (en) | 1992-09-21 | 1995-12-05 | Albert Einstein College Of Medicine Of Yeshiva University, | Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other opioid agonists |
US5869097A (en) * | 1992-11-02 | 1999-02-09 | Alza Corporation | Method of therapy comprising an osmotic caplet |
US5604260A (en) * | 1992-12-11 | 1997-02-18 | Merck Frosst Canada Inc. | 5-methanesulfonamido-1-indanones as an inhibitor of cyclooxygenase-2 |
US5321012A (en) * | 1993-01-28 | 1994-06-14 | Virginia Commonwealth University Medical College | Inhibiting the development of tolerance to and/or dependence on a narcotic addictive substance |
US5585348A (en) | 1993-02-10 | 1996-12-17 | Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University | Use of excitatory opioid receptor antagonists to prevent growth factor-induced hyperalgesia |
US5352683A (en) | 1993-03-05 | 1994-10-04 | Virginia Commonwealth University Medical College Of Virginia | Method for the treatment of chronic pain |
CA2115792C (en) * | 1993-03-05 | 2005-11-01 | David J. Mayer | Method for the treatment of pain |
US5409944A (en) * | 1993-03-12 | 1995-04-25 | Merck Frosst Canada, Inc. | Alkanesulfonamido-1-indanone derivatives as inhibitors of cyclooxygenase |
NZ260408A (en) | 1993-05-10 | 1996-05-28 | Euro Celtique Sa | Controlled release preparation comprising tramadol |
US5457208A (en) | 1993-06-21 | 1995-10-10 | Regents Of The University Of Minnesota | Kappa opioid receptor antagonists |
US5436265A (en) | 1993-11-12 | 1995-07-25 | Merck Frosst Canada, Inc. | 1-aroyl-3-indolyl alkanoic acids and derivatives thereof useful as anti-inflammatory agents |
US5474995A (en) | 1993-06-24 | 1995-12-12 | Merck Frosst Canada, Inc. | Phenyl heterocycles as cox-2 inhibitors |
IL110014A (en) | 1993-07-01 | 1999-11-30 | Euro Celtique Sa | Solid controlled-release oral dosage forms of opioid analgesics |
US5879705A (en) | 1993-07-27 | 1999-03-09 | Euro-Celtique S.A. | Sustained release compositions of morphine and a method of preparing pharmaceutical compositions |
DE4325465B4 (en) * | 1993-07-29 | 2004-03-04 | Zenz, Michael, Prof. Dr.med. | Oral pharmaceutical preparation for pain therapy |
US5411965A (en) * | 1993-08-23 | 1995-05-02 | Arizona Board Of Regents | Use of delta opioid receptor antagonists to treat cocaine abuse |
GB9319568D0 (en) * | 1993-09-22 | 1993-11-10 | Euro Celtique Sa | Pharmaceutical compositions and usages |
EP1442745A1 (en) | 1993-10-07 | 2004-08-04 | Euro-Celtique | Orally administrable opioid formulations having extended duration of effect |
US5891471A (en) * | 1993-11-23 | 1999-04-06 | Euro-Celtique, S.A. | Pharmaceutical multiparticulates |
US6210714B1 (en) * | 1993-11-23 | 2001-04-03 | Euro-Celtique S.A. | Immediate release tablet cores of acetaminophen having sustained-release coating |
KR100354702B1 (en) | 1993-11-23 | 2002-12-28 | 유로-셀티크 소시에떼 아노뉨 | Manufacturing method and sustained release composition of pharmaceutical composition |
US5500227A (en) * | 1993-11-23 | 1996-03-19 | Euro-Celtique, S.A. | Immediate release tablet cores of insoluble drugs having sustained-release coating |
US5376662A (en) | 1993-12-08 | 1994-12-27 | Ockert; David M. | Method of attenuating nerve injury induced pain |
US5834477A (en) | 1993-12-08 | 1998-11-10 | The United States Of America As Represented By The Secretary Of The Army | Opiate analgesic formulation with improved safety |
US5843480A (en) | 1994-03-14 | 1998-12-01 | Euro-Celtique, S.A. | Controlled release diamorphine formulation |
EP0759303B1 (en) | 1994-04-22 | 2002-10-16 | Yamanouchi Pharmaceutical Co. Ltd. | Colon-specific drug release system |
