[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

AU2002252651A1 - Power transmission belt - Google Patents

Power transmission belt

Info

Publication number
AU2002252651A1
AU2002252651A1 AU2002252651A AU2002252651A AU2002252651A1 AU 2002252651 A1 AU2002252651 A1 AU 2002252651A1 AU 2002252651 A AU2002252651 A AU 2002252651A AU 2002252651 A AU2002252651 A AU 2002252651A AU 2002252651 A1 AU2002252651 A1 AU 2002252651A1
Authority
AU
Australia
Prior art keywords
belt
woven
region
woven material
elastomeric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002252651A
Other versions
AU2002252651B2 (en
Inventor
Phil Patterson
Doug Sedlacek
Bobbie E. South
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gates Corp
Original Assignee
Gates Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gates Corp filed Critical Gates Corp
Priority claimed from PCT/US2002/011606 external-priority patent/WO2002084146A1/en
Publication of AU2002252651A1 publication Critical patent/AU2002252651A1/en
Application granted granted Critical
Publication of AU2002252651B2 publication Critical patent/AU2002252651B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

Title
Power Transmission Belt
Field of the Invention
The invention relates to power transmission belts having an engineered surface and more particularly, to power transmission belts having an engineered surface comprising a region having a non-woven material and a fiber loaded compression layer.
Background of the Invention
It is known in the art to make power transmission belts from elastomeric materials having an embedded tensile member. The belts may describe a multi-rib, toothed or v type profile. The belts run m pulleys having a matching profile.
It is known that the rib flank surfaces of V and multi-v rib belts are subject to sliding wear, temperature extremes, normal and fnctional forces that cause belt noise, rib surface sloughing, slipping, and chatter. It is also known that power transmission capacity and belt longevity are functions of several factors, including the type of material contacting the pulley surfaces. These are currently addressed by incorporating a high loading of various fibers into the mix of the undercord materials. These fibers, or portions of them, are exposed when the V profile is cut or ground to form the belt from the cured belt slab. The resulting surface is a combination of the base polymer and exposed fibers. This technique is limited with regard to an engineering approach for composite design, and/or controlling friction, noise, and slippage. It also creates a stiff structure that resists bending, which can contribute to belt rib cracking and shortened belt life.
Representative of the art is U.S. patent no.
4,892,510 (1990) to Matsuoka which discloses a v-ribbed belt having a surface layer comprising a non-woven fabric at the outer surface vulcanized to ribs solely made of rubber .
Also representative of the art is U.S. patent no. 5,536,214 (1996) to Akita et al . which discloses a power transmission belt having non-woven fabric on the inside of the belt body on a plurality of the grooves.
Also representative of the art is US patent no. 4,956,036 (1990) to Sedlacek which discloses a discontinuous fiber loaded compressive layer in a multi- ribbed belt. The belt is ground to create the required rib profile, thereby exposing the fibers. The elastomeric body portion is loaded with fiber preferably from about .5 to 20% by volume, with preferred loading at 3% by volume. What is needed is a power transmission belt having a non-woven pulley engaging surface and fiber loaded compressive layer. What is needed is a power transmission belt having a non-woven pulley engaging surface and fiber loaded compressive layer and a multi-ribbed profile. The present invention meets these needs.
Summary of the Invention
The primary aspect of the invention is to provide a power transmission belt having a non-woven pulley engaging surface and fiber loaded compressive layer.
Another aspect of the invention is to provide a power transmission belt having a non-woven pulley engaging surface and fiber loaded compressive layer and a multi-ribbed profile. Other aspects of the invention will be pointed out or made obvious by the following description of the invention and the accompanying drawings.
The invention comprises a belt having a region comprising a non-woven material on a pulley engaging surface. The non-woven region has a random coverage of the non-woven material to reduce natural frequency harmonics, control frictional characteristics, permeation and thermal resistance. The non-woven may comprise a combination of softwood and hardwood pulp, as well as synthetic fibers applied in a random matrix to a body having a fiber loading.
Brief Description of the Drawings Fig. 1 is a side cross-sectional view of the inventive belt.
Fig. 2 is a graph of the misaligned noise test results .
