AU2001293069A1 - System for uplink scheduling of packet based data traffic in wireless system - Google Patents
System for uplink scheduling of packet based data traffic in wireless systemInfo
- Publication number
- AU2001293069A1 AU2001293069A1 AU2001293069A AU2001293069A AU2001293069A1 AU 2001293069 A1 AU2001293069 A1 AU 2001293069A1 AU 2001293069 A AU2001293069 A AU 2001293069A AU 2001293069 A AU2001293069 A AU 2001293069A AU 2001293069 A1 AU2001293069 A1 AU 2001293069A1
- Authority
- AU
- Australia
- Prior art keywords
- data
- network element
- resources
- indication
- base station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
SYSTEM FOR UPLINK SCHEDULING PACKET BASED DATA TRAFFIC IN
WIRELESS SYSTEM
TECHNICAL FIELD This invention relates generally to a system for allocating resources for data streams and more particularly to a system for allocating transmission resources in a wireless system where the data includes an indication of its own resource needs.
BACKGROUND ART
In networks and other arrangements, a situation often develops where a limited number of resources, such as bandwidth must be shared among a plurality of links. In particular, in a wireless type network, a number of mobile stations may be connected to a base station by wireless connections. Each base station may have only a limited number of channels to make these connections. Since many such mobile devices now utilize more than basic voice data, the amount of data which flows can vary substantially. Thus in addition to voice communications, wireless devices may include real time video, e-mail, web based information, etc. In order to fairly allocate the resources available, it is necessary for the base station to make some judgment as to which mobile stations can utilize the channels.
The simplest arrangement, and one used largely in the past for voice data, is merely to dedicate a single channel for a single mobile station as long as it is connected. Only the assigned mobile station can use the chaimel. Depending on the original request, it is possible to assign more than a single channel but these multiple channels remain dedicated to that
mobile station until the connection is terminated. No information is shared about the instantaneous amount of data waiting in the mobile station.
Another manner of handling the situation is to utilize a polling scheme where the base station polls each mobile station to learn the status of the data queue in each mobile station. This allows the base station to determine how to share the bandwidth resources among the different mobile stations. Thus, when polled the mobile station can send a response indicating whether it has data to transmit. For example, in a global system for mobile devices (GSM) time division multiple access (TDMA) system, the transmission opportunity for a mobile station is granted n frames after the base station receives the polling response from the mobile station, where n is the number of frames required to transmit a data block in the channel. Thus, there is a delay of multiple frames after polling, before an adjustment can be made.
Unfortunately, real time traffic such as video conference has unpredictable fluctuations in the data rate. Thus, any delay in adjusting the resources may mean that a link to a mobile station may not always have data in its transmission queue.
Since a dedicated channel assignment scheme does not allow any other mobile stations to use the channel when the assigned mobile station uplink queue is empty, the bandwidth assigned will not be used, which lowers overall spectrum efficiency. This leads to poor bandwidth utilization which will only get worse as the number of connections in the system increases. Also, during high data rate periods, the number of real time packets waiting in the uplink queue will increase. Due to the limited bandwidth share assigned to the mobile station, packet congestion can occur and an increasing number of packets can exceed their delay requirements.
While the polling scheme is more efficient than a dedicated channel assignment scheme from the perspective of bandwidth utilization, some bandwidth is still wasted because the mobile station cannot send actual data when sending a polled response. As polling becomes more frequency, more bandwidth is wasted. Further, additional delay is introduced because the packet has to wait while the poll is received and answered. Thus, the delay will further slow down transmission and counteracts any benefits gained by the polling.
DISCLOSURE OF INVENTION
Accordingly, the present invention provides a system for allocating transmission resources between the base station and a series of mobile stations.
The present invention also provides a method for allocating resources based on the amount of data waiting in a queue in each mobile station.
The present invention also provides a system for allocating bandwidth resources between a plurality of mobile stations and a single base station in a wireless network.
The present invention further provides a method for allocating bandwidth resources between a plurality of mobile stations and a single base station in a wireless network.
The present invention further provides a system for transmitting information concerning the amount of data in a queue so that resources may be allocated appropriately for the most efficient use of the resources.
