AU2001258110A1 - Cxcr4 antagonist treatment of hematopoietic cells - Google Patents
Cxcr4 antagonist treatment of hematopoietic cellsInfo
- Publication number
- AU2001258110A1 AU2001258110A1 AU2001258110A AU2001258110A AU2001258110A1 AU 2001258110 A1 AU2001258110 A1 AU 2001258110A1 AU 2001258110 A AU2001258110 A AU 2001258110A AU 2001258110 A AU2001258110 A AU 2001258110A AU 2001258110 A1 AU2001258110 A1 AU 2001258110A1
- Authority
- AU
- Australia
- Prior art keywords
- lkwiqeylekaln
- seq
- cells
- gggg
- cxcr4 antagonist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229940121384 cxc chemokine receptor type 4 (cxcr4) antagonist Drugs 0.000 title claims description 94
- 210000003958 hematopoietic stem cell Anatomy 0.000 title claims description 91
- 239000002576 chemokine receptor CXCR4 antagonist Substances 0.000 title claims description 65
- 238000011282 treatment Methods 0.000 title claims description 38
- 210000004027 cell Anatomy 0.000 claims description 155
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 119
- 210000000130 stem cell Anatomy 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 60
- 235000001014 amino acid Nutrition 0.000 claims description 39
- 125000000217 alkyl group Chemical group 0.000 claims description 38
- 108090000623 proteins and genes Proteins 0.000 claims description 36
- 206010028980 Neoplasm Diseases 0.000 claims description 26
- 210000005259 peripheral blood Anatomy 0.000 claims description 23
- 239000011886 peripheral blood Substances 0.000 claims description 23
- 238000001727 in vivo Methods 0.000 claims description 17
- 210000001772 blood platelet Anatomy 0.000 claims description 16
- 201000011510 cancer Diseases 0.000 claims description 15
- 238000001415 gene therapy Methods 0.000 claims description 14
- 229910052786 argon Inorganic materials 0.000 claims description 13
- 239000003814 drug Substances 0.000 claims description 12
- 210000002960 bfu-e Anatomy 0.000 claims description 10
- 208000023275 Autoimmune disease Diseases 0.000 claims description 7
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 6
- 230000001965 increasing effect Effects 0.000 claims description 6
- 210000001616 monocyte Anatomy 0.000 claims description 6
- 230000001737 promoting effect Effects 0.000 claims description 6
- 235000009697 arginine Nutrition 0.000 claims description 5
- 210000004443 dendritic cell Anatomy 0.000 claims description 5
- 210000000440 neutrophil Anatomy 0.000 claims description 5
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 4
- 210000000601 blood cell Anatomy 0.000 claims description 4
- 210000003643 myeloid progenitor cell Anatomy 0.000 claims description 4
- 210000003743 erythrocyte Anatomy 0.000 claims description 3
- 210000003630 histaminocyte Anatomy 0.000 claims description 3
- 210000003738 lymphoid progenitor cell Anatomy 0.000 claims description 3
- 210000002540 macrophage Anatomy 0.000 claims description 3
- 230000001483 mobilizing effect Effects 0.000 claims description 3
- 210000002361 Megakaryocyte Progenitor Cell Anatomy 0.000 claims description 2
- 210000003651 basophil Anatomy 0.000 claims description 2
- 210000002791 cfu-m Anatomy 0.000 claims description 2
- 210000003979 eosinophil Anatomy 0.000 claims description 2
- 150000001484 arginines Chemical group 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 description 74
- 108010061299 CXCR4 Receptors Proteins 0.000 description 35
- 102000012000 CXCR4 Receptors Human genes 0.000 description 33
- 229940024606 amino acid Drugs 0.000 description 32
- 150000001413 amino acids Chemical class 0.000 description 32
- 239000005557 antagonist Substances 0.000 description 30
- 102000004196 processed proteins & peptides Human genes 0.000 description 30
- 210000004369 blood Anatomy 0.000 description 24
- 239000008280 blood Substances 0.000 description 24
- 238000002512 chemotherapy Methods 0.000 description 24
- 210000001185 bone marrow Anatomy 0.000 description 23
- 230000000694 effects Effects 0.000 description 23
- 239000013598 vector Substances 0.000 description 23
- -1 7- azabenzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate Chemical group 0.000 description 22
- 230000003394 haemopoietic effect Effects 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 17
- 125000003118 aryl group Chemical group 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 17
- 239000013604 expression vector Substances 0.000 description 16
- 125000005647 linker group Chemical group 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 15
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 15
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 14
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 14
- 125000003275 alpha amino acid group Chemical group 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 14
- 230000027455 binding Effects 0.000 description 13
- 210000000265 leukocyte Anatomy 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 102000039446 nucleic acids Human genes 0.000 description 13
- 150000007523 nucleic acids Chemical class 0.000 description 13
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 12
- 230000005764 inhibitory process Effects 0.000 description 12
- 229920001184 polypeptide Polymers 0.000 description 12
- 238000002560 therapeutic procedure Methods 0.000 description 12
- 125000000539 amino acid group Chemical group 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 239000003446 ligand Substances 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 238000001959 radiotherapy Methods 0.000 description 11
- 239000004472 Lysine Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 125000004122 cyclic group Chemical group 0.000 description 10
- 229940127089 cytotoxic agent Drugs 0.000 description 10
- 125000000623 heterocyclic group Chemical group 0.000 description 10
- 210000004698 lymphocyte Anatomy 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 10
- 238000003259 recombinant expression Methods 0.000 description 10
- 230000001105 regulatory effect Effects 0.000 description 10
- 102000019034 Chemokines Human genes 0.000 description 9
- 108010012236 Chemokines Proteins 0.000 description 9
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 9
- 210000004899 c-terminal region Anatomy 0.000 description 9
- 231100000433 cytotoxic Toxicity 0.000 description 9
- 230000001472 cytotoxic effect Effects 0.000 description 9
- 150000002333 glycines Chemical class 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 230000004083 survival effect Effects 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 241000701161 unidentified adenovirus Species 0.000 description 9
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 8
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 8
- 125000003342 alkenyl group Chemical group 0.000 description 8
- 125000000304 alkynyl group Chemical group 0.000 description 8
- 125000000753 cycloalkyl group Chemical group 0.000 description 8
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 8
- 239000002254 cytotoxic agent Substances 0.000 description 8
- 239000003102 growth factor Substances 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 7
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 7
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 7
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 7
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 7
- 231100000599 cytotoxic agent Toxicity 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000035755 proliferation Effects 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- 241001430294 unidentified retrovirus Species 0.000 description 7
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 6
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 6
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 6
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 6
- 125000003710 aryl alkyl group Chemical group 0.000 description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 230000001332 colony forming effect Effects 0.000 description 6
- 125000004093 cyano group Chemical group *C#N 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 150000002148 esters Chemical group 0.000 description 6
- 235000013922 glutamic acid Nutrition 0.000 description 6
- 239000004220 glutamic acid Substances 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical group 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 210000002536 stromal cell Anatomy 0.000 description 6
- 206010043554 thrombocytopenia Diseases 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 238000002054 transplantation Methods 0.000 description 6
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- 108010053045 CTCE-9908 Proteins 0.000 description 5
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 5
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 5
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 description 5
- 238000011579 SCID mouse model Methods 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 238000002617 apheresis Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- VUYRSKROGTWHDC-HZGLMRDYSA-N ctce 9908 Chemical compound C([C@H](NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)CNC(=O)[C@@H](N)CCCCN)C(C)C)CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCCCC[C@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)CNC(=O)[C@@H](N)CCCCN)C(C)C)C(N)=O)C1=CC=C(O)C=C1 VUYRSKROGTWHDC-HZGLMRDYSA-N 0.000 description 5
- 230000001351 cycling effect Effects 0.000 description 5
- 239000000539 dimer Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 150000002576 ketones Chemical group 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000001400 myeloablative effect Effects 0.000 description 5
- 229960003104 ornithine Drugs 0.000 description 5
- 210000002568 pbsc Anatomy 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 201000010000 Agranulocytosis Diseases 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 101710082513 C-X-C chemokine receptor type 4 Proteins 0.000 description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 4
- 206010018687 Granulocytopenia Diseases 0.000 description 4
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 125000004414 alkyl thio group Chemical group 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 235000003704 aspartic acid Nutrition 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 125000002160 cholyl group Chemical group [H]C([H])([C@]1(C([C@@]2([H])O[H])([H])[H])[H])[C@@](O[H])([H])C([H])([H])C([H])([H])[C@]1(C([H])([H])[H])[C@]1([H])[C@]2([H])[C@]2([H])C([H])([H])C([H])([H])[C@@]([C@](C([H])([H])[H])(C(C(C(=O)[*])([H])[H])([H])[H])[H])([H])[C@@]2(C([H])([H])[H])[C@](O[H])([H])C1([H])[H] 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 150000002170 ethers Chemical group 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000001605 fetal effect Effects 0.000 description 4
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 210000003714 granulocyte Anatomy 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 4
- ZAHQPTJLOCWVPG-UHFFFAOYSA-N mitoxantrone dihydrochloride Chemical compound Cl.Cl.O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO ZAHQPTJLOCWVPG-UHFFFAOYSA-N 0.000 description 4
- 230000003039 myelosuppressive effect Effects 0.000 description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 4
- 108010046821 oprelvekin Proteins 0.000 description 4
- 125000003367 polycyclic group Chemical group 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229940002612 prodrug Drugs 0.000 description 4
- 239000000651 prodrug Substances 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 108010038379 sargramostim Proteins 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000000547 substituted alkyl group Chemical group 0.000 description 4
- 229940104230 thymidine Drugs 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 3
- 108700012434 CCL3 Proteins 0.000 description 3
- 108050006947 CXC Chemokine Proteins 0.000 description 3
- 102000019388 CXC chemokine Human genes 0.000 description 3
- 102000000013 Chemokine CCL3 Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010029961 Filgrastim Proteins 0.000 description 3
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 3
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 208000007502 anemia Diseases 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 125000004057 biotinyl group Chemical group [H]N1C(=O)N([H])[C@]2([H])[C@@]([H])(SC([H])([H])[C@]12[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 238000010322 bone marrow transplantation Methods 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000035605 chemotaxis Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 210000004700 fetal blood Anatomy 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 3
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 150000002466 imines Chemical group 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229940029345 neupogen Drugs 0.000 description 3
- 238000011275 oncology therapy Methods 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 239000000816 peptidomimetic Substances 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 150000003003 phosphines Chemical group 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 150000003346 selenoethers Chemical group 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000011476 stem cell transplantation Methods 0.000 description 3
- 150000003568 thioethers Chemical group 0.000 description 3
- 125000003396 thiol group Chemical class [H]S* 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- ALKYHXVLJMQRLQ-UHFFFAOYSA-N 3-Hydroxy-2-naphthoate Chemical compound C1=CC=C2C=C(O)C(C(=O)O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 206010065553 Bone marrow failure Diseases 0.000 description 2