Fig. 3 is a graph of the weight loss results.
Detailed Description of the Preferred Embodiment Fig. 1 is a cross-sectional view of the inventive belt 10. Belt 10 comprises body 3 and pulley engaging ribs 4 running in a longitudinal direction. Belt 10 also comprises load carrying tensile members 2 that run parallel to a longitudinal axis of the belt. Ribs 4 further comprise fibers 6 infused throughout the elastomeric material. Belt 10 may also comprise a jacket 1 applied to an overcord surface. Ribs 4 may comprise any number and any profile required by a user. Fig. 1 depicts a multi-ribbed profile. The belt may also comprise a single rib v-belt profile . Pulley engaging non-woven region 5 is a random array of non-woven material co-mingled into the elastomeric of the body 3 and ribs 4 forming a matrix. Region 5 does not have a discrete boundary between the non-woven containing area and the body 3. Due to the co-mingling, both non- woven material and elastomeric are present at a pulley engaging surface.
Non-woven region 5 may comprise a single region or a plurality of overlaid regions of non-woven material. Further, the non-woven region does not have the characteristic of uniformly spaced and aligned fibers as in a cloth or textile. Since the fibers comprising the non-woven region are randomly oriented within the matrix, this reduces the creation and support of natural frequency harmonics one would expect in a more homogeneous material, i.e., where the fibers are more oriented. These harmonics comprise audio oscillation (noise) as well as low frequency oscillations of the belt vibrating between pulleys. A randomly oriented non-woven region tends to substantially damp these oscillations .
Non-woven materials may also be chosen to give a required frictional characteristic, permeation and thermal resistance. A friction reducing agent can be used in the non-woven region to control the coefficient of friction of the outer surface of the non-woven region. The friction reducing agent may be part of the rubber that permeates the non-woven region or is applied to the non-woven material before assembly of the belt. By way of example and not of limitation, friction reducing agents may include waxes, oils, graphite, molybdenum disulfide, PTFE, mica talc, and various blends of the above .
The non-woven material is cellulose based and has a basis weight in the range of 10 lbs./3K sq.ft. up to 45 lbs./3K sq.ft. The porosity of the non-woven material is in the range of 100 to 370 CFM per ft.2 per 1/2" H20 ΔP . The thickness of the non-woven region 5 is in the range of .025mm to 3 mm. The tensile strength in the machine direction is in the range of 230 to 1015 g/inch. The tensile strength in the cross direction is in the range of 66 to 250 g/inch.
The preferred embodiment uses a basis weight of 10 lbs./3K sq.ft.; porosity of 100 CFM per ft.2 per 1/2" H20 ΔP; tensile strength in the machine direction 550 g/inch; tensile strength in the cross direction 250 g/inch. The non-woven comprises 50% softwood and 50% hardwood.
Fibers 6 are included in the matrix of the elastomeric body 3 separate from the non-woven region 5. Fibers 6 decrease rib surface sloughing and chatter. The fibers may include aramid, Kevlar, carbon, polyester, polyethylene, fiber glass, nylon. Other organic fibers may include wool, hemp, cotton, etc. The amount of fibers used in the rib elastomeric may be in the range of .01 to 20 parts fiber per hundred parts of rubber. The preferred embodiment utilizes .01 to 5 parts fiber per hundred parts of rubber. The embodiments allow a dramatic reduction in the percentage of flock or fiber loading required in the undercord rib materials. This change has resulted in improved belt performance due to enhanced resilience and bending of the undercord constructions.
The embodiment described herein has been found to reduce/eliminate noise, reduce the instance of rib surface sloughing (or weight loss), while providing excellent tractive effort forces and enhanced V wedging. METHOD OF MANUFACTURE
The inventive belt is built up on a mandrel in a series of layers. The elastomeric or fabric overcord of the belt is laid-up first. Each succeeding elastomeric layer is laid upon the previously applied layer. A gum layer may also be applied. The tensile cords are applied with the elastomeric layers. The elastomeric undercord is then applied. The final element applied to the build upon the final undercord layer is the non-woven region.
At this stage of fabrication, the non-woven region may comprise one or more layers of non-woven material . The non-woven layer or layers have the added advantage of allowing gases developed during the curing process to vent or escape from the edges of the mold. Venting of gases from the mold facilitates impregnation of the elastomeric material into the non-woven material, forming region 5.