The present invention still further provides a method for transmitting information regarding the amount of data stored in a queue in a mobile station in a wireless network.
Briefly, this invention is achieved by using a plurality of bits in each data segment to describe the size of the queue in that station. Once this is received in the base station, additional resources can be allocated if necessary.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
BRIEF DESCRIPTION OF DRAWINGS Figure 1 is a schematic diagram showing the arrangement of the present system; Figure 2 is a block diagram showing a mobile station according to the present invention;
Figure 3 is a block diagram showing a base station according to the present invention; Figure 4 is a flow chart showing the method of determining the queue length; and Figure 5 is a flowchart showing the method of utilizing the information.
BEST MODE FOR CARRYING OUT THE INVENTION Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views and more particularly to Figure 1 thereof, wherein the wireless system 10 is shown as including a base station 12 and mobile stations 14. As indicated in the figure, the individual mobile stations may be connected to the base station by wireless connections. Since the base station is allowed to use only a certain range of frequencies, there is limit to the bandwidth available to the mobile stations. Since this resource is limited, it is necessary to allocate this bandwidth so that the greatest amount of data can be moved in the shortest time. This improves the quality of service and avoids unnecessary delay for the users.
The present invention improves on previous schemes by allocating the bandwidth among the various mobile stations which are currently connected to the base station. In order to do this, it is necessary for the base station to have some idea of the amount of data in the queue in the individual mobile stations. Prior art systems do not provide for this information to be given to the base station, nor are the resources allocated in real time based on this information.
Data which is sent from the mobile stations to the base station is arranged in blocks according to the protocol governing the apparatus. Thus, such blocks include not only the data itself, but identification information and other bits which may be used for other purposes such as error checking, etc. In particular, in the enhanced genera] packet data radio services system (EGPRS), there is provided a field of four bits which are known as the countdown value of the block. Under the current scheme, the bandwidth allocated to the mobile station is fixed and these four bits indicate the queue length of that mobile station. In particular, it indicates the number of data blocks in the queue as long at it is less than 16. This provides an estimate of when the current data transfer will be finished. However, this is not used in any manner to control the resources available.
In the present arrangement, these four bits instead provide an indication of the data in the queue so that the base station may determine if additional resources are necessary in order to move the data at the optimum speed. While the particular data included in the four bits may have various different meanings, the preferred arrangement is to let the values of 0-8 indicate the number of data segments in the queue. These values will indicate a queue length if it is less than or equal to the segment rate. This segment rate is the parameter which is established between the mobile station and the base station during the set up phase. If the queue length exceeds the segment rate, the values of 9-15 in the four bit field indicate the
additional bandwidth which is required in order to meet the delay/rate requirement of the packet.
Thus, as the individual packets are sent from the mobile station to the base station, the base station examines this four bit field and notes the situation in the queue at that mobile station. If additional resources are necessary, the base station will allocate additional bandwidth to that connection so that the data stored in the queue will move faster. This of course assumes that sufficient resources are available to add resources to that connection. Clearly, the base station must consider all of the requests of all of the connections before allocating these resources. Since the four bit field is sent with every packet, the base station is constantly updated as to the situation in each mobile station. Accordingly, it can closely monitor the situation and adjust it over a very short time period to improve the utilization of its resources. This arrangement is much faster than the polling scheme because the information is provided in each packet without wasting bandwidth for the polling communications. Further, the present arrangement utilizes a four bit field which is already present according to the current protocols. It is only necessary to provide that the base station and mobile station each have a proper system for adding the data and using the data.