- 102100036850 C-C motif chemokine 23 Human genes 0.000 description 2
- 108010040471 CC Chemokines Proteins 0.000 description 2
- 102000001902 CC Chemokines Human genes 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108010074604 Epoetin Alfa Proteins 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 102100020715 Fms-related tyrosine kinase 3 ligand protein Human genes 0.000 description 2
- 101710162577 Fms-related tyrosine kinase 3 ligand protein Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 description 2
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000713081 Homo sapiens C-C motif chemokine 23 Proteins 0.000 description 2
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 2
- 108090000177 Interleukin-11 Proteins 0.000 description 2
- 102000003815 Interleukin-11 Human genes 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 108091061960 Naked DNA Proteins 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 206010033661 Pancytopenia Diseases 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 102000036693 Thrombopoietin Human genes 0.000 description 2
- 108010041111 Thrombopoietin Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 2
- 238000011316 allogeneic transplantation Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 2
- 108700024685 ancestim Proteins 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 125000005129 aryl carbonyl group Chemical group 0.000 description 2
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000001363 autoimmune Effects 0.000 description 2
- 210000000780 bap Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 238000004820 blood count Methods 0.000 description 2
- 210000002798 bone marrow cell Anatomy 0.000 description 2
- 210000004900 c-terminal fragment Anatomy 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 210000000751 eop Anatomy 0.000 description 2
- 229940089118 epogen Drugs 0.000 description 2
- 210000003013 erythroid precursor cell Anatomy 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 108700014844 flt3 ligand Proteins 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002695 general anesthesia Methods 0.000 description 2
- 208000024908 graft versus host disease Diseases 0.000 description 2
- 230000002489 hematologic effect Effects 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 125000001072 heteroaryl group Chemical group 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229940074383 interleukin-11 Drugs 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 238000010930 lactamization Methods 0.000 description 2
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229940087875 leukine Drugs 0.000 description 2
- 201000002364 leukopenia Diseases 0.000 description 2
- 231100001022 leukopenia Toxicity 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- QLWNYHCXHVWZQP-SWAUHKJRSA-N mirostipen Chemical compound N1[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)O)CC(=O)N)CCCCN)CCCNC(=N)N)[C@@H](O)C)CCCCN)[C@@H](C)CC)CCCNC(=N)N)[C@@H](O)C)CC(=O)O)CC(C)C)CCCCN)CC(C)C)CCSC)CCCNC(=N)N)CCSC)CSSC[C@@H]2NC(=O)[C@H]3N(C(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]4N(CCC4)C(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]4NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)CCSC)CCCNC(=N)N)Cc5ccccc5)Cc5[nH]cnc5)C)[C@@H](O)C)CO)C)CC(=O)O)CSSC[C@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC2=O)CO)CC(C)C)CC(C)C)CCC(=O)O)CO)Cc2ccc(cc2)O)Cc2ccccc2)CCC(=O)O)[C@@H](O)C)CC(=O)N)CO)CCC(=O)O)C(=O)N[C@H](C(=O)N[C@H](C(=O)N2[C@H](C(=O)NCC(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N5[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C1=O)[C@@H](C)C)CCC(=O)N)[C@@H](C)C)CCC(=O)N)CCCCN)CC(=O)O)CO)CCC5)CC(=O)N)CSSC4)Cc1ccccc1)CCCNC(=N)N)CCCNC(=N)N)CCCCN)CCCCN)[C@@H](O)C)CC(C)C)Cc1ccccc1)[C@@H](C)CC)[C@@H](C)C)CCC2)CCCCN)CO)[C@@H](C)CC)CO)Cc1ccc(cc1)O)[C@@H](O)C)CCCNC(=N)N)CO)[C@@H](C)CC)CCC3 QLWNYHCXHVWZQP-SWAUHKJRSA-N 0.000 description 2
- 229950001986 mirostipen Drugs 0.000 description 2
- 108091005601 modified peptides Proteins 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 208000025919 mucopolysaccharidosis type 7 Diseases 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 108010059631 myelopoietin Proteins 0.000 description 2
- 229940082926 neumega Drugs 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical group [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 2
- 210000001778 pluripotent stem cell Anatomy 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229960002530 sargramostim Drugs 0.000 description 2
- 238000002821 scintillation proximity assay Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 2
- 150000003871 sulfonates Chemical group 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 210000002303 tibia Anatomy 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- FMNQRUKVXAQEAZ-JNRFBPFXSA-N (5z,8s,9r,10e,12s)-9,12-dihydroxy-8-[(1s)-1-hydroxy-3-oxopropyl]heptadeca-5,10-dienoic acid Chemical compound CCCCC[C@H](O)\C=C\[C@@H](O)[C@H]([C@@H](O)CC=O)C\C=C/CCCC(O)=O FMNQRUKVXAQEAZ-JNRFBPFXSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 125000004924 2-naphthylethyl group Chemical group C1=C(C=CC2=CC=CC=C12)CC* 0.000 description 1
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 1
- BPVHBBXCESDRKW-UHFFFAOYSA-N 5(6)-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21.C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BPVHBBXCESDRKW-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 1
- 201000011452 Adrenoleukodystrophy Diseases 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 206010003178 Arterial thrombosis Diseases 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical group NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000005367 Carboxypeptidases Human genes 0.000 description 1
- 108010006303 Carboxypeptidases Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108010008951 Chemokine CXCL12 Proteins 0.000 description 1
- 102000006573 Chemokine CXCL12 Human genes 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 229940122444 Chemokine receptor antagonist Drugs 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 208000025212 Constitutional neutropenia Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000360593 Erythroides Species 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical group CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 208000015178 Hurler syndrome Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 206010021450 Immunodeficiency congenital Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 201000001779 Leukocyte adhesion deficiency Diseases 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 101710151805 Mitochondrial intermediate peptidase 1 Proteins 0.000 description 1
- 206010056886 Mucopolysaccharidosis I Diseases 0.000 description 1
- 206010056893 Mucopolysaccharidosis VII Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101000617124 Mus musculus Stromal cell-derived factor 1 Proteins 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 101800000597 N-terminal peptide Proteins 0.000 description 1
- 102400000108 N-terminal peptide Human genes 0.000 description 1
- KBHCPIJKJQNHPN-UHFFFAOYSA-N N=NP(O)=O Chemical compound N=NP(O)=O KBHCPIJKJQNHPN-UHFFFAOYSA-N 0.000 description 1
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000005890 Neuroma Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 102000008212 P-Selectin Human genes 0.000 description 1
- 108010035766 P-Selectin Proteins 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 229940083963 Peptide antagonist Drugs 0.000 description 1
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical group NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 1
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 1
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- WBTCZXYOKNRFQX-UHFFFAOYSA-N S1(=O)(=O)NC1=O Chemical compound S1(=O)(=O)NC1=O WBTCZXYOKNRFQX-UHFFFAOYSA-N 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 201000001828 Sly syndrome Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical group [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- XNRNNGPBEPRNAR-UHFFFAOYSA-N Thromboxane B2 Natural products CCCCCC(O)C=CC1OC(O)CC(O)C1CC=CCCCC(O)=O XNRNNGPBEPRNAR-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 208000033779 X-linked lymphoproliferative disease Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004947 alkyl aryl amino group Chemical group 0.000 description 1
- 125000005466 alkylenyl group Chemical group 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- 238000010976 amide bond formation reaction Methods 0.000 description 1
- 150000001409 amidines Chemical group 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000008209 arabinosides Chemical class 0.000 description 1
- 150000001510 aspartic acids Chemical class 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 231100001018 bone marrow damage Toxicity 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004202 carbamide Chemical group 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000003352 cell adhesion assay Methods 0.000 description 1
- 230000034196 cell chemotaxis Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 239000002559 chemokine receptor antagonist Substances 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 238000009104 chemotherapy regimen Methods 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical class C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229950004394 ditiocarb Drugs 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000003372 endocrine gland Anatomy 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 210000005002 female reproductive tract Anatomy 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- YFHXZQPUBCBNIP-UHFFFAOYSA-N fura-2 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=3OC(=CC=3C=2)C=2OC(=CN=2)C(O)=O)N(CC(O)=O)CC(O)=O)=C1 YFHXZQPUBCBNIP-UHFFFAOYSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 210000002360 granulocyte-macrophage progenitor cell Anatomy 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 230000009067 heart development Effects 0.000 description 1
- 201000011066 hemangioma Diseases 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 230000009033 hematopoietic malignancy Effects 0.000 description 1
- 210000000777 hematopoietic system Anatomy 0.000 description 1
- 230000002607 hemopoietic effect Effects 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 210000003026 hypopharynx Anatomy 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 208000036546 leukodystrophy Diseases 0.000 description 1
- 238000000670 ligand binding assay Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000000464 low-speed centrifugation Methods 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 230000032575 lytic viral release Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000005001 male reproductive tract Anatomy 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 210000004759 mcp Anatomy 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 210000003593 megakaryocyte Anatomy 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 210000001806 memory b lymphocyte Anatomy 0.000 description 1
- 210000002418 meninge Anatomy 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000003003 monocyte-macrophage precursor cell Anatomy 0.000 description 1
- 210000002433 mononuclear leukocyte Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000001167 myeloblast Anatomy 0.000 description 1
- 210000003887 myelocyte Anatomy 0.000 description 1
- 201000005987 myeloid sarcoma Diseases 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- ZTLGJPIZUOVDMT-UHFFFAOYSA-N n,n-dichlorotriazin-4-amine Chemical compound ClN(Cl)C1=CC=NN=N1 ZTLGJPIZUOVDMT-UHFFFAOYSA-N 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 150000005209 naphthoic acids Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 208000004235 neutropenia Diseases 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 210000003300 oropharynx Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- PETXWIMJICIQTQ-UHFFFAOYSA-N phenylmethoxymethanol Chemical group OCOCC1=CC=CC=C1 PETXWIMJICIQTQ-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical group [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 230000010118 platelet activation Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000004206 promonocyte Anatomy 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000003653 radioligand binding assay Methods 0.000 description 1
- 238000001525 receptor binding assay Methods 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 210000000468 rubriblast Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 210000001625 seminal vesicle Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000009168 stem cell therapy Methods 0.000 description 1
- 238000009580 stem-cell therapy Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical group [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 238000011191 terminal modification Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 210000002993 trophoblast Anatomy 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 210000003741 urothelium Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 201000010653 vesiculitis Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Description
CXCR4 ANTAGONIST TREATMENT OF HEMATOPOIETIC CELLS
FIELD OF THE INVENTION
In one aspect, the invention relates to therapeutic uses of chemokine receptor antagonists, including peptide antagonists of CXC chemokine receptor 4 (CXCR4) for use in the treatment of hematopoietic cells in vitro and in vivo. In another aspect, the invention relates to novel CXCR4 antagonists which may be used in the treatment of hematopoietic cells.