The complete build is then subjected to curing pressures and temperatures sufficient to vulcanize and form the belt. For example the fabrication process may comprise;
Once the belt is laid up on a mandrel the slab is removed and placed in the mold; 1) evacuating the air from inside the mold and holding for 1 to 5 minutes;
2) increasing the steam pressure on the outside shell to a range of 175 to 235 psig;
3) after 2 to 10 minutes, increasing the steam pressure on the inside of the mold to a range of 85 to
210 psig;
4) curing for 10 to 20 minutes;
5) decreasing the steam pressure inside the mold to atmospheric pressure; 6) decreasing the steam pressure outside the mold to atmospheric pressure;
7) quenching the mandrel in a cool fluid, such as water;
8) removing the cured belt blank from the mandrel. Once cooled, the cured belt build is then separated from the mandrel and cut to the appropriate belt widths.
The optimum rib shapes are achieved with process pressures on the high end of the range. Hydraulics or other methods known in the art (pneumatic, electrical) can also be used to apply pressure to the belt, in conjunction with concurrently applied electric heat for curing in lieu of steam cure. The pressure range for a hydraulic cure is 85 to 500 psig. The temperature range is 250 to 500 °F. This method of curing broadens the choice of rubber stocks .
Application of pressure prior to curing forces the elastomeric into the non-woven material. The elastomeric material then occupies the interstices between the individual fibers comprising the non-woven material. This results in a region of non-woven material wherein the non-woven materials are co-mingled with the elastomeric . TESTS Noise and weight loss tests were conducted to compare the inventive belt with belts without a non-woven pulley contact surface. The results indicated the weight loss and noise generated by the belts with a non-woven imbedded surface was reduced significantly. The test belts were as follows:
Belt 1: EPDM - Overcord, Cord, Undercord stock having 12 parts cotton fibers, nonwoven construction.
Belt 2: EPDM - Overcord, Undercord stock having 4 parts nylon fibers, nonwoven construction. Belt 3: CR - Overcord, Cord, Undercord stock with 18 to 20 parts cotton fibers, nonwoven construction.
Belt 4: CR - Overcord with tubular knit, cord, undercord stock with 18 to 20 parts cotton fibers, nonwoven construction. Comparison belt A: Std. Chloroprene rubber belt with cut or ground rib profiles, same cord and overcord.
Comparison belt B: Std EPDM belt with cut or ground rib profiles, same cord and overcord. In the misalignment noise test, the non-woven layer belts exhibited a noise reduction in the range of 13 dB to 19 dB for 3 degrees of misalignment as compared to a belt without a non-woven pulley contact surface. The inventive belts exhibited noise generation equivalent to that of standard belts with 1 degree of misalignment. The misalignment noise test is conducted on a two point drive using 140mm OD pulleys. A horizontal tension of approximately 90 KgF is applied to the test belt. The pulleys are offset from each other and the noise is measured. Test results are shown in Fig. 2.
The weight loss tests demonstrated the inventive belts experienced 87.5% less weight loss as compared to a standard belt for identical operating conditions. Test results are shown in Fig. 3. The test data confirmed that orientation of the non- woven substrate is not critical to the results. Both mill and 90° orientations were tested giving similar results as described above.
The comparative tests were run using the same tensile cord and overcord materials, only the undercord compound and surfaces were enhanced with non-woven materials in the inventive belts.
The data indicates that several non-woven combinations were effective. These range from a formation of 100% softwood, a hardwood/softwood blend, a softwood/synthetic blend, and a 100% hardwood. Example ratios are as follows :
Softwood Hardwood Soft/Syn .
A 100% 0% 0% B 50 % 50% 0%
C 75% 25% 0%
D 70% 0% 30%
E 85% 0% 15%
F 0 % 100% 0%
The foregoing ratios are offered as illustrative of a range of ratios and are not offered by way of limitation. The preferred embodiment utilizes ratio option B.
The synthetic fibers include aramid, Kevlar, carbon, polyester, polyethylene, fiber glass, nylon. Other organic fibers used with the softwoods may include wool, hemp, cotton, etc. These would be included as coefficient of friction and/or structural modifiers. The all hardwood composition may be accomplished using a wood flour or highly processed pulp, blended and mixed into the undercord elastomeric compounds.
Although a single form of the invention has been described herein, it will be obvious to those skilled in the art that variations may be made in the construction and relation of parts without departing from the spirit and scope of the invention described herein.