Figure 2 shows a block diagram of a mobile station 14. While the station is shown as including a number of circuits, in fact, these functions could also be performed by software in a processor. A data generator 20 produces the data which is to be transmitted by the mobile station. This can include any of the normal devices which are utilized in a mobile station to produce data including a microphone to produce voice data, a keyboard to produce alpha numeric data, a camera for producing video data, etc. The specific type of data generation is not critical to the operation of the present invention. However, no matter what type of data is produced, it is sent to a data queue 22 to await its transmission. A queue length measuring
device 24 observes the amount of data in the queue and determines the queue length. This queue length information is sent to encoder 26 which determines the four bit code to place in the field based on the length of the queue. Thus, in the preferred system described above, if the queue is less than the segment rate, a value between zero and eight is encoded and if the queue length is greater than the segment rate a value between nine and fifteen is encoded. The exact value in either of these ranges depends on the length of the queue. Other schemes of encoding could easily be used also merely by changing the encoding scheme. Thus, it would be possible to use a queue length value only if preferred or only a value for additional bandwidth. Other values could also be utilized as long as they relate in some manner to the length of the queue and can be utilized in the base station to allocate the bandwidth appropriately. Obviously, some encoding schemes will provide better information and allow for more appropriate allocation of resources.
Once the four bit code has been generated, it is added to the data block in a combiner 28. Thus, the code is added to the data block only when it reaches the front of the line in the queue so that the most updated information about the length of the queue can be given. Alternatively, the code can be added based on the length of the queue when the data block enters the queue, but this information would be slightly less fresh. In this alternative arrangement, the combiner would make the combination as the data enters the queue. In either case, when the packet is ready for transmission, it is sent to transmitter 30 so as to be connected to the base station through antenna 32.
As shown in Figure 3, base station 12 includes an antenna 34 and receiver 36 which receive the packet transmitted from antenna 32. Of course, this antenna and receiver are in communication with several mobile stations at the same time. For simplicity of discussion, it will, however, be discussed as if only a single mobile station were connected at a time. The
receiver 36 forwards the received data onto signal processor 38 for further handling of the data and eventual connection of the data to output lines 40. However, decoder 42 looks at the data signal and determines the code in the fonr bit field which represents the queue length information. This decoder then provides the queue length information for the associated mobile station to the resource controller 44. The resource controller determines the situation in the data queue in the associated mobile station and determines whether additional resources should be allocated to that mobile station connection and if the resources are available. The controller obviously must prioritize the needs of the various stations in view of the resources available and distribute them in the most effective manner. This controller then determines the various bandwidth resources available for each mobile station and controls the receiver to arrange this. The actual decision process as to how to allocate the resources based on this information may vary. It may take into consideration the importance of the information, its time sensitivity, the importance of the particular user, or other factors in addition to the amount of data in each station. However, the allocation should be such as to give the best quality of service to as many stations as possible. However, the simple manner of making this choice is merely to allocate the most resources to the station with the largest queue . without lowering the segment rate which has been guaranteed. ust as in the mobile stations, the various circuitry indicated for the base station may actually be hardwired devices or may be programmed functions of a processor.
In a preferable system, the real time data packet is split into data segments for the purpose of transmission. In packet cellular systems, data segments correspond to a radio link control/multiple access control (RLC/MAC) block, which is a layer 2 data block. Each data segment is transmitted individually over the transmission media when the opportunity is granted. A transmission opportunity is defined as any method used to transport a data
segment on the transmission media. For example, in a time division multiple access system (TDMA) the transmission opportunity is a time slot and in a wideband code division multiple access (WCDMA) system it is the utilization of a unique WALSH code in a radio frame. The radio frame is shared by multiple users using different WALSH codes. The base station schedules the data packets and organizes the transmission opportunities for current user traffic. The present invention presents a model that will help the scheduling in the base station to provide for optimum service for all users in the uplink direction. Traffic information is sent in each block in the uplink. By including this information in one field of the block, real time information is provided to enable better scheduling.
While this arrangement has been described in terms of a wireless connection between a mobile station and a base station, it could also be applied to other systems where the connections are made by wire, fiber optic cable, etc. The only requirement is that the queue length information can be sent with the data block and that the resources can be allocated based on this data.
The method of operation of this system is seen in the flow charts of Figures 4 and 5. Figure 4 relates to the method of determining the queue length and encoding the four bit field in the mobile station. In step 100, the data queue length is determined. In step 102 the determined length is converted to a four bit code which is related to the queue length. This code is inserted in the data packet in step 104. The packet is then transmitted in step 106.
Figure 5 shows the method of utilizing this information in the base station. In step 1 10, the signal from a particular mobile station is received. In step 112 the data is forwarded. In step 114 a decoder receives the encoded four bit field and decodes it. In step 116 the resource controller receives the decoded information and determines the length of the queue. In step 1 18, the resources are based on this information.