BACKGROUND OF THE INVENTION
Cytokines are soluble proteins secreted by a variety of cells including monocytes or lymphocytes that regulate immune responses. Chemokines are a superfamily of chemoattractant proteins. Chemokines regulate a variety of biological responses and they promote the recruitment of multiple lineages of leukocytes and lymphocytes to a body organ tissue. Chemokines may be classified into two families according to the relative position of the first two cysteine residues in the protein. In one family, the first two cysteines are separated by one amino acid residue, the CXC chemokines, and in the other family the first two cysteines are adjacent, the CC chemokines. Two minor subgroups contain only one of the two cysteines (C) or have three amino acids between the cysteines (CX3C). In humans, the genes of the CXC chemokines are clustered on chromosome 4 (with the exception of SDF-1 gene, which has been localized to chromosome 10) and those of the CC chemokines on chromosome 17.
The molecular targets for chemokines are cell surface receptors. One such receptor is CXC chemokine receptor 4 (CXCR4), which is a 7 transmembrane protein, coupled to G1 and was previously called LESTR (Loetscher, M., Geiser, T., O'Reilly, T., Zwahlen, R., Baggionlini, M., and Moser, B., (1994) J. Biol. Chem, 269, 232-237), HUMSTR (Federsppiel, B., Duncan, A.M.V., Delaney, A., Schappert, K., Clark-Lewis, I., and Jirik, F.R. (1993) Genomics 16, 707-712) and Fusin (Feng, Y., Broeder, CC, Kennedy, P.E., and Berger, E.A. (1996) HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane G protein-coupled receptor, Science 272, 872-877). CXCR4 is widely expressed on cells of hemopoietic origin,
and is a major co-receptor with CD4+ for human immunodeficiency virus 1 (HIV-1) ( Feng, Y., Broeder, CC, Kennedy, P.E., and Berger, E.A. (1996) HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane G protein-coupled receptor, Science 272, 872-877).
Chemokines are thought to mediate their effect by binding to seven- transmembrane G protein-coupled receptors, and to attract leukocyte subsets to sites of inflammation (Baglionini et al. (1998) Nature 392: 565-568). Many of the chemokines have been shown to be constitutively expressed in lymphoid tissues, indicating that they may have a homeostatic function in regulating lymphocyte trafficking between and within lymphoid organs (Kim and Broxmeyer (1999) J. Leuk. Biol. 56: 6-15).
Stromal cell derived factor one (SDF-1) is a member of the CXC family of chemokines that has been found to be constitutively secreted from the bone marrow stroma (Tashiro, (1993) Science 261 , 600-602). The human and mouse SDF-1 predicted protein sequences are approximately 92% identical. Stromal cell derived factor-1α (SDF-1 α) and stromal cell derived facto β (SDF-1 β) are closely related
(together referred to herein as SDF-1). The native amino acid sequences of SDF-1 α and SDF-1 β are known, as are the genomic sequences encoding these proteins (see
U.S. Patent No. 5,563,048 issued 8 October 1996, and U.S. Patent No. 5,756,084 issued 26 May 1998). Identification of genomic clones has shown that the alpha and beta isoforms are a consequence of alternative splicing of a single gene. The alpha form is derived from exons 1-3 while the beta form contains an additional sequence from exon 4. The entire human gene is approximately 10 Kb. SDF-1 was initially characterized as a pre-B cell-stimulating factor and as a highly efficient chemotactic factor for T cells and monocytes (Bieul et al. (1996) J. Exp. Med. 184:1101-1110).
Biological effects of SDF-1 may be mediated by the chemokine receptor CXCR4 (also known as fusin or LESTR), which is expressed on mononuclear leukocytes including hematopoietic stem cells. SDF-1 is thought to be the natural ligand for CXCR4, and CXCR4 is thought to be the natural receptor for SDF-1
(Nagasawza et al. (1997) Proc. Natl. Acad. Sci. USA 93:726-732). Genetic
elimination of SDF-1 is associated with parinatal lethality, including abnormalities in cardiac development, B-cell lymphopoiesis, and bone marrow myelopoiesis (Nagasawa et al. (1996) Nature 382:635-637).
SDF-1 is functionally distinct from other chemokines in that it is reported to have a fundamental role in the trafficking, export and homing of bone marrow progenitor cells (Aiuti, A., Webb, I.J., Bleul, C, Springer, T., and Guierrez-Ramos, J.C, (1996) J. Exp. Med. 185, 111-120 and Nagasawa, T., Hirota, S., Tachibana, K., Takakura N., Nishikawa, S.-l., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T., (1996) Nature 382, 635-638). SDF-1 is also structurally distinct in that it has only about 22% amino acid sequence identity with other CXC chemokines (Bleul, CC, Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A., and Springer, T.A., (1996) J. Exp. Med. 184, 1101-1109). SDF-1 appears to be produced constitutively by several cell types, and particularly high levels are found in bone-marrow stromal cells (Shirozu, M., Nakano, T., Inazawa, J., Tashiro, K., Tada, H. Shinohara, T., and Honjo, T., (1995) Genomics, 28, 495-500 and Bleul, CC, Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A., and Springer, T.A., (1996) J. Exp. Med. 184, 1101-1109). A basic physiological role for SDF-1 is implied by. the high level of conservation of the SDF-1 sequence between species. In vitro, SDF-1 stimulates chemotaxis of a wide range of cells including monocytes and bone marrow derived progenitor cells (Aiuti, A., Webb, I.J., Bleul, C, Springer, T., and Guierrez-Ramos, J.C, (1996) J. Exp. Med. 185, 111-120 and Bleul, CC, Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A., and Springer, T.A., (1996) J. Exp. Med. 184, 1101-1109). SDF-1 also stimulates a high percentage of resting and activated T-lymphocytes (Bleul, CC, Fuhlbrigge, R.C, Casasnovas, J.M., Aiuti, A., and Springer, T.A., (1996) J. Exp. Med. 184, 1101-1109 and Campbell, J.J., Hendrick, J., Zlotnik, A., Siani, MA, Thompson, D.A., and Butcher, E.G., (1998) Science, 279 381-383).
Native SDF-1 has been demonstrated to induce the maturation and activation of platelets (Hamada T. et al., J. Exp. Med. 188, 638-548 (1998); Hodohara K. et al.,
Blood 95, 769-775 (2000); Kowalska M. A. et al., Blood 96, 50-57 (2000)), and
CXCR4 is expressed on the megakaryocytic lineage cells (CFUOMeg) (Wang J-F. et al., Blood 92, 756-764 (1998)).
A variety of diseases require treatment with agents that are preferentially cytotoxic to dividing cells. Cancer cells, for example, may be targeted with cytotoxic doses of radiation or chemotherapeutic agents. A significant side-effect of this approach to cancer therapy is the pathological impact of such treatments on rapidly dividing normal cells. These normal cells may for example include hair follicles, mucosal cells and the hematopoietic cells, such as primitive bone marrow progenitor cells and stem cells. The indiscriminate destruction of hematopoietic stem, progenitor or precursor cells can lead to a reduction in normal mature blood cell counts, such as leukocytes, lymphocytes and red blood cells. A major impact on mature cell numbers may be seen particularly with neutrophils (neutropaenia) and platelets (thrombocytopenia), cells which naturally have relatively short half-lives. A decrease in leukocyte count, with concomitant loss of immune system function, may increase a patient's risk of opportunistic infection. Neutropaenia resulting from chemotherapy may for example occur within two or three days of cytotoxic treatments, and may leave the patient vulnerable to infection for up to 2 weeks until the hematopoietic system has recovered sufficiently to regenerate neutrophil counts. A reduced leukocyte count (leukopenia) and/or a platelet count (granulocytopenia) as a result of cancer therapy may become sufficiently serious that therapy must be interrupted to allow the white blood cell count to rebuild. Interruption of cancer therapy can in turn lead to survival of cancer cells, an increase in the incidence of drug resistance in cancer cells, and ultimately in cancer relapse. There is accordingly a need for therapeutic agents and treatments, which facilitate the preservation of hematopoietic progenitor or stem cells in patients subject to treatment with cytotoxic agents. There is similarly a need for therapeutic agents and treatments that facilitate the preservation or regeneration (self-renewal) of hematopoietic cell populations in cases where the number of such cells has been reduced due to disease or to therapeutic treatments such as radiation and chemotherapy.
Hematopoietic cells that are uncommitted to a final differentiated cell type are identified herein as "progenitor" cells. Hematopoietic progenitor cells possess the ability to differentiate into a final cell type directly or indirectly through a particular developmental lineage. Undifferentiated, pluripotent progenitor cells that are not
committed to any lineage are referred to herein as "stem cells." All hematopoietic cells can in theory be derived from a single stem cell, which is also able to perpetuate the stem cell lineage as daughter cells become differentiated. The isolation of populations of mammalian bone marrow cell populations which are enriched to a greater or lesser extent in pluripotent stem cells has been reported (see for example, C. Verfaillie et al., J. Exp. Med., 172, 509 (1990), incorporated herein by reference).
Bone marrow transplantation has been used in the treatment of a variety of hematological, autoimmune and malignant diseases. In conjunction with bone marrow transplantation, ex vivo hematopoietic (bone marrow) cell culture may be used to expand the population of hematopoietic cells, particularly progenitor or stem cells, prior to reintroduction of such cells into a patient. In ex vivo gene therapy, hematopoietic cells may be transformed in vitro prior to reintroduction of the transformed cells into the patient. In gene therapy, using conventional recombinant DNA techniques, a selected nucliec acid, such as a gene, may be isolated, placed into a vector, such as a viral vector, and the vector transfected into a hematopoietic cell, to transform the cell, and the cell may in turn express the product coded for by the gene. The cell then may then be introduced into a patient. Hematopoietic stem cells were initially identified as a prospective target for gene therapy (see e.g., Wilson, J. M., et al., Proc. Natl. Acad. Sci 85: 3014-3018 (1988)). However, problems have been encountered in efficient hematopoietic stem cell transfection (see Miller, A. D., Blood 76: 271-278 (1990)). There is accordingly a need for agents and methods that facilitate the proliferation of hematopoietic cells in ex vivo cell culture. There is also a need for agents that may be used to facilitate the establishment and proliferation of engrafted hematopoietic cells that have been transplanted into a patient.
The broad application of hematopoietic stem cell transplantation therapy, however, may be limited by several features. The acquisition of enough stem cells for clinical use may require either a bone marrow harvest under general anesthesia or peripheral blood leukapheresis; both are expensive and carry a risk of morbidity. Grafts may contain only a limited number of useful hematopoietic progenitors. Additionally, the kinetics of short-term stem cell engraftment may be such that for the
first 1-3 weeks after infusion, these cells offer little hematopoietic support, and therefor the recipients may remain profoundly myelosuppressed during this time.