Claims (14)

ClaimsWe claim:
1. A belt comprising: a body comprising an elastomeric material and having tensile members running in a longitudinal direction; the body having a pulley engaging region having a profile, the pulley engaging region comprising a non- woven material co-mingled with the elastomeric material; and the elastomeric material further comprises a fiber loading .
2. The belt as in claim 1, wherein the pulley engaging region comprises a thickness of .025 mm to 3.0 mm.
3. The belt as in claim 2, wherein the non-woven material comprises a combination of softwood pulp and hardwood pulp.
4. The belt as in claim 3, wherein the softwood pulp comprises from 0% to 50% of the non-woven material.
5. The belt as in claim 4, wherein the softwood pulp comprises cotton.
6. The belt as in claim 2, wherein the non-woven material comprises a combination of softwood pulp and synthetic material .
7. The belt as in claim 6, wherein the synthetic material comprises nylon.
8. The belt as in claim 7 wherein the synthetic material comprises from 0% to 50% of the non-woven material.
9. The belt as in claim 2, wherein the non-woven material comprises a blend of synthetic and organic materials.
10. The belt as in claim 9, wherein the organic materials comprise softwood pulp and hardwood pulp.
11. The belt as in claim 5, wherein the fiber loading is in the range of .01 to 5 parts per hundred.
12. The belt as in claim 11, wherein the non-woven region comprises at least two layers of non-woven material .
13. The belt as in claim 11, wherein the region comprises a multi-ribbed profile.
14. The belt as in claim 11, wherein the region comprises a v-belt profile.
AU2002252651A 2001-04-10 2002-04-10 Power transmission belt Ceased AU2002252651B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28313301P 2001-04-10 2001-04-10
US60/283,133 2001-04-10
PCT/US2002/011606 WO2002084146A1 (en) 2001-04-10 2002-04-10 Power transmission belt

Publications (2)

Publication Number Publication Date
AU2002252651A1 true AU2002252651A1 (en) 2003-04-17
AU2002252651B2 AU2002252651B2 (en) 2005-11-03

Family

ID=23084676

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002252651A Ceased AU2002252651B2 (en) 2001-04-10 2002-04-10 Power transmission belt

Country Status (15)