Numerous additional modifications and various of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than is specifically described herein.
Claims (13)
1. A method of controlling communication resources in a transmission from a first network element to a second network element, where the communication resources are allocated by a controller, comprising: monitoring an indication of future need of communication resources in said first network element; sending the indication from the first network element to the controller; controlling the communication resources between the first network element and the second network element based on this indication.
2. The method according to claim 1 , wherein the first network element is connected to the controller by way of the second network element.
3. The method according to claim 1 , wherein the indication includes information about a transmit buffer of the first network element.
4. The method according to claim 1 , wherein the indication includes information on the additional resources needed for said first network element.
5. The method according to claim 3, wherein the indication includes a quantization scheme whose values correspond to predefined amounts of resources.
6. The method according to claim 4, wherein the indication includes information about a transmit buffer of the first network element.
7. A method according to claim 1 , wherein the first network element is a mobile station and the second network element is a base station of a wireless communication network.
8. A system for controlling communication resources in a network, comprising: a plurality of first stations; a second station connected to said plurality of first stations through a plurality of communication links; a controller for controlling the allocation of said communication resources among said links; said allocation being performed in accordance with information transmitted from said first stations which indicates a need for communication resources.
9. The system according to claim 8, wherein said controller is part of said base station.
10. The system according to claim 8, wherein said first stations are mobile stations in a wireless network.
1 1. The system according to claim 8, wherein each of said plurality of first stations includes: a data generator; a data queue; an encoder for generating a code representative of the length of the data queue; a transmitter for transmitting said data with said code included therein as a field.
12. The system according to claim 8, wherein said base station includes a receiver for receiving a transmission and producing data; a decoder for decoding a field of said data and producing an indication of the data queue in an associated first station; wherein said controller receives said information from said decoder and allocates communication resources in accordance therewith.
13. The system according to claim 8, wherein said indication is provided for each data block transmitted.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24609900P | 2000-11-07 | 2000-11-07 | |
US60/246,099 | 2000-11-07 | ||
US09/759,153 | 2001-01-16 | ||
US09/759,153 US8111689B2 (en) | 2001-01-16 | 2001-01-16 | System for uplink scheduling packet based data traffic in wireless system |
PCT/US2001/029959 WO2002039760A2 (en) | 2000-11-07 | 2001-09-26 | System for uplink scheduling of packet data traffic in wireless system |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2001293069A1 true AU2001293069A1 (en) | 2002-07-25 |
AU2001293069B2 AU2001293069B2 (en) | 2005-12-15 |
Family
ID=26937720
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001293069A Ceased AU2001293069B2 (en) | 2000-11-07 | 2001-09-26 | System for uplink scheduling of packet based data traffic in wireless system |
AU9306901A Pending AU9306901A (en) | 2000-11-07 | 2001-09-26 | System for uplink scheduling packet based data traffic in wireless system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU9306901A Pending AU9306901A (en) | 2000-11-07 | 2001-09-26 | System for uplink scheduling packet based data traffic in wireless system |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP1332640B1 (en) |