Hematopoietic stem cells are reportedly found in peripheral blood of healthy persons. Their numbers however, may be insufficient to permit collection of an adequate graft by standard leukapheresis (Kessionger, A. et al., Bone Marrow Transplant 6, 643-646 (1989)). Fortunately, a variety of methods have been discovered to increase the circulation of progenitor and stem cells by "mobilizing" them from the marrow into the peripheral blood. For autologous transplantation, hematopoietic stem/progenitor cells may be mobilized into the peripheral blood (Lane T.A. Transfusion 36, 585-589 (1996)) during the rebound phase of the leukocytes after transient leukopenia induced by myelosuppressive chemotherapy, (Giralt S. et al., Blood, 89, 4531-4536 (1997) by hematopoietic growth factors, or (Lasky L. C et al., Transfusion 21 , 247-260 (1981)) by a combination of both.
Hematopoietic stem cell mobilization into peripheral blood has been used as a procedure following myelosuppressive chemotherapy regimens to mobilize hematopoietic stem and progenitor cells into the peripheral blood. Suggested treatment regimens for mobilization may include cyclophosphamide alone, in single doses of 4-7 g/m2, or other agents such as Adriamycin (doxorubicin), carboplatin, Taxol (paclitaxel), etoposide, ifosfamide, daunorubicin, cytosine arabinosides 6- thioguanine, either alone or in combination (Richman, C. M. et al., Blood 47, 1031- 1039 (1976); Stiff P. J. et al., Transfusion 23, 500-503 (1983); To L B. et al. Bone Marrow Transplant 9, 277-284 (1992)). Such a regiment may induce a transient but profound myelosuppression in patients, with white blood cell (WBC) counts in some cases dropping below 100 cells-mm3 7-14 days after chemotherapy. This may be followed on day 10-21 by rapid reappearance of leukocytes in the peripheral blood and frequently a "rebound" increase of the circulating leukocytes above baseline levels. As the leukocyte count rises, hematopoietic progenitor cells also begin to appear in the peripheral blood and rapidly increase.
Hematopoietic stem cells (HSC) collected from mobilized peripheral blood progenitor cells (PBPC) are increasingly used for both autologous and allogeneic
transplantation after myeloablative or nonmyeloablative therapies (Lane T.A. Transfusion 36, 585-589 (1996)). Purported advantages of PBPC transplantation include rapid and durable trilineage hematologic engraftment, improved tolerance of the harvesting procedure (without general anesthesia), and possibly diminished tumor contamination in the autologous setting (Lasky L. C. et al., Transfusion 21 , 247-260 (1981); Moss T. J. et al, Blood 76, 1879-1883)). Techniques for autologous mobilized PBPC grafting may also be successful for allogeneic transplantation. Early reports in animals and syngeneic transplants in humans supported this hypothesis (Kessionger, A. et al., Bone Marrow Transplant 6, 643-646 (1989)).
Many investigators have reported that PBPC mobilization employing a combination of chemotherapy and followed by growth factor (GM-CSF or G-CSF) administration is more effective than either chemotherapy or growth factor alone (Siena S. et al., Blood 74, 1905-1914 (1989); Pettengel R. et al., Blood, 2239-2248 (1993); Haas R. et al., Bone Marrow Transplant 9, 459-465 (1992); Ho A. D. et al., Leukemia 7, 1738-1746 (1993)). The combination reportedly results in a 50- to 75- fold increase in circulating CFU-GM and 10- to 50- fold increase in CD34+ cells (Pettengel R. et al., Blood, 2239-2248 (1993); Haas R. et al., Bone Marrow Transplant 9, 459-465 (1992); Ho A. D. et a!., Leukemia 7, 1738-1746 (1993)). Direct comparisons show that chemotherapy and growth factors resulted in a mean 3.5-fold greater peak number of circulating CFU-GM (range, 0 to 6.8 times greater verses chemotherapy or growth factor alone (Siena S. et al., Blood 74, 1905-1914 (1989); Pettengel R. et al., Blood, 2239-2248 (1993); Haas R. et al., Bone Marrow Transplant 9, 459-465 (1992); Moskowitz C. H. et al. Clin. Cancer Res. 4, 311-316 (1998)).
It is reportedly possible to expand hematopoietic progenitor cells in stroma- containing or nonstromal systems. Expansion systems have reportedly shown increases in CFU_GM of more than 100-fold. Enrichment of CD34+ cells may be required before expansion in nonstromal culture but may not be necessary in stroma- containing systems. Early results of clinical trails are encouraging and have been taken to demonstrate that the engraftment potential of the expanded hematopoietic cells is not compromised by culture. Expansion of cord blood-derived hematopoietic cells may be especially important because of the limited number of cells that can be
collected. Successful expansion of primitive and committed hematopoietic cells from cord blood may allow more extensive use in clinical transplantation, particularly in adult patients. Other possible applications of stem cell expansion include purging of tumor cells; production of immune-competent cells, such as dendritic cells and NK cells, and gene therapy.
Permanent marrow recovery after cytotoxic drug and radiation therapy generally depends on the survival of hematopoietic stem cells having long term reconstituting (LTR) potential. The major dose limiting sequelae consequent to chemotherapy and/or radiation therapy are typically neutropenia and thrombocytopenia. Protocols involving dose intensification (i.e., to increase the log- kill of the respective tumour therapy) or schedule compression may exacerbate the degree and duration of myelosuppression associated with the chemotherapy and/or radiation therapy. For instance, in the adjuvant setting, repeated cycles of doxorubicin-based treatment have been shown to produce cumulative and long- lasting damage in the bone marrow progenitor cell populations (Lorhrman et al., (1978) Br. J. Haematol. 40:369). The effects of short-term hematopoietic cell damage resulting from chemotherapy has been overcome to some extent by the concurrent use of G-CSF (Neupogen®), used to accelerate the regeneration of neutrophils (Le Chevalier (1994) Eur. J. Cancer 30A:410). This approach has been met with limitations also, as it may be accompanied by progressive thrombocytopenia and cumulative bone marrow damage as reflected by a reduction in the quality of mobilized progenitor cells over successive cycles of treatment. Because of the current interest in chemotherapy dose intensification as a means of improving tumour response rates and perhaps patient .survival, the necessity for alternative therapies to either improve or replace current treatments to rescue the myeloablative effects of chemotherapy and/or radiation therapy has escalated, and is currently one of the major rate limiting factors for tumour therapy dose escalations.
Transplanted peripheral blood stem cells (PBSC, or autologous PBSC) may provide a rapid and sustained hematopoietic recovery after the administration of high- dose chemotherapy or radiation therapy in patients with hematological malignancies and solid tumours. PBSC transplantation has become the preferred source of stem
cells for autologous transplantation because of the shorter time to engraftment and the lack of a need for surgical procedures such as are necessary for bone marrow harvesting (Demirer et al. (1996) Stem Cells 14:106-116; Pettengel et al., (1992) Blood 82:2239-2248). Although the mechanism of stem cell release into the peripheral blood from the bone marrow is not well understood, agents that augment the mobilization of CD34+ cells may prove to be effective in enhancing autologous PBSC transplantation. G-CSF and GM-CSF are currently the most commonly used hematopoietic growth factors for PBSC mobilization, although the mobilized cellular profiles can differ significantly from patient to patient. Therefore, other agents are required for this clinical application.
It has been suggested that stem cell transplants for autoimmune disease should be initiated using autologous or allogenic grafts, where the former may be preferable since they may bear less risk of complication (Burt and Taylor (1999) Stem Cells 17:366-372). Lymphocyte depletion has also been recommended, where lymphocyte depletion is a form of purging autoreactive cells from the graft. In practice, aggressive lymphocyte depletion of an allograft can reportedly ameliorate alloreactivity (i.e., graft-versus-host disease (GVHD)) even without immunosuppressive prophylaxis. Therefore, a lymphocyte-depleted autograft may prevent recurrence of autoreactivity. As a consequence, any concurrent therapy that may enhance the survival of the CFU-GEMM myeloid stem cells, or BFU-E, CFU- Meg (CFU-MK) and CFU-GM myelomonocytic stem cells may be beneficial in therapies for autoimmune diseases where hematopoietic stem cells could be compromised.
Platelet activation in healthy subjects after G-CSF administration has been reported. The effects were indicated by increased platelet expression of P-selectin (Avenarius H. J. et al., Int. J. Hematol. 58, 189-196 (1993), blood thromboxane B2, and AT-III complex levels R. G-CSF reportedly enhances platelet aggregation to collagen and adenosine diphosphate (Kuroiwa M. et al., Int. J. Hematol. 63, 311-316 (1996)). There have, however, been reports of arterial thrombosis in two patients with cancer who were receiving G-CSF after chemotherapy (Shimoda K. et al., J. Clin. Invest. 91, 1310-1313 (1993)), and concern has been expressed regarding
induction of a possible prethrombotic state in some normal donors (Conti J. A. et al., Cancer 70, 2699-2707 (1992); Kawachi Y. et al., Br. J. Haematol. 94, 413-416 (1996)) and such risk was suggested in two cases (Anderlini P. et al., Blood 90, 903- 908 (1997)).
Depressed platelet count after PBPC collection may occur in healthy donors of allogeneic transplants. The decrease in platelet counts during apheresis for autologous transplant recipient can reportedly be substantial, especially for those heavily pretreated patients mobilized with chemotherapy plus growth factor. Platelet transfusion may be considered when the postapheresis count drops below 20.000/mm3, although the threshold should be individualized and depends on the status of the patient (inpatient vs. outpatient), the history of platelet recovery after chemotherapy, the amount of infused anticoagulant (hence the number of prior apheresis sessions within the same mobilization and collection series), and whether apheresis will be performed the next day. It is possible to separate platelets from the PBPC product using a low-speed centrifugation procedure. The platelets may by infused fresh or cryopreserved for later infusion. (Schiffer C. A. et al., Ann N. Y. Acad. Sci. 411 , 161-169 (1983)). The platelet cryopreservation procedure, however, has not been universally accepted. (Law P., Exp. Hematol. 10, 351-357 (1983)). Furthermore, the PBPC product of patients with a low platelet count and who require transfusion typically does not contain enough platelet to warrant processing (Lane, unpublished observation (Lane T.A. Transfusion 36, 585-589 (1996)).
Clinical trials using gene transfer into HSC have generally relied on retrovirus- mediated gene transfer methods. Retroviruses fill the need for stable and relatively efficient integration of engineered genetic elements into the chromosomes of target T cells. Other viral vector systems currently available, such as adenovirus or adenovirus-associated viral vectors, or transfection methods, such as lipofection, electroporation, calcium phosphate precipitation, or bioballistics, may lack similar efficiency for long-term expression of the transgenes in dividing HSC Some vectors may not enter the cells in sufficient numbers without cytotoxicity and/or may not integrate stability into the chromosomes with useful efficiency. In dividing cells,
unintegrated DNA is generally diluted and lost. Adenoviral vectors may also be highly immunogenic.