Country Link
US (2) US6793599B2 (en)
EP (1) EP1377762B1 (en)
JP (1) JP4251870B2 (en)
KR (1) KR100527271B1 (en)
CN (1) CN1270113C (en)
AT (1) ATE316624T1 (en)
AU (1) AU2002252651B2 (en)
BR (1) BR0208320B1 (en)
CA (1) CA2443571C (en)
DE (1) DE60208888T2 (en)
ES (1) ES2256459T3 (en)
MX (1) MXPA03010169A (en)
PL (1) PL370108A1 (en)
RU (1) RU2260726C2 (en)
WO (1) WO2002084146A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03001808A (en) * 2002-03-14 2003-09-22 Goodyear Tire & Rubber Power transmission belt.
US6824485B2 (en) 2002-07-09 2004-11-30 The Gates Corporation Power transmission belt
MY143607A (en) * 2004-10-18 2011-06-15 Inventio Ag Lift comprising a flat-belt as a tractive element
JP4745789B2 (en) * 2004-12-27 2011-08-10 三ツ星ベルト株式会社 V-ribbed belt and method for manufacturing V-ribbed belt
US7254934B2 (en) 2005-03-24 2007-08-14 The Gates Corporation Endless belt with improved load carrying cord
US8197372B2 (en) * 2006-04-07 2012-06-12 The Gates Corporation Power transmission belt
US9506527B2 (en) * 2006-04-07 2016-11-29 Gates Corporation Power transmission belt
JP4322269B2 (en) * 2006-07-28 2009-08-26 バンドー化学株式会社 V-ribbed belt and belt drive
EP2167840B1 (en) * 2007-07-03 2014-03-05 The Gates Corporation Power transmission belt
CN101558251A (en) 2007-09-14 2009-10-14 盖茨优霓塔亚洲有限公司 V-ribbed belt and method for manufacturing same
KR101215198B1 (en) * 2007-12-05 2012-12-24 더 게이츠 코포레이션 Power transmission belt
DE102007061587A1 (en) * 2007-12-18 2009-06-25 Abb Ag Insulation material with lacquer and added material as well as insulation tape
US7824288B2 (en) * 2008-03-08 2010-11-02 The Gates Corporation Polyurethane power transmission belt
JP4989556B2 (en) * 2008-05-26 2012-08-01 三ツ星ベルト株式会社 V-ribbed belt
FR2936291B1 (en) 2008-09-23 2011-06-03 Hutchinson POWER TRANSMISSION BELT.
CN105177795B (en) 2009-07-02 2019-05-14 盖茨公司 The improved fabric and band for tooth power transmission belt
DE102011002274A1 (en) 2011-04-27 2012-10-31 Contitech Antriebssysteme Gmbh Elastic article, in particular drive belt, with a coating in the form of a fleece of a fusible plastic
DE102011050483A1 (en) 2011-05-19 2012-11-22 Contitech Antriebssysteme Gmbh Drive belt with a reinforcing band or a reinforcing braid or with zone-wise arranged reinforcing elements within the substructure
DE102011056071A1 (en) 2011-12-06 2013-06-06 Contitech Antriebssysteme Gmbh Surface coating of article with base body from vulcanizable rubber composition, by partly or completely providing article surface with coating, and applying fusible spraying material on article surface by thermal high-speed flame spraying
WO2013090042A1 (en) * 2011-12-12 2013-06-20 The Gates Corporation Power transmission belt made of kenaf reinforced rubber composition
DE102012208091A1 (en) 2011-12-16 2013-06-20 Contitech Antriebssysteme Gmbh Elastic article, in particular drive belt
ITTO20120419A1 (en) * 2012-05-09 2013-11-10 Dayco Europe Srl POLI-V BELT INCLUDING A LAYER OF THERMOPLASTIC MATERIAL AND A KNITTED FABRIC IMMERSED IN AN ELASTOMERIC LAYER
EP2664645B1 (en) 2012-05-15 2018-01-17 ContiTech Antriebssysteme GmbH Elastic item, more particularly drive belt, with a coating
EP2864540B1 (en) 2012-06-24 2017-12-20 Gates Corporation Carbon cord for reinforced rubber products and the products
KR101979483B1 (en) 2012-08-15 2019-05-16 게이츠 코포레이션 Power transmission belt
DE102012112637A1 (en) 2012-12-19 2014-06-26 Contitech Antriebssysteme Gmbh Elastic article, in particular drive belt
US9157503B2 (en) * 2013-03-14 2015-10-13 Dayco Ip Holdings, Llc V-ribbed belt with spaced rib flank reinforcement
DE102014210707A1 (en) 2014-06-05 2015-12-17 Contitech Antriebssysteme Gmbh Elastic article, in particular V-ribbed belt
DE102014013462A1 (en) 2014-09-17 2016-03-17 Arntz Beteiligungs Gmbh & Co. Kg Power transmission belt with a textile support and method for its production
JP6527433B2 (en) * 2014-09-26 2019-06-05 三ツ星ベルト株式会社 Friction transmission belt and method of manufacturing the same
WO2017110790A1 (en) * 2015-12-22 2017-06-29 三ツ星ベルト株式会社 Friction-transmission belt and method for manufacturing same
EP4092173A4 (en) * 2020-01-16 2024-04-03 Mitsuboshi Belting Ltd. Core wire for drive belt, drive belt, and method for manufacturing core wire and drive belt