JP (2) | JP2004533731A (en) |
KR (1) | KR100559727B1 (en) |
CN (1) | CN1227944C (en) |
AT (1) | ATE354923T1 (en) |
AU (2) | AU2001293069B2 (en) |
CA (1) | CA2428061A1 (en) |
DE (1) | DE60126806T2 (en) |
ES (1) | ES2281445T3 (en) |
RU (1) | RU2285351C2 (en) |
WO (1) | WO2002039760A2 (en) |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9130810B2 (en) | 2000-09-13 | 2015-09-08 | Qualcomm Incorporated | OFDM communications methods and apparatus |
US7295509B2 (en) | 2000-09-13 | 2007-11-13 | Qualcomm, Incorporated | Signaling method in an OFDM multiple access system |
US6768715B2 (en) * | 2002-06-07 | 2004-07-27 | Nokia Corporation | Apparatus, and associated method, for performing reverse-link traffic measurements in a radio communication system |
AU2002349425A1 (en) * | 2002-11-13 | 2004-07-14 | Zte Corporation | Forward-link rate scheduling method and scheduler |
US7218948B2 (en) | 2003-02-24 | 2007-05-15 | Qualcomm Incorporated | Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators |
US9544860B2 (en) | 2003-02-24 | 2017-01-10 | Qualcomm Incorporated | Pilot signals for use in multi-sector cells |
US9661519B2 (en) | 2003-02-24 | 2017-05-23 | Qualcomm Incorporated | Efficient reporting of information in a wireless communication system |
US8811348B2 (en) | 2003-02-24 | 2014-08-19 | Qualcomm Incorporated | Methods and apparatus for generating, communicating, and/or using information relating to self-noise |
JP4349050B2 (en) * | 2003-09-24 | 2009-10-21 | 日本電気株式会社 | Mobile communication system, radio base station, scheduling apparatus, and scheduling method used therefor |
GB0323246D0 (en) * | 2003-10-03 | 2003-11-05 | Fujitsu Ltd | Virtually centralized uplink scheduling |
GB0323245D0 (en) | 2003-10-03 | 2003-11-05 | Fujitsu Ltd | Soft handover techniques |
US8040834B2 (en) * | 2004-03-31 | 2011-10-18 | Interdigital Technology Corporation | Wireless communication method and apparatus for reporting traffic volume measurement information to support enhanced uplink data transmissions |
KR100678184B1 (en) * | 2004-05-19 | 2007-02-02 | 삼성전자주식회사 | Method and?apparatus?for scheduling of enhanced uplink dedicated channel in a mobile telecommunication system |
US7961609B2 (en) * | 2004-07-20 | 2011-06-14 | Qualcomm Incorporated | Packet aware scheduler in wireless communication systems |
US9148256B2 (en) | 2004-07-21 | 2015-09-29 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
US9137822B2 (en) | 2004-07-21 | 2015-09-15 | Qualcomm Incorporated | Efficient signaling over access channel |
CN101091324B (en) | 2004-10-14 | 2011-02-23 | 高通股份有限公司 | Methods and apparatus for determining, communicating and using information which can be used for interference control purposes |
US8503938B2 (en) | 2004-10-14 | 2013-08-06 | Qualcomm Incorporated | Methods and apparatus for determining, communicating and using information including loading factors which can be used for interference control purposes |
US7848291B2 (en) | 2004-11-05 | 2010-12-07 | Interdigital Technology Corporation | Wireless metropolitan area network architecture for managing network resources and mobility |
US8095141B2 (en) | 2005-03-09 | 2012-01-10 | Qualcomm Incorporated | Use of supplemental assignments |
US9246560B2 (en) | 2005-03-10 | 2016-01-26 | Qualcomm Incorporated | Systems and methods for beamforming and rate control in a multi-input multi-output communication systems |
US9154211B2 (en) | 2005-03-11 | 2015-10-06 | Qualcomm Incorporated | Systems and methods for beamforming feedback in multi antenna communication systems |
US8446892B2 (en) | 2005-03-16 | 2013-05-21 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US9143305B2 (en) | 2005-03-17 | 2015-09-22 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9461859B2 (en) | 2005-03-17 | 2016-10-04 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9520972B2 (en) | 2005-03-17 | 2016-12-13 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9184870B2 (en) | 2005-04-01 | 2015-11-10 | Qualcomm Incorporated | Systems and methods for control channel signaling |