Retrovirus-mediated gene transfer into murine hematopoietic stem cells and reconstitution of syngeneic mice has demonstrated persistence and functioning of the transgenes over extended period of time (Kume et al. (1999) 69:227-233). Terminally differentiated cells are relatively short-lived, except for memory B and T lymphocytes, and a large number of blood cells are replaced daily. Therefore, when long-term functional correction of blood cells by gene transfer is required, the target cells may be hematopoietic stem cells (Kume et al. (1999) 69:227-233). Compounds that can maintain the survival and/or self-renewal (for example enhanced number of cells in S- phase of the cell cycle) of the progenitor stem cells may therefore increase the efficiency of the gene transfer in that a greater population of hematopoietic stems cells is available.
A number of proteins have been identified and may be utilized clinically as inhibitors of hematopoietic progenitor cell development and hematopoietic cell proliferation or multiplication. These include recombinant-methionyl human G-CSF (Neupogen®, Filgastim; Amgen), GM-CSF (Leukine®, Sargramostim; Immunex), erythropoietin (rhEPO, Epogen®; Amgen), thrombopoietin (rhTPO; Genentech), interleukin-11 (rhIL-11, Neumega®; American Home Products), Flt3 ligand (Mobista; Immunex), multilineage hematopoietic factor (MARstem™; Maret Pharm.), myelopoietin (Leridistem; Searle), IL-3, myeloid progenitor inhibitory factor-1 (Mirostipen; Human Genome Sciences), stem cell factor (rhSCF, Stemgen®; Amgen).
SUMMARY OF THE INVENTION
In accordance with various aspects of the invention, CXCR4 antagonists may be used to treat hematopoietic cells, for example to increase the rate of hematopoietic stem or progenitor cellular multiplication, self-renewal, expansion, proliferation, or peripheralization. In various aspects, the invention relates to methods of promoting the rate of hematopoietic cell multiplication, which encompases processes that increase and/or maintain cellular multiplication, self-renewal,
expansion, proliferation or peripheralization. This may for example be useful in some embodiments for in vitro hematopoietic cell cultures used in bone marrow transplantation, peripheral blood mobilization, or ex vivo expansion. CXCR4 antagonists may also be used therapeutically to stimulate hematopoietic cell multiplication, self-renewal, expansion, proliferation or peripheralization in vivo, for example in some embodiments involving human diseases such as a cancer or an autoimmune disease. The hematopoietic cells targeted by the methods of the invention may include hematopoietic progenitor or stem cells.
In alternative embodiments, CXCR4 antagonists may be used to treat a variety of hematopoietic cells, and such cells may be isolated or may form only part of a treated cell population in vivo or in vitro. Cells amenable to treatment with CXCR4 antagonists may for example include cells in the hematopoietic lineage, beginning with pluripotent stem cells, such as bone marrow stem or progenitor cells, lymphoid stem or progenitor cells, myeloid stem cells, CFU-GEMM cells (colony-forming-unit granulocyte, erythroid, macrophage, megakaryocye), B stem cells, T stem cells, DC stem cells, pre-B cells, prothymocytes, BFU-E cells (burst-forming unit - erythroid), BFU-MK cells (burst-forming unit - megakaryocytes), CFU-GM cells (colony-formng unit - granulocyte-macrophage), CFU-bas cells (colony-forming unit - basophil), CFU- Mast cells (colony forming unit - mast cell), CFU-G cells (colony forming unit granulocyte), CFU-M/DC cells (colony forming unit monocyte/dendritic cell), CFU-Eo cells (colony forming unit eosinophil), CFU-E cells (colony forming unit erythroid), CFU-MK cells (colony forming unit megakaryocyte), myeloblasts, monoblasts, B- lymphoblasts, T-lymphoblasts, proerythroblasts, neutrophillic myelocytes, promonocytes, or other hematopoietic cells that differentiate to give rise to mature cells such as macrophages, myeloid related dendritic cells, mast cells, plasma cells, erythrocytes, platelets, neutrophils, monocytes, eosinophils, basophils, B-cells, T- cells or lymphoid related dendritic cells.
In some embodiments, the invention provides methods of increasing the circulation of hematopoietic cells by mobilizing them from the marrow to the peripheral blood comprising administering an effective amount of a CXCR4 antagonist to hematopoietic cells of a patient undergoing autologous mobilization
where hematopoietic stem/progenitor cells may be mobilized into the peripheral blood (1) during the rebound phase of the leukocytes and/or platelets after transient granulocytopenia and thrombocytopenia induced by myelosuppressive chemotherapy, (2) by hematopoietic growth factors, or (3) by a combination of both. Such treatment may for example be carried out so as to be effective to mobilize the hematopoietic cells from a marrow locus (i.e. a location in the bone marrow) to a peripheral blood locus (i.e. a location in the peripheral blood). Such treatments may for example be undertaken in the context of or for the clinical procedure of leukapheresis or apheresis. In alternative embodiments, CXCR4 antagonists may be used in ex vivo stem cell expansion to supplement stem cell grafts with more mature precursors to shorten or potentially prevent hematopoietic cell depletion, including conditions such as pancytopenia, granulocytopenia, thrombocytopenia, anemia or a combination thereof; to increase the number of primitive progenitors to help ensure hematopoietic support for multiple cycles of high-dose therapy; to obtain sufficient number of stem cells from a single marrow aspirate or apheresis procedure, thus reducing the need for large-scale harvesting of marrow of multiple leukopheresis; to generate sufficient cells from a single cord-blood unit to allow reconstitution in an adult after high-dose chemotherapy; to purge stem cell products of contaminating tumour cells; to generate large volumes of immunologically active cells with antitumour activity to be used in immunotherapeutic regimens or to increase the pool of stem cells that could be targets for the delivery of gene therapy.
In alternative embodiments, the invention provides methods to enrich CD34+ progenitor cells which are utilized in bone marrow (BM) and peripheral blood (PB) stem cell transplantation, wherein the hematopoietic stem cell transplantation (HSCT) protocols may for example be utilized for the purpose of treating the following diseases (from Ball, E.D., Lister, J., and Law, P. Hematopoietic Stem Cell Therapy, Chruchill Livingston (of Harcourt Inc.), New York (2000)): Aplastic Anemia; Acute Lymphoblastic Anemia.; Acute Myelogenous Leukemia; Myelodysplasia; Multiple Myeloma; Chronic Lymphocytic Leukemia; Congenital Immunodeficiencies (such as Autoimmune Lymphoproliferative disease, Wiscott-Aldrich Syndrome, X-linked Lymphoproliferative disease, Chronic Granulamatous disease, Kostmann Neutropenia, Leukocyte Adhesion Deficiency); Metabolic Diseases (for instance
those which have been HSCT indicated such as Hurler Syndrome (MPS l/ll), Sly Syndrome (MPS VII), Chilhood onset cerebral X-adrenoleukodystrophy, Globard_cell Leukodystrophy).
In some embodiments, peptide CXCR4 antagonists of the invention may comprise an N-terminal portion derived from SDF-1 , covalently joined by a linker to a second N-terminal peptide, containing or now modifications to mimic N-terminal beta- turning, or C-terminal alpha-helices. The SDF-1 antagonist may also exist as an N- terminal Dimer.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 : shows the effects of CXCR4 receptor binding of SDF-1 peptide antagonists in an 125I-SDF-1 binding competition assay. Full length SDF-1 antagonist and the indicated analogs (competing ligands) were added to CEM cells in the presence of 4nM 125I-SDF-1. CEM cells were assessed for 125I-SDF-1 binding following 2 hr incubation. The results are expressed as percentage of the maximal specific binding that was determined without competing ligand.
Figure 2: shows the effect of SDF-1 peptide antagonists (defined in Examples) on the cycling of human progenitors from fetal liver transplanted NOD/SCID mice. The cycling status of mature and primitive colony forming cells (CFU-GM; colony forming unit-granulocyte-monocyte precursor, BFU-E; burst forming unit-erythroid precursor) in the suspension of CD34+ cells isolated from the marrow of transplanted NOD/SCID mice was determined by assessing the proportion of these progenitors that were inactivated (killed) by short term (20 min) or overnight (LTC-IC;long-term culture initiating cell) exposure of the cells to 20μg/ml of high specific activity 3H- thymidine. Values represent the mean +/- the S.D. of data from up to four experiments with up to four mice per point in each. Since high specific activity 3H- thymidine affects proliferating cells, the higher degree in cell death resulting from SDF-1 antagonist incubation represents a significant enhancement in cell cycling (self-renewal).
Figure 3 shows the effect of SDF-1 peptide antagonists (defined in Examples) on the engraftment of human cells in human fetal liver transplanted NOD/SCID mice. A comparison of the number of phenotypically defined hematopoietic cells detected in the long bones (tibias and femurs) of mice four weeks after being transplanted with 107 light-density human fetal liver blood cells and then administered with the indicated SDF-1 antagonists (0.5 mg/kg) three times per week for two weeks before sacrifice. Values represent the mean +/- one S.D. of results obtained from three to seven individual mice in three experiments.
DETAILED DESCRIPTION OF THE INVENTION
In one aspect, the invention provides uses for CXCR4 antagonists derived from SDF-1 [P2G] in which glycine is substituted for proline at amino acid position 2. The full (67 amino acid long) versions of this analogue, designated SDF-1 (1-67)[P2G], or SDF-1 [P2G] (SEQ ID No. 1), is a potent CXCR4 receptor antagonist (Crump et al., (1997) EMBO J. 16(23): 6996-7007). SDF-1 binds to CXCR4 primarily via its N-terminus, which appears flexible in the NMR studies of active N-terminal peptides of SDF-1 (Elisseeva et al., J. Biol Chem (2000) 275(35) 26799-805). Residues 5-8, and to a less extent 11-14, form similar structures that can be characterized as a beta-turn of the beta-alpha R type. These structural motifs are likely to be interconverting with other states, but the major conformation may be important for recognition during receptor binding. The importance of beta-turns of peptides and proteins may well be crucial for receptor interactions that ultimately lead to biological activity. In recognition of this, there have been several efforts to 'lock' peptides and proteins into beta-turn configurations (Ripka, W. C. et al., Tetrahedron (1993) 49(17) 3593-3608 and Elseviers, M. et al., Biochem. Biophys. Res. Commun, (1988) 154-515). The natural amino-acid proline is known to a beta-turn inducer. In one aspect of this invention, versions of the full length antagonist analogues in which proline (P) was substituted into single position residues 5-8, designated(SEQ ID No. 2-5. In the same scheme, replacement of the natural amino acid proline by the so- called proline-amino acid chimera (P*) (Garland, R. M. Tetrahedron (1993) 49(17) 3547-3558 and Raman, S. et al., J. Org. Chem. (1996) 61(1) 202-208) in the full length anatagonist gives rise to the designated analogues (SEQ ID No. 6-9). Another mechanism of beta-turn induction/'locking' is the introduction of the Bicyclic Turned
Dipetide (Btd), as a beta-turn mimetic (Ukon Nagai et al Tetrahedron (1993) 49(17) 3577-3592) in the sequence of the full length anatagonist as for proline and proline schimera. In this configuration, two successive amino acid are replaced at once by the Btd molecule, which when inserted into the SDF-1 [P2G] antagonist are designated as SEQ ID No. 10-12.