US6077533A (en) * | 1994-05-25 | 2000-06-20 | Purdue Pharma L.P. | Powder-layered oral dosage forms |
US5411745A (en) * | 1994-05-25 | 1995-05-02 | Euro-Celtique, S.A. | Powder-layered morphine sulfate formulations |
US5552406A (en) * | 1994-06-17 | 1996-09-03 | The Mclean Hospital Corporation | Method for treating pain and brain perfusion abnormalities using mixed opioid agonist-antagonists |
US5460826A (en) | 1994-06-27 | 1995-10-24 | Alza Corporation | Morphine therapy |
US5616601A (en) * | 1994-07-28 | 1997-04-01 | Gd Searle & Co | 1,2-aryl and heteroaryl substituted imidazolyl compounds for the treatment of inflammation |
US5521213A (en) * | 1994-08-29 | 1996-05-28 | Merck Frosst Canada, Inc. | Diaryl bicyclic heterocycles as inhibitors of cyclooxygenase-2 |
US5593994A (en) * | 1994-09-29 | 1997-01-14 | The Dupont Merck Pharmaceutical Company | Prostaglandin synthase inhibitors |
GB9422154D0 (en) * | 1994-11-03 | 1994-12-21 | Euro Celtique Sa | Pharmaceutical compositions and method of producing the same |
US5965161A (en) * | 1994-11-04 | 1999-10-12 | Euro-Celtique, S.A. | Extruded multi-particulates |
ATE300308T1 (en) * | 1994-12-12 | 2005-08-15 | Omeros Corp | IRGINATION SOLUTION AND THE USE THEREOF FOR THE PERIOPERATIVE INHIBITION OF PAIN, INFLAMMATION AND SPASMS IN A WOUND |
GB9426102D0 (en) * | 1994-12-23 | 1995-02-22 | Merck Sharp & Dohme | Pharmacuetical compositions |
US5552422A (en) | 1995-01-11 | 1996-09-03 | Merck Frosst Canada, Inc. | Aryl substituted 5,5 fused aromatic nitrogen compounds as anti-inflammatory agents |
US5578725A (en) | 1995-01-30 | 1996-11-26 | Regents Of The University Of Minnesota | Delta opioid receptor antagonists |
US5639780A (en) * | 1995-05-22 | 1997-06-17 | Merck Frosst Canada, Inc. | N-benzyl indol-3-yl butanoic acid derivatives as cyclooxygenase inhibitors |
US5510368A (en) * | 1995-05-22 | 1996-04-23 | Merck Frosst Canada, Inc. | N-benzyl-3-indoleacetic acids as antiinflammatory drugs |
US5604253A (en) * | 1995-05-22 | 1997-02-18 | Merck Frosst Canada, Inc. | N-benzylindol-3-yl propanoic acid derivatives as cyclooxygenase inhibitors |
CA2195119C (en) | 1995-06-09 | 2001-09-11 | Mark Chasin | Formulations and methods for providing prolonged local anesthesia |
GB9517883D0 (en) * | 1995-09-01 | 1995-11-01 | Euro Celtique Sa | Improved pharmaceutical ion exchange resin composition |
GB9519363D0 (en) * | 1995-09-22 | 1995-11-22 | Euro Celtique Sa | Pharmaceutical formulation |
US5811126A (en) | 1995-10-02 | 1998-09-22 | Euro-Celtique, S.A. | Controlled release matrix for pharmaceuticals |
EP0874828A4 (en) | 1995-12-06 | 1999-09-01 | Lilly Co Eli | Composition for treating pain |
ATE211906T1 (en) * | 1996-03-12 | 2002-02-15 | Alza Corp | COMPOSITION AND DOSAGE FORM CONTAINING AN OPIOID ANTAGONIST |
AU724993B2 (en) | 1996-03-13 | 2000-10-05 | Yale University | Smoking cessation treatments using naltrexone and related compounds |
US6103258A (en) | 1996-04-12 | 2000-08-15 | Simon; David Lew | Salts and bases of the 17-(Cyclopropylmethyl)-4,5 alpha-epoxy-6-Methylenemorphinan-3,14 diol molecule for optimizing dopamine homeostasis during administration of opioid analgesics |
WO1997045091A2 (en) * | 1996-05-31 | 1997-12-04 | Euro-Celtique, S.A. | Sustained release oxycodone formulations with no fed/fast effect |
DE19651551C2 (en) | 1996-12-11 | 2000-02-03 | Klinge Co Chem Pharm Fab | Opioid antagonist-containing galenic formulation |
DE29719704U1 (en) | 1997-02-14 | 1998-01-22 | Gödecke AG, 10587 Berlin | Stable preparations of naloxone hydrochloride |