US9408220B2 (en) | 2005-04-19 | 2016-08-02 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US9036538B2 (en) | 2005-04-19 | 2015-05-19 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
US8611284B2 (en) | 2005-05-31 | 2013-12-17 | Qualcomm Incorporated | Use of supplemental assignments to decrement resources |
US8565194B2 (en) | 2005-10-27 | 2013-10-22 | Qualcomm Incorporated | Puncturing signaling channel for a wireless communication system |
US8879511B2 (en) | 2005-10-27 | 2014-11-04 | Qualcomm Incorporated | Assignment acknowledgement for a wireless communication system |
US8462859B2 (en) | 2005-06-01 | 2013-06-11 | Qualcomm Incorporated | Sphere decoding apparatus |
US8098667B2 (en) * | 2005-06-16 | 2012-01-17 | Qualcomm Incorporated | Methods and apparatus for efficient providing of scheduling information |
US8654712B2 (en) | 2005-06-16 | 2014-02-18 | Qualcomm Incorporated | OFDMA reverse link scheduling |
US8599945B2 (en) | 2005-06-16 | 2013-12-03 | Qualcomm Incorporated | Robust rank prediction for a MIMO system |
US9179319B2 (en) | 2005-06-16 | 2015-11-03 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US8885628B2 (en) | 2005-08-08 | 2014-11-11 | Qualcomm Incorporated | Code division multiplexing in a single-carrier frequency division multiple access system |
US9209956B2 (en) | 2005-08-22 | 2015-12-08 | Qualcomm Incorporated | Segment sensitive scheduling |
US20070041457A1 (en) | 2005-08-22 | 2007-02-22 | Tamer Kadous | Method and apparatus for providing antenna diversity in a wireless communication system |
US7904055B2 (en) | 2005-08-23 | 2011-03-08 | Lg Electronics Inc. | Communicating message in mobile communication system |
US8644292B2 (en) | 2005-08-24 | 2014-02-04 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
US9136974B2 (en) | 2005-08-30 | 2015-09-15 | Qualcomm Incorporated | Precoding and SDMA support |
US8694042B2 (en) | 2005-10-14 | 2014-04-08 | Qualcomm Incorporated | Method and apparatus for determining a base station's transmission power budget |
US9191840B2 (en) | 2005-10-14 | 2015-11-17 | Qualcomm Incorporated | Methods and apparatus for determining, communicating and using information which can be used for interference control |
US9225488B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Shared signaling channel |
US9210651B2 (en) | 2005-10-27 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for bootstraping information in a communication system |
US9172453B2 (en) | 2005-10-27 | 2015-10-27 | Qualcomm Incorporated | Method and apparatus for pre-coding frequency division duplexing system |
US9144060B2 (en) | 2005-10-27 | 2015-09-22 | Qualcomm Incorporated | Resource allocation for shared signaling channels |
US8045512B2 (en) | 2005-10-27 | 2011-10-25 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9225416B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Varied signaling channels for a reverse link in a wireless communication system |
US9088384B2 (en) | 2005-10-27 | 2015-07-21 | Qualcomm Incorporated | Pilot symbol transmission in wireless communication systems |
US8582509B2 (en) | 2005-10-27 | 2013-11-12 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US8477684B2 (en) | 2005-10-27 | 2013-07-02 | Qualcomm Incorporated | Acknowledgement of control messages in a wireless communication system |
US8693405B2 (en) | 2005-10-27 | 2014-04-08 | Qualcomm Incorporated | SDMA resource management |
KR100684323B1 (en) * | 2005-11-11 | 2007-02-16 | 한국전자통신연구원 | Ap of wireless communication system and scheduling method of sounding channel information thereof |
US8582548B2 (en) | 2005-11-18 | 2013-11-12 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
US9119220B2 (en) | 2005-12-22 | 2015-08-25 | Qualcomm Incorporated | Methods and apparatus for communicating backlog related information |
US20070249287A1 (en) | 2005-12-22 | 2007-10-25 | Arnab Das | Methods and apparatus for selecting between a plurality of dictionaries |
US9338767B2 (en) | 2005-12-22 | 2016-05-10 | Qualcomm Incorporated | Methods and apparatus of implementing and/or using a dedicated control channel |