Sequences:
KGVSLSYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN (SEQ ID No.1)
KGVSPSYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKW IQEYLEKALN (SEQ ID No.2) KGVSLPYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN (SEQ ID No.3)
KGVSLSPRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN (SEQ ID No.4)
KGVSLSYPCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN (SEQ ID No.5)
KGVSP*SYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLK WIQEYLEKALN (SEQ ID No. 6)
KGVSLP*YRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLK WIQEYLEKALN (SEQ ID No. 7) KGVSLSP*RCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVClDPKLK WIQEYLEKALN (SEQ ID No. 8)
KGVSLSYP*CPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLK WIQEYLEKALN (SEQ ID No. 9)
KGVSBtdYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLK WIQEYLEKALN (SEQ ID No. 10)
KGVSLBtdRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLK WIQEYLEKALN (SEQ ID No. 11)
KGVSLSBtdCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKW IQEYLEKALN (SEQ ID No. 12)
Where P* =
X= Ar, Ar-OH, alkyl and more
and Btd =
X= Alkyl, Ar, Ar-OH and more
A variety of small SDF-1 peptide analogues may also be used as CXCR4 antagonists, as disclosed in International Patent Publications WO 00/09152 (published 24 February 2000) and WO 99/47158 (published 23 September 1999), each of which is incorporated herein by reference. One such peptide may be a monomer having the following sequences; KGVSLSYRCPCRFFESH (SEQ ID No. 13); KGVSLSYRC (SEQ ID No. 14), or dimer of amino acids 1-9 (within SEQ ID No. 13), in which the amino acid chains are joined by a disulphide bond between each of the cysteines at position 9 in each sequence (designated SDF-1 (1-9)2[P2G] with the following sequence: KGVSLSYRC-CRYSLSVPK (SEQ ID No. 15)). Other An alternative peptides may for example be selected from the group consisting of peptides: KGVSLSYR-X-RYSLSVPK (SEQ ID No. 16), that is a dimer of amino acids 1-8, in which the amino acid chains are joined by a linking moiety X (X may be an amino acid like lysine; ornithine or any other natural or unnatural amino acid serving as a linker between each of the arginines at position 8 in each sequence (designated SDF-1 (1-8)2[P2G]). Here again the notion of beta-turn mimetic was applied either for monomer (SEQ ID No. 13) in this case the following analogues were designated (SEQ ID No.17-27 )
KGVSPSYRCPCRFFESH (SEQ ID No. 17)
KGVSLPYRCPCRFFESH (SEQ ID No. 18)
KGVSLSPRCPCRFFESH (SEQ ID No. 19)
KGVSLSYPCPCRFFESH (SEQ ID No. 20)
KGVSP*SYRCPCRFFESH (SEQ ID No. 21)
KGVSLP*YRCPCRFFESH (SEQ ID No. 22)
KGVSLSP*RCPCRFFESH (SEQ ID No. 23)
KGVSLSYP*CPCRFFESH (SEQ ID No. 24)
KGVSBtdYRCPCRFFESH (SEQ ID No. 25)
KGVSLBtdRCPCRFFESH (SEQ ID No. 26)
KGVSLSBtdCPCRFFESH (SEQ ID No. 27)
Similar modifications may be made to monomeric peptides of the invention (SEQ ID No. 14)
KGVSPSYRC (SEQ ID No. 28)
KGVSLPYRC (SEQ ID No. 29)
KGVSLSPRC (SEQ ID No. 30)
KGVSLSYPC (SEQ ID No. 31)
KGVSP*SYRC (SEQ ID No. 32)
KGVSLP*YRC (SEQ ID No. 33)
KGVSLSP*RC (SEQ ID No. 34)
KGVSLSYP*C (SEQ ID No. 35)
KGVSBtdYRC (SEQ ID No. 36)
KGVSLBtdRC (SEQ ID No. 37)
KGVSLSBtdC (SEQ ID No. 38)
Alternative peptides based on SEQ ID No. 15 are as follows, designated (SEQ ID Nos. 39-49)
KGVSPSYRC KGVSLPYRC KGVSLSPRC KGVSLSYPC
I I I I
KGVSPSYRC KGVSLPYRC KGVSLSPRC KGVSLSYPC
KGVSP*SYRC KGVSLP*YRC KGVSLSP*RC KGVSLSYP*C l l l l
KGVSP*SYRC KGVSLP*YRC KGVSLSP*RC KGVSLSYP*C
KGVSBtdYRC KGVSLBtdRC KGVSLSBtdC
KGVSBtdYRC KGVSLBtdRC KGVSLSBtdC
In the same manner analogues based on the SEQ ID No. 16 are as follows, designated SEQ ID Nos. 50-61).
KGVSPSYR KGVSLPYR KGVSLSPR KGVSLSYP
1 I
1 1 1 1 X X X X
KGVSPSYR KGVSLPYR KGVSLSPR KGVSLSYP
KGVSP*SYR KGVSLP*YR KGVSLSP*R KGVSLSYP*
I I
1 1 1 X X X X
KGVSP*YR KGVSLP*YR KGVSLSP*R KGVSLSYP*
KGVSBtdYR KGVSLBtdR KGVSLSBtd
I 1 1
X X X
KGVSBtdYR KGVSLBtdR KGVSLSBtd
where X may be an amino acid like lysine; ornithine or any other natural or unnatural amino acid serving as a linker between each of the arginines at position 8 in each sequence.
In some embodiments, the CXCR4 antagonists for use in the invention may be substantially purified peptide fragments, modified peptide fragments, analogues or pharmacologically acceptable salts of either SDF-1 α or SDF-1 β. SDF-1 derived peptide antagonists of CXCR4 may be identified by known physiological assays and a variety of synthetic techniques (such as disclosed in Crump et al., 1997, The EMBO Journal 16(23) 6996-7007; and Heveker et al., 1998, Current Biology 8(7): 369-376; each of which are incorporated herein by reference). Such SDF-1 derived peptides may include homologs of native SDF-1 , such as naturally occurring isoforms or genetic variants, or polypeptides having substantial sequence similarity to SDF-1 , such as 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% sequence identity to at least a portion of the native SDF-1 sequence, the portion of native SDF- 1 being any contiguous sequence of 10, 20, 30, 40, 50 or more amino acids, provided the peptides have CXCR4 antagonist activity. In some embodiments, chemically
similar amino acids may be substituted for amino acids in the native SDF-1 sequence (to provide conservative amino acid substitutions). In some embodiments, peptides having an N-terminal LSY sequence motif within 10, or 7 amino acids of the N- terminus, and/or an N-terminal RFFESH (SEQ ID No. 62) sequence motif within 20 amino acids of the N-terminus may be used provided they have CXCR4 antagonistic activity. One family of such peptide antagonist candidates has an LSY motif at amino acids 5-7. Alternative peptides further include the RFFESH (SEQ ID No. 62) motif at amino acids 12-17. In alternative embodiments, the LSY motif is located at positions 3-5 of a peptide. The invention also provides peptide dimers having two amino acid sequences, which may each have the foregoing sequence elements, attached by a disulfide bridge within 20, or preferably within 10, amino acids of the N terminus, linking cysteine residues or α-aminobutric acid residues.
In other aspects, the invention relates to novel CXCR4 antagonists derived from SDF-1 [P2G] and their use to increase the rate of cellular multiplication and/or self-renweal of hematopoietic stem/progenitor cells. The antagonist compounds of the invention comprise an N-terminal portion of SDF-1 [P2G] covalently jointed by a linker to a second peptide. The N-terminal portion may be any portion of the SDF-1
[P2G] N-terminus which binds to CXCR4. The second peptide, which does not include an N-terminal portion of SDF-1 [P2G], preferably enhances the antagonistic effect of the compound and may be a C-terminal fragment of SDF-1 , for example any
C-terminal fragment of any chemokine that known to improve the activity by binding to GAG's. (refer to Gabriele S. et al., Biochemistry (1999), 38: 12959-12968). SDF-1
Antagonists include an acid or amide peptide analog having SDF-1 [P2G] N terminal amino acids 1-14 or 1-17 linked to C-terminal residues 55-67 by a four glycine linker:
KGVSLSYRCPCRFF-GGGG-LKWIQEYLEKALN (SEQ ID No. 63) KGVSLSYRCPCRFFESH-GGGG-LKWIQEYLEKALN (SEQ ID No. 64)
where the number of glycines linking the N-terminal and C-terminal amino acids may be varied, for example between 0 and 10, and may be 4, 3 or 2 in selected embodiments. The size of the linker may be adapted to correspond approximately to
the distance between C-terminal and N-terminal regions in the native folded SDF-1 structure.
In other embodiments, a (CH2)n linker may be used to join the N-terminal and C-terminal amino acids:
KGVSLSYRCPCRFF- (CH2)n-LKWIQEYLEKALN (SEQ ID No.65) KGVSLSYRCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No.66)
where n = 1 - 20 or more. In such embodiments, the length of the linker may be adapted to correspond to the distance between the N- and C- terminal end of the full length SDF-1 [P2G] polypeptide in its native form (where the amino acids replaced by the corresponding linker are present).
The N-terminal LSYR residues which form a beta-turn (see Elisseeva et al., J.
Bio. Chem. 275(35): 26799-26805) may be modified, similarly as the full length SDF- 1[P2G] anatagonist, for example, by substituting leucine (L); serine (S); tyrosine (y) and arginine (R) with proline (P):
KGVSPSYRCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 67)
KGVSLPYRCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 68)
KGVSLSPRCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 69)
KGVSLSYPCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 70)
KGVSPSYRCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 71) KGVSLPYRCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 72)
KGVSLSPRCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 73)
KGVSLSYPCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 74)
KGVSPSYRCPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 75)
KGVSLPYRCPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 76) KGVSLSPRCPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 77)
KGVSLSYPCPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 78)
KGVSPSYRCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 79)
KGVSLPYRCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 80)
KGVSLSPRCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No.81) KGVSLSYPCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No.82)
where the number of glycines or n (of (CH2)n) correspond to the length of the linker conferred to four glycines, or the distance between the N- and C- terminal end of the full length SDF-1 [P2G] polypeptide in its native form where the amino acids replaced by the corresponding linker are present.