US5968547A (en) | 1997-02-24 | 1999-10-19 | Euro-Celtique, S.A. | Method of providing sustained analgesia with buprenorphine |
US5780479A (en) | 1997-04-04 | 1998-07-14 | Regents Of The University Of Minnesota | Use of opioid antagonists to treat impulse-control disorders |
JPH10338634A (en) | 1997-04-11 | 1998-12-22 | Grelan Pharmaceut Co Ltd | Medicinal composition |
US6120806A (en) | 1997-06-25 | 2000-09-19 | Whitmire; David R. | Oral formulations for controlled release of alcohol deterrents |
AU8293498A (en) | 1997-07-02 | 1999-01-25 | Euro-Celtique S.A. | Stabilized sustained release tramadol formulations |
US6077530A (en) * | 1997-07-28 | 2000-06-20 | Weinstein; Robert | Analgesic dosage units for coordinated administration |
RS49982B (en) * | 1997-09-17 | 2008-09-29 | Euro-Celtique S.A., | Synergistic analgesic combination of opioid analgesic and cyclooxygenase-2 inhibitor |
US5972954A (en) | 1997-11-03 | 1999-10-26 | Arch Development Corporation | Use of methylnaltrexone and related compounds |
US6274591B1 (en) | 1997-11-03 | 2001-08-14 | Joseph F. Foss | Use of methylnaltrexone and related compounds |
ATE210983T1 (en) | 1997-11-03 | 2002-01-15 | Stada Arzneimittel Ag | STABILIZED COMBINATION MEDICINAL PRODUCT CONTAINING NALOXONE AND AN OPIATE ANALGESIC |
EP1685839B8 (en) * | 1997-12-22 | 2013-06-26 | Euro-Celtique S.A. | Pharmaceutical oral dosage form comprising a combination of an opioid agonist and opioid antagonist |
TR200001828T2 (en) | 1997-12-22 | 2000-11-21 | Euro-Celtique, S.A. | A method to prevent abuse of opioid dosage forms. |
US6375957B1 (en) * | 1997-12-22 | 2002-04-23 | Euro-Celtique, S.A. | Opioid agonist/opioid antagonist/acetaminophen combinations |
US6194382B1 (en) * | 1999-03-03 | 2001-02-27 | Albert Einstein College Of Medicine Of Yeshiva University | Method and composition for treating irritable bowel syndrome using low doses of opioid receptor antagonists |
US6765010B2 (en) | 1999-05-06 | 2004-07-20 | Pain Therapeutics, Inc. | Compositions and methods for enhancing analgesic potency of tramadol and attenuating its adverse side effects |
US6451806B2 (en) * | 1999-09-29 | 2002-09-17 | Adolor Corporation | Methods and compositions involving opioids and antagonists thereof |
ES2226933T3 (en) | 1999-11-01 | 2005-04-01 | John Rhodes | COMPOSITION TO TREAT STRETCHING AND IRRITABLE INTESTINE SYNDROME. |
JP2003528819A (en) | 1999-11-29 | 2003-09-30 | アドラー コーポレーション | Novel methods and compositions for opioids and their antagonists |
WO2001052851A1 (en) | 2000-01-22 | 2001-07-26 | Albert Shulman | Methods for the treatment of substance abuse |
EP2092936B1 (en) * | 2000-02-08 | 2013-03-20 | Euro-Celtique S.A. | Tamper-resistant oral opioid agonist formulations |
US6716449B2 (en) * | 2000-02-08 | 2004-04-06 | Euro-Celtique S.A. | Controlled-release compositions containing opioid agonist and antagonist |
ATE326222T1 (en) | 2000-03-15 | 2006-06-15 | Wolfgang Sadee | NALOXONE AND NALTREXONE ANALOGUES IN DRUG ABUSE TREATMENT |
EP1284736A2 (en) | 2000-05-05 | 2003-02-26 | Pain Therapeutics, Inc. | Opioid antagonist compositions and dosage forms |
WO2001093852A2 (en) | 2000-06-09 | 2001-12-13 | The Regents Of The University Of California | Method of treating pain using nalbuphine and opioid antagonists |
DE60238756D1 (en) * | 2001-05-11 | 2011-02-10 | Endo Pharmaceuticals Inc | OPIOID CONTAINING ARZNEIFORM AGAINST MISUSE |
US20030004177A1 (en) * | 2001-05-11 | 2003-01-02 | Endo Pharmaceuticals, Inc. | Abuse-resistant opioid dosage form |