US9148795B2 (en) | 2005-12-22 | 2015-09-29 | Qualcomm Incorporated | Methods and apparatus for flexible reporting of control information |
US9451491B2 (en) | 2005-12-22 | 2016-09-20 | Qualcomm Incorporated | Methods and apparatus relating to generating and transmitting initial and additional control information report sets in a wireless system |
US9473265B2 (en) | 2005-12-22 | 2016-10-18 | Qualcomm Incorporated | Methods and apparatus for communicating information utilizing a plurality of dictionaries |
US9137072B2 (en) | 2005-12-22 | 2015-09-15 | Qualcomm Incorporated | Methods and apparatus for communicating control information |
US8514771B2 (en) | 2005-12-22 | 2013-08-20 | Qualcomm Incorporated | Methods and apparatus for communicating and/or using transmission power information |
US9125092B2 (en) | 2005-12-22 | 2015-09-01 | Qualcomm Incorporated | Methods and apparatus for reporting and/or using control information |
US20070149132A1 (en) | 2005-12-22 | 2007-06-28 | Junyl Li | Methods and apparatus related to selecting control channel reporting formats |
US8437251B2 (en) | 2005-12-22 | 2013-05-07 | Qualcomm Incorporated | Methods and apparatus for communicating transmission backlog information |
US9572179B2 (en) | 2005-12-22 | 2017-02-14 | Qualcomm Incorporated | Methods and apparatus for communicating transmission backlog information |
US9125093B2 (en) | 2005-12-22 | 2015-09-01 | Qualcomm Incorporated | Methods and apparatus related to custom control channel reporting formats |
WO2007078171A2 (en) | 2006-01-05 | 2007-07-12 | Lg Electronics Inc. | Method of transmitting feedback information in a wireless communication system |
AU2007203861B2 (en) | 2006-01-05 | 2009-11-26 | Interdigital Patent Holdings, Inc. | Transmitting information in mobile communications system |
KR101211807B1 (en) | 2006-01-05 | 2012-12-12 | 엘지전자 주식회사 | Method for managing synchronization state for mobile terminal in mobile communication system |
US8831607B2 (en) | 2006-01-05 | 2014-09-09 | Qualcomm Incorporated | Reverse link other sector communication |
KR101265628B1 (en) * | 2006-01-05 | 2013-05-22 | 엘지전자 주식회사 | method for scheduling radio resourse in the mobile communication system |
CN105515736A (en) | 2006-01-05 | 2016-04-20 | Lg电子株式会社 | Transmitting data in mobile communication system |
KR100912784B1 (en) | 2006-01-05 | 2009-08-18 | 엘지전자 주식회사 | Data transmission method and data retransmission method |
KR20070080552A (en) | 2006-02-07 | 2007-08-10 | 엘지전자 주식회사 | Method for transmitting response information in the mobile communication system |
US8493854B2 (en) | 2006-02-07 | 2013-07-23 | Lg Electronics Inc. | Method for avoiding collision using identifier in mobile network |
KR101387475B1 (en) | 2006-03-22 | 2014-04-22 | 엘지전자 주식회사 | method of processing data in mobile communication system having a plurality of network entities |
US20070243882A1 (en) | 2006-04-12 | 2007-10-18 | Qualcomm Incorporated | Method and apparatus for locating a wireless local area network associated with a wireless wide area network |
KR20070121505A (en) | 2006-06-21 | 2007-12-27 | 엘지전자 주식회사 | Method for reconfiguring radio link |
US8234534B2 (en) | 2006-06-21 | 2012-07-31 | Lg Electronics Inc. | Method of supporting data retransmission in a mobile communication system |
US8743774B2 (en) * | 2007-01-30 | 2014-06-03 | Qualcomm Incorporated | Resource requests for a wireless communication system |
CN101669382B (en) | 2007-03-01 | 2014-02-12 | 株式会社Ntt都科摩 | Base station device and communication control method |
CN101669396B (en) | 2007-03-01 | 2012-09-19 | 株式会社Ntt都科摩 | Base station device and communication control method |
JP5047270B2 (en) | 2007-03-01 | 2012-10-10 | 株式会社エヌ・ティ・ティ・ドコモ | Base station equipment |
JPWO2008108224A1 (en) | 2007-03-01 | 2010-06-10 | 株式会社エヌ・ティ・ティ・ドコモ | Base station apparatus and communication control method |
EP2129150A4 (en) | 2007-03-01 | 2014-08-27 | Ntt Docomo Inc | Base station device and communication control method |
CN102573085A (en) | 2007-03-01 | 2012-07-11 | 株式会社Ntt都科摩 | Base station device and communication control method |