In other embodiments, leucine (L), Seine (S), tyrosine (Y) or arginine (R) may be substituted with proline-amino acid chemira ( ) (similar to Seq ID No. 6-9 for the full length SDF-1 antagonist):
KGVS SYRCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 83)
KGVSL YRCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 84) KGVSLS RCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 85)
KGVSLSY CPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 86)
KGVS SYRCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 87)
KGVSL YRCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 88)
KGVSLS RCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 89) KGVSLSY CPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 90)
KGVS SYRCPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 91)
KGVSL YRCPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 92)
KGVSLS RCPCRFF- (CH2)π -LKWIQEYLEKALN (SEQ ID No. 93)
KGVSLSY CPCRFF- (CH2)„ -LKWIQEYLEKALN (SEQ ID No. 94) KGVS SYRCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 95)
KGVSL YRCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 96)
KGVSLS RCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 97)
KGVSLSY CPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 98)
where the number of glycines or n (of (CH2)n) correspond to the length of the linker conferred to four glycines, or the distance between the N- and C- terminal end of the full length SDF-1 [P2G] polypeptide in its native form where the amino acids replaced by the corresponding linker are present.
In some embodiments, the peptidomimetics are of BTD (Bicyclo Turned Dipeptide) as described previously for the full length SDf-1 antagonist (SEQ ID No. 99-110):
KGVS YRCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 99)
KGVSL RCPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 100)
KGVSLS CPCRFF- GGGG-LKWIQEYLEKALN (SEQ ID No. 101) KGVS YRCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 102)
KGVSL RCPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 103)
KGVSLS CPCRFFESH- GGGG-LKWIQEYLEKALN (SEQ ID No. 104)
KGVS YRCPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 105)
KGVSL RCPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 106) KGVSLS CPCRFF- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 107)
KGVS YRCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 108)
KGVSL RCPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 109)
KGVSLS CPCRFFESH- (CH2)n -LKWIQEYLEKALN (SEQ ID No. 110)
where the number of glycines or n (of (CH2)n) correspond to the length of the linker conferred to four glycines, or the distance between the N- and C- terminal end of the full length SDF-1 [P2G] polypeptide in its native form where the amino acids replaced by the corresponding linker are present.
The SDF-1 -derived CXCR4 antagonists of the invention may be linear or cyclized. In some embodiments, the antagonists may be cyclized at glutamic acid at position 24 with lysine at position 20 or 28 by removing the allylic group from both side chains of lysine and glutamic acid using the palladium-(O) technique (as described in Kates et al., (1993) Anal. Biochem. 212, 303-310): 1-Allyl removal: A solution of tetrakis(triphenylphosphine)palladium(0) (3 fold excess) dissolved in 5% Acetic acid; 2.5% N-methylmorpholine (NMM) in chloroform under argon. The solution is added to the support-bound peptide previously removed from the column in a reaction vial containing a small magnetic bar for gentle stirring. The mixture is flushed with argon, sealed and stirred at room temperature for 6 hours. The support-
bound peptide is transferred to a filter funnel, washed with a solution made of 0.5% sodium diethyldithiocarbamate in dichloromethane (DMF) and then dichloromethane. .2-Lactam formation is mediated by internal amide bond formation between the lysine and glutamic acid. Cyclisation is carried out manually in a peptide synthesis vial at room temperature overnight with gentle agitation. The coupling agent is 7- azabenzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate
(PyAOP)/N-methylmorpholine (NMM) (3 fold excess). (Jean-Rene Barbier et al., J. Med Chem. (1997), 40: 1373-1380; ibid Biochemistry (2000), 39, 14522-14530). The following analogues were designated (SEQ ID No. 111-114). KGVSLSYRCPCRFFGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFESHGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFESHGGGGLKWIQEYLEKALN
In some embodiments, glutamic acid (E) at position 24 and may be substituted with aspartic acid (D) and the aspartic acid cyclized with lysine at position 20 or 28 as described previously. In other embodiments, lysine at position 20 or 28 may be substituted with ornithine cyclized with either aspartic acid or glutamic acid at position 24 as described previously. This kind of substitution followed by cyclisation can be done with all analogues described above (SEQ ID No. 67-110).
In other embodiments, lysine (K) at position 20 or 28 may be substituted with ornithine (O) (SEQ ID No. 42 to 73) and ornithine at position 20 or 28 cyclized with glutamic acid (or with substituted aspartic acid (SEQ ID No. 74-89)) at position 24 as described previously. Additionally, to form other cyclic rings, lysine may be substituted by leucine (L), or other hydrophpobic residues such as isoleucine (I), norleucine (Nle), valine (V), alanine (A), tryptophan (W), or phenylalanine (F). Lysine
may also be substituted with methionine, however, methionine oxides and forms a disulphide bond making the peptide synthesis and purification more difficult.
CXCR4 antatognists of the present invention may further include hydrid analogs comprising N-terminal amino acid residues of SDF-1 [P2G] and amino acid residues of MIP-1 that are associated with GAG binding of the chemokine receptor, for example by replacing the relevant SDF-1 GAG-binding sequence, which may not be as specific as that of MIP-1α (see Gabriele S. et al., Biochemistry (1999) 38: 12959-12968 and Elisabeth M. et al., Virology (1999) 265, 354-364 ). SDF-1 [P2G] (1-14) /MIP-1α (36-50) Hybrid Analog:
KGVSLSYRCPCRFFGGGGSKPGVIFLTKRSRQV (SEQ ID NO. 115) KGVSLSYRCPCRFF(CH2)π SKPGVIFLTKRSRQV (SEQ ID No. 116)
SDF-1 (1-14)/MIP-1α(55-70) Analog:
KGVSLSYRCPCRFFGGGGEEWVQKYVDDLELSA (SEQ ID No. 117) KGVSLSYRCPCRFF{CH2)n EEWVQKYVDDLELSA (SEQ ID No. 118)
where the number of glycines or n (of (CH2)n) correspond to the length of the linker conferred to four glycines, or the distance between the N- and C- terminal end of the full length SDF-1 [P2G] polypeptide in its native form where the amino acids replaced by the corresponding linker are present.
It is well known in the art that some modifications and changes can be made in the structure of a polypeptide without substantially altering the biological function of that peptide, to obtain a biologically equivalent polypeptide. In one aspect of the invention, SDF-1 derived peptide antagonists of CXCR4 may include peptides that differ from a portion of the native SDF-1 sequence by conservative amino acid substitutions. The present invention also extends biologically equivalent peptides that differ from a portion of the sequence of novel antagonists of the present invention by conservative amino acid substitutions. As used herein, the term "conserved amino acid substitutions" refers to the substitution of one amino acid for another at a given location in the peptide, where the substitution can be made without loss of function. In
making such changes, substitutions of like amino acid residues can be made on the basis of relative similarity of side-chain substituents, for example, their size, charge, hydrophobicity, hydrophilicity, and the like, and such substitutions may be assayed for their effect on the function of the peptide by routine testing.
In some embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another having a similar hydrophilicity value (e.g., within a value of plus or minus 2.0), where the following hydrophilicity values are assigned to amino acid residues (as detailed in United States Patent No. 4,554,101 , incorporated herein by reference): Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0); Ser (+0.3); Asn (+0.2); Gin (+0.2); Gly (0); Pro (-0.5); Thr (-0.4); Ala (-0.5); His (-0.5); Cys (-1.0); Met (-1.3); Val (-1.5); Leu (-1.8); lie (-1.8); Tyr (-2.3); Phe (-2.5); and Trp (-3.4).
In alternative embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another having a similar hydropathic index (e.g., within a value of plus or minus 2.0). In such embodiments, each amino acid residue may be assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics, as follows: He (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8); Cys (+2.5); Met (+1.9); Ala (+1.8); Gly (-0.4); Thr (-0.7); Ser (-0.8); Trp (-0.9); Tyr (- 1.3); Pro (-1.6); His (-3.2); Glu (-3.5); Gin (-3.5); Asp (-3.5); Asn (-3.5); Lys (-3.9); and Arg (-4.5).
In alternative embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another in the same class, where the amino acids are divided into non-polar, acidic, basic and neutral classes, as follows: non-polar: Ala, Val, Leu, lie, Phe, Trp, Pro, Met; acidic: Asp, Glu; basic: Lys, Arg, His; neutral: Gly, Ser, Thr, Cys, Asn, Gin, Tyr.
In some embodiments, CXCR4 antagonists are ligands that bind to CXCR4 with sufficient affinity and in such a manner so as to inhibit the effects of binding by an agonists, such as the natural ligand SDF-1 , such as SDF-1-induced [Ca2+]i mobilization in cells. Example of CXCR4 antagonist assays may for example be
found in International Patent Publications WO 00/09152 (published 24 February 2000) and WO 99/47158 (published 23 September 1999). In exemplary assays for CXCR4 antagonist activity, fura-2,AM loaded THP-1 cells may for example be incubated with putative antagonists, such as for 60 min prior to induction of [Ca2+]i mobilization by 10 nM SDF-1. Antagonists will typically demonstrate a dose responsive inhibition of SDF-1 -induced [Ca2+]i mobilization.
Methods that may be utilized to determine whether a molecule functions as a CXCR4 antagonists include, but are not limited to, the following: Inhibition of the induction of SDF-1 receptor mediated rise in free cytosolic Ca2+ concentration ([Ca2+]) in response to native SDF-1 (or agonist analogs of SDF-1) (Loetscher P. et al., (1998) J. Biol. Chem. 273, 24966-24970), inhibition of SDF-1 -induction of phosphoinositide-3 kinase or Protein Kinase C activity (Wang, J-F et al., (2000) Blood 95, 2505-2513), inhibition of SDF-1 -induced migration of CD34+ hematopoietic stem cells in a two- chamber migration (transwell) assay (Durig J. et al,. (2000) Leukemia 14, 1652-1660; Peled A. et al., (2000) Blood 95, 3289-2396), inhibition of SDF-1 associated transmigration of CD34 CXCR4+ cells through vascular endothelial cells in a cell chemotaxis assay, cell adhesion assay, or real-time tracking of CD34+ cell migration in 3-D extracellular matrix-like gel assays (Peled A. et al., (2000) Blood 95, 3289- 2396), inhibition of SDF-1 associated chemotaxis of marrow-derived B cell precursors (Dauzzo M. et al., Eur. J. Immunol. (1997) 27, 1788-1793), preventing CXCR4 signal transduction and coreceptor function in mediating the entry of T- and dual-tropic HIV isolates (Zhou N. et al., (2000) 39, 3782-3787), inhibition of SDF-1 associated increases of CFU-GM, CGU-M or BFU-E colony formation by peripheral blood lnc+ CD34+ progenitor cells (Lataillade J-J. et al/. (2000) Blood 95, 756-768), or inhibition of integrin-mediated adhesion of T cells to fibronectin and ICAM-1 (Buckley C. D et al., (2000) J. Immunology 165, 3423-3429). Where it is necessary to assess the inhibition of SDF-1 associated mechanisms in the aforementioned assays, various concentrations of CXCR4 antagonist may be incubated under the appropriate experimental conditions in the presence of SDF-1 , in assays to determine if the CXCR4 antagonist associated repression of the respective mechanism results directly from inhibition of the CXCR4 receptor. ([Ca2+]) mobilization, chemotaxis assays or other assays that measure the induction of CXCR4 are not limited to the
cell types indicated in the associated references, but may include other cell types that demonstrate CXCR4 associated, and specific, activation.