PT1416842E (en) * | 2001-07-18 | 2009-03-31 | Euro Celtique Sa | Pharmaceutical combinations of oxycodone and naloxone |
US7144587B2 (en) | 2001-08-06 | 2006-12-05 | Euro-Celtique S.A. | Pharmaceutical formulation containing opioid agonist, opioid antagonist and bittering agent |
HUP0401195A3 (en) * | 2001-08-06 | 2006-11-28 | Euro Celtique Sa | Compositions to prevent abuse of opioids containing aversive agent and process of their preparation |
DE60232417D1 (en) * | 2001-08-06 | 2009-07-02 | Euro Celtique Sa | OPIOID AGONIST FORMULATIONS WITH FREEZER AND SEQUESTRATED ANTAGONIST |
WO2003013433A2 (en) | 2001-08-06 | 2003-02-20 | Euro-Celtique S.A. | Sequestered antagonist formulations |
US7332182B2 (en) * | 2001-08-06 | 2008-02-19 | Purdue Pharma L.P. | Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant |
US7842307B2 (en) * | 2001-08-06 | 2010-11-30 | Purdue Pharma L.P. | Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent |
LT2425825T (en) | 2002-04-05 | 2017-02-27 | Euro-Celtique S.A. | Pharmaceutical preparation containing oxycodone and naloxone |
US20030191147A1 (en) * | 2002-04-09 | 2003-10-09 | Barry Sherman | Opioid antagonist compositions and dosage forms |
US20040110781A1 (en) | 2002-12-05 | 2004-06-10 | Harmon Troy M. | Pharmaceutical compositions containing indistinguishable drug components |
US20040192715A1 (en) | 2003-02-05 | 2004-09-30 | Mark Chasin | Methods of administering opioid antagonists and compositions thereof |
MY135852A (en) | 2003-04-21 | 2008-07-31 | Euro Celtique Sa | Pharmaceutical products |
US20080020028A1 (en) * | 2003-08-20 | 2008-01-24 | Euro-Celtique S.A. | Transdermal dosage form comprising an active agent and a salt and a free-base form of an adverse agent |
US20060194826A1 (en) | 2003-09-25 | 2006-08-31 | Euro-Celtique S.A. | Pharmaceutical combinations of hydrocodone and naltrexone |
US20050245557A1 (en) | 2003-10-15 | 2005-11-03 | Pain Therapeutics, Inc. | Methods and materials useful for the treatment of arthritic conditions, inflammation associated with a chronic condition or chronic pain |
-
2002
- 2002-07-18 PT PT02747068T patent/PT1416842E/en unknown
- 2002-07-18 AU AU2002316738A patent/AU2002316738B2/en not_active Expired
- 2002-07-18 DK DK02747068T patent/DK1416842T3/en active
- 2002-07-18 DE DE60230632T patent/DE60230632D1/en not_active Expired - Lifetime
- 2002-07-18 AT AT02747068T patent/ATE419039T1/en active
- 2002-07-18 EP EP02747068A patent/EP1416842B1/en not_active Expired - Lifetime
- 2002-07-18 MX MXPA04000584A patent/MXPA04000584A/en active IP Right Grant
- 2002-07-18 WO PCT/US2002/023126 patent/WO2003007802A2/en active Application Filing
- 2002-07-18 SI SI200230799T patent/SI1416842T1/en unknown
- 2002-07-18 IL IL15991702A patent/IL159917A0/en active IP Right Grant
- 2002-07-18 ES ES02747068T patent/ES2319620T3/en not_active Expired - Lifetime
- 2002-07-18 US US10/199,972 patent/US7943173B2/en not_active Expired - Fee Related
- 2002-07-18 CA CA002454328A patent/CA2454328C/en not_active Expired - Lifetime
- 2002-07-18 JP JP2003513416A patent/JP4256259B2/en not_active Expired - Fee Related
-
2004
- 2004-01-18 IL IL159917A patent/IL159917A/en unknown
-
2008
- 2008-10-06 JP JP2008259189A patent/JP5133838B2/en not_active Expired - Lifetime
-
2009
- 2009-03-23 CY CY20091100347T patent/CY1108918T1/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7943173B2 (en) | Pharmaceutical combinations of oxycodone and naloxone | |
AU2002316738A1 (en) | Pharmaceutical combinations of oxycodone and naloxone | |
US9682077B2 (en) | Methods of providing analgesia |