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975479A (en) * 1973-03-09 1976-08-17 Mcclean Anderson, Inc. Method of fabricating a reinforced plastic article
US4209483A (en) * 1974-11-25 1980-06-24 Uniroyal, Inc. Method of making a notched transmission belt
US4106966A (en) * 1977-05-20 1978-08-15 Dayco Corporation Method of making toothed endless power transmission belts
JPS57149646A (en) * 1981-03-12 1982-09-16 Honda Motor Co Ltd V-belt
JPS57187136A (en) 1981-05-12 1982-11-17 Mitsutoyo Kiko Kk Molding tool
JPS58170946A (en) * 1982-03-30 1983-10-07 Mitsuboshi Belting Ltd Toothed belt and manufacturing method thereof
JPS59187136A (en) * 1983-04-06 1984-10-24 Bando Chem Ind Ltd Belt with multiple raised line and manufacture thereof
US4937925A (en) 1983-04-12 1990-07-03 Highland Industries, Inc. Method for producing reinforced V-belt containing fiber-loaded non-woven fabric
US4684569A (en) 1983-04-12 1987-08-04 Burlington Industries, Inc. Reinforced V-belt containing fiber-loaded non-woven fabric and method for producing same
US4892510A (en) 1985-03-04 1990-01-09 Bando Chemical Industries, Ltd. V-ribbed belt and the method of manufacturing the same
JPS61199935A (en) 1985-03-04 1986-09-04 Bando Chem Ind Ltd Manufacture of ribbed v-belt
US4956036A (en) 1987-11-19 1990-09-11 The Gates Rubber Company Method of making a power transmission belt including moisturizing and grinding
JPH04151048A (en) * 1990-10-09 1992-05-25 Mitsuboshi Belting Ltd V-ribbed and manufacture of belt thereof
WO1993015879A1 (en) * 1992-02-12 1993-08-19 Minnesota Mining And Manufacturing Company A coated abrasive article containing an electrically conductive backing
US5286542A (en) 1992-06-16 1994-02-15 Advanced Belt Technology Welded non-woven endless belt
US5536214A (en) 1993-12-07 1996-07-16 Mitsuboshi Belting Ltd. Power transmission belt and method of manufacturing the same
US5643378A (en) 1994-10-26 1997-07-01 Dayco Products, Inc. Belt construction and method of making the same
JPH08303529A (en) * 1995-05-01 1996-11-19 Bando Chem Ind Ltd Cogged v-belt
FR2753248B1 (en) * 1996-09-10 1998-11-06 Hutchinson METHOD FOR MANUFACTURING A TRANSMISSION BELT AND BELT OBTAINED THEREBY
US5925297A (en) * 1996-11-13 1999-07-20 Tetrahedron Associates, Inc. Continuous laminating or molding process
US6739854B1 (en) * 1997-01-16 2004-05-25 Mitsubishi Belting Ltd. Method and system for treating a power transmission belt/belt sleeve
DE19707102C1 (en) 1997-02-22 1998-10-29 Contitech Transportbandsysteme Process for making an elastic mat
US5971879A (en) * 1997-04-22 1999-10-26 The Gates Corporation Belt reinforcing material and belt constructed therewith
PL201840B1 (en) * 1999-11-12 2009-05-29 Gates Corp Power transmission belt with tubular knit overcord
US6464607B1 (en) * 1999-12-15 2002-10-15 The Goodyear Tire & Rubber Company Power transmission belt
DE10016351C2 (en) * 2000-04-03 2002-09-26 Contitech Antriebssysteme Gmbh belts
US6491598B1 (en) * 2000-10-09 2002-12-10 The Goodyear Tire & Rubber Company Power transmission belt
BR0206358B1 (en) * 2001-01-12 2011-07-26 belt and process for making a timing belt.
US6609990B2 (en) * 2001-07-18 2003-08-26 The Gates Corporation Power transmission belt and method

Similar Documents

Publication Publication Date Title
CA2443571C (en) Power transmission belt
AU2002252651A1 (en) Power transmission belt
CA2492137C (en) Power transmission belt
CA2648185C (en) Power transmission belt
US9506527B2 (en) Power transmission belt
EP1452770B1 (en) Power transmission belt and method
EP1760360B1 (en) Power transmission belt
CA2434383A1 (en) Endless power transmission belt
MXPA05001540A (en) Optical fiber connector assembly.
JP2007170587A (en) V-ribbed belt
WO2024064088A1 (en) Power transmission belts with aligned reinforcement elements
AU2003253659B2 (en) Power transmission belt
JP2001146942A (en) Transmission belt
JP2007092880A (en) Transmission belt
JP2006153059A (en) Transmission belt
JP4624753B2 (en) V-ribbed belt
JP2006258114A (en) Friction transmission belt