In alternative aspects, the invention provides uses for CXCR4 antagonists that are identified as molecules that bind to CXCR4 (whether reversible or irreversible) and are associated with the repression of CXCR4 associated activity. Binding affinity of a CXCR4 antagonists may for example be associated with ligand binding assay dissociation constants (KD) in the range of a minimum of 1pM, 10pM, 100pM, 1uM, 10uM or 100uM up to a maximum of 1mM, or any value in any such range. CXCR4 antagonist associated KD values may be determined through alternative approaches, such as standard methods of radioligand binding assays, including High Throughput Fluorescence Polarization, scintillation proximity assays (SPA), and Flashplates™® (Allen et al., (2000) J. Biomolecular Screening 5, 63-69), where the competing ligand is native SDF-1. Alternatively, the affinity of a CXCR4 antagonist for the SDF-1 receptor (CXCR4) may be ascertained through inhibition of native SDF-1 binding to the CXCR4, where various concentrations of the CXCR4 antagonist are added in the presence of SDF-1 and a recombinant CXCR4 or a cell type that expresses an adequate receptor titer.
In alternative embodiments, the present invention relates to uses of small molecule non-peptide CXCR4 antagonists, such as a naphthoic acid derivative designated herein as 3-hydroxy-2-naphthoic acid (CAS 92-70-6; molecular formula:
ecular weight: 188.18):
In some embodiments, the invention provides pharmaceutical compositions containing CXCR4 antagonists. In one embodiment, such compositions include a
CXCR4 antagonist compound in a therapeutically or prophylactically effective amount sufficient to alter bone marrow progenitor or stem cell growth, and a pharmaceutically acceptable carrier. In another embodiment, the composition includes a CXCR4 antagonist compound in a therapeutically or prophylactically effective amount sufficient to inhibit a cytotoxic effect of a cytotoxic agent, such as cytotoxic agents used in chemotherapy or radiation treatment of cancer, and a pharmaceutically acceptable carrier.
A "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result, such as reduction of bone marrow progenitor or stem cell multiplication, or reduction or inhibition of a cytotoxic effect of a cytotoxic agent. A therapeutically effective amount of CXCR4 antagonist may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the CXCR4 antagonist to elicit a desired response in the individual. Dosage regimens may be adjusted to provide the optimum therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental effects of the CXCR4 antagonist are outweighed by the therapeutically beneficial effects.
A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result, such as preventing or inhibiting a cytotoxic effect of a cytotoxic agent. Typically, a prophylactic dose is used in subjects prior to or at an earlier stage of disease, so that a prophylactically effective amount may be less than a therapeutically effective amount.
In particular embodiments, a preferred range for therapeutically or prophylactically effective amounts of CXCR4 antagonists may be 0.1 nM-0.1M, 0.1 nM-0.05M, 0.05 nM-15μM or 0.01 nM-100 μM. It is to be noted that dosage values may vary with the severity of the condition to be alleviated. For any particular subject, specific dosage regimens may be adjusted over time according to the individual need and the professional judgement of the person administering or supervising the administration of the compositions. Dosage ranges set forth herein are exemplary
only and do not limit the dosage ranges that may be selected by medical practitioners.
The amount of active compound in the composition may vary according to factors such as the disease state, age, sex, and weight of the individual. Dosage regimens may be adjusted to provide the optimum therapeutic response. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It may be advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. "Dosage unit form" as used herein refers to physically discrete units suited as unitary dosages for subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
As used herein "pharmaceutically acceptable carrier" or "exipient" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. In one embodiment, the carrier is suitable for parenteral administration. Alternatively, the carrier can be suitable for intravenous, intraperitoneal, intramuscular, sublingual or oral administration. Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.
In some embodiments, CXCR4 agonists may be formulated in pharmaceutical compositions with additional active ingredients, or administered in methods of treatment in conjunction with treatment with one or more additional medications, such as a medicament selected from the following: recombinant-methionyl human G-CSF (Neupogen®, Filgastim; Amgen), GM-CSF (Leukine®, Sargramostim; Immunex), erythropoietin (rhEPO, Epogen®; Amgen), thrombopoietin (rhTPO; Genentech), interleukin-11 (rhIL-11 , Neumega®; American Home Products), Flt3 ligand (Mobista; Immunex), multilineage hematopoietic factor (MARstem™; Maret Pharm.), myelopoietin (Leridistem; Searle), IL-3, myeloid progenitor inhibitory factor-1 (Mirostipen; Human Genome Sciences), and stem cell factor (rhSCF, Stemgen®; Amgen).
Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin. Moreover, the CXCR4 antagonists may be administered in a time release formulation, for example in a composition which includes a slow release polymer. The active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, polylactic acid and polylactic, polyglycolic copolymers (PLG). Many methods for the preparation of such formulations are patented or generally known to those skilled in the art.
Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. In accordance with an alternative aspect of the invention, a CXCR4 antagonist may be formulated with one or more additional compounds that enhance the solubility of the CXCR4 antagonist. The invention also extends to such derivatives of novel antagonists of the invention.
CXCR4 antagonist compounds of the invention may include SDF-1 derivatives, such as C-terminal hydroxymethyl derivatives, O-modified derivatives (e.g., C- terminal hydroxymethyl benzyl ether), N-terminally modified derivatives including substituted amides such as alkylamides and hydrazides and compounds in which a C-terminal phenylalanine residue is replaced with a phenethylamide analogue (e.g., Ser-lle-phenethylamide as an analogue of the tripeptide Ser-IIe-Phe). The invention also extends to such derivatives of the novel antagonists of the invention.
Within a CXCR4 antagonist compound of the invention, a peptidic structure (such as an SDF-1 derived peptide) maybe coupled directly or indirectly to at least one modifying group. Such modified peptides are also within the scope of the invention. The term "modifying group" is intended to include structures that are directly attached to the peptidic structure (e.g., by covalent coupling), as well as those that are indirectly attached to the peptidic structure (e.g., by a stable non-covalent association or by covalent coupling to additional amino acid residues, or mimetics, analogues or derivatives thereof, which may flank the SDF-1 core peptidic structure). For example, the modifying group can be coupled to the amino-terminus or carboxy- terminus of an SDF-1 peptidic structure, or to a peptidic or peptidomimetic region
flanking the core domain. Alternatively, the modifying group can be coupled to a side chain of at least one amino acid residue of a SDF-1 peptidic structure, or to a peptidic or peptido-mimetic region flanking the core domain (e.g., through the epsilon amino group of a lysyl residue(s), through the carboxyl group of an aspartic acid residue(s) or a glutamic acid residue(s), through a hydroxy group of a tyrosyl residue(s), a serine residue(s) or a threonine residue(s) or other suitable reactive group on an amino acid side chain). Modifying groups covalently coupled to the peptidic structure can be attached by means and using methods well known in the art for linking chemical structures, including, for example, amide, alkylamino, carbamate or urea bonds.
In some embodiments, the modifying group may comprise a cyclic, heterocyclic or polycyclic group. The term "cyclic group", as used herein, includes cyclic saturated or unsaturated (i.e., aromatic) group having from 3 to 10, 4 to 8, or 5 to 7 carbon atoms. Exemplary cyclic groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl. Cyclic groups may be unsubstituted or substituted at one or more ring positions. A cyclic group may for example be substituted with halogens, alkyls, cycloalkyls, alkenyls, alkynyls, aryls, heterocycles, hydroxyls, aminos, nitros, thiols amines, imines, amides, phosphonates, phosphines, carbonyls, carboxyls, silyls, ethers, thioethers, sulfonyls, sulfonates, selenoethers, ketones, aldehydes, esters, -CF3, -CN.
The term "heterocyclic group" includes cyclic saturated, unsaturated and aromatic groups having from 3 to 10, 4 to 8, or 5 to 7 carbon atoms, wherein the ring structure includes about one or more heteroatoms. Heterocyclic groups include pyrrolidine, oxolane, thiolane, imidazole, oxazole, piperidine, piperazine, morpholine. The heterocyclic ring may be substituted at one or more positions with such substituents as, for example, halogens, alkyls, cycloalkyls, alkenyls, alkynyls, aryls, other heterocycles, hydroxyl, amino, nitro, thiol, amines, imines, amides, phosphonates, phosphines, carbonyls, carboxyls, silyls, ethers, thioethers, sulfonyls, selenoethers, ketones, aldehydes, esters, -CF3, -CN. Heterocycles may also be bridged or fused to other cyclic groups as described below.
The term "polycyclic group" as used herein is intended to refer to two or more saturated, unsaturated or aromatic cyclic rings in which two or more carbons are common to two adjoining rings, so that the rings are "fused rings". Rings that are joined through non-adjacent atoms are termed "bridged" rings. Each of the rings of the polycyclic group may be substituted with such substituents as described above, as for example, halogens, alkyls, cycloalkyls, alkenyls, alkynyls, hydroxyl, amino, nitro, thiol, amines, imines, amides, phosphonates, phosphines, carbonyls, carboxyls, silyls, ethers, thioethers, sulfonyls, selenoethers, ketones, aldehydes, esters, -CF3, or -CN.
The term "alkyl" refers to the radical of saturated aliphatic groups, including straight chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. In some embodiments, a straight chain or branched chain alkyl has 20 or fewer carbon atoms in its backbone (Cι-C2o for straight chain, C3-C20 for branched chain), or 10 or fewer carbon atom. In some embodiments, cycloalkyls may have from 4-10 carbon atoms in their ring structure, such as 5, 6 or 7 carbon rings. Unless the number of carbons is otherwise specified, "lower alkyl" as used herein means an alkyl group, as defined above, having from one to ten carbon atoms in its backbone structure. Likewise, "lower alkenyl" and "lower alkynyl" have chain lengths of ten or less carbons.
The term "alkyl" (or "lower alkyl") as used throughout the specification and claims is intended to include both "unsubstituted alkyls" and "substituted alkyls", the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, halogen, hydroxyl, carbonyl (such as carboxyl, ketones (including alkylcarbonyl and arylcarbonyl groups), and esters (including alkyloxycarbonyl and aryloxycarbonyl groups)), thiocarbonyl, acyloxy, alkoxyl, phosphoryl, phosphonate, phosphinate, amino, acylamino, amido, amidine, imino, cyano, nitro, azido, sulfhydryl, alkylthio, sulfate, sulfonate, sulfamoyl, sulfonamido, heterocyclyl, aralkyl, or an aromatic or