JPWO2008108228A1 (en) | 2007-03-01 | 2010-06-10 | 株式会社エヌ・ティ・ティ・ドコモ | Base station apparatus and communication control method |
ES2968530T3 (en) * | 2007-06-15 | 2024-05-10 | Optis Wireless Technology Llc | Wireless communication apparatus and response signal broadcast procedure |
EP2217013A4 (en) * | 2007-10-31 | 2016-01-20 | Nec Corp | Resource allocation method in communication system, resource allocation system, and base station used for the same |
US8194556B2 (en) * | 2007-12-10 | 2012-06-05 | Motorola Mobility, Inc. | Latency-aware adaptive bandwidth request mechanism for real-time communication in WiMAX |
US9226305B2 (en) * | 2011-11-07 | 2015-12-29 | Nokia Technologies Oy | Medium access control method |
US9565690B2 (en) | 2011-11-30 | 2017-02-07 | Nokia Technologies Oy | Medium access control method enhancement |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6097733A (en) * | 1997-06-13 | 2000-08-01 | Nortel Networks Corporation | System and associated method of operation for managing bandwidth in a wireless communication system supporting multimedia communications |
KR100587255B1 (en) * | 1998-08-17 | 2006-07-25 | 엘지전자 주식회사 | method for controlling asymmetric dynamic radio bearer in radio packet data communication system |
-
2001
- 2001-09-26 RU RU2003117017/09A patent/RU2285351C2/en active
- 2001-09-26 ES ES01973497T patent/ES2281445T3/en not_active Expired - Lifetime
- 2001-09-26 WO PCT/US2001/029959 patent/WO2002039760A2/en active IP Right Grant
- 2001-09-26 KR KR1020037006204A patent/KR100559727B1/en not_active IP Right Cessation
- 2001-09-26 AU AU2001293069A patent/AU2001293069B2/en not_active Ceased
- 2001-09-26 AT AT01973497T patent/ATE354923T1/en not_active IP Right Cessation
- 2001-09-26 AU AU9306901A patent/AU9306901A/en active Pending
- 2001-09-26 CN CN01821722.2A patent/CN1227944C/en not_active Expired - Lifetime
- 2001-09-26 DE DE60126806T patent/DE60126806T2/en not_active Expired - Lifetime
- 2001-09-26 CA CA002428061A patent/CA2428061A1/en not_active Abandoned
- 2001-09-26 JP JP2002542150A patent/JP2004533731A/en active Pending
- 2001-09-26 EP EP01973497A patent/EP1332640B1/en not_active Expired - Lifetime
-
2006
- 2006-11-21 JP JP2006314224A patent/JP2007104705A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1332640B1 (en) | Method and system for uplink scheduling of packet data traffic in wireless system | |
US8526386B2 (en) | System for uplink scheduling packet based data traffic in wireless system | |
AU2001293069A1 (en) | System for uplink scheduling of packet based data traffic in wireless system | |
AU778564B2 (en) | Apparatus and method for acquiring an uplink traffic channel in wireless communications systems | |
KR100762194B1 (en) | Dynamic channel quality measurement procedure for adaptive modulation and coding techniques | |
KR100816598B1 (en) | Signaling method, system, base station and mobile station | |
EP2112793B1 (en) | Method and apparatus for implementing a MAC-coprocessor in a communications system | |
US20030123410A1 (en) | Compensating forward link speed | |
US20050143018A1 (en) | Communication resource management device | |
US20090207787A1 (en) | Radio base station, control apparatus, and wireless communication method | |
US7403514B1 (en) | Telecommunication system with channel sharing | |
US8300611B2 (en) | Method and apparatus to provide air time fairness in multiple physical transmission rate wireless systems | |
EP0961444B1 (en) | Packet transmission method, packet transmission device, radio frame transmission method, mobile communication method, mobile communication system, and exchange | |
JPH07107546A (en) | Radio communications system | |
WO1999009767A1 (en) | Signal transmission method and base station device for mobile communications | |
JP2006526346A (en) | Data transmission method and system in communication system | |
JP2003521182A (en) | Signaling method of channel assignment in wireless communication system | |
KR100996079B1 (en) | Method and apparatus for controling reverse tpr in mobile telecommunication system | |
JP2002354538A (en) | Traffic control method and base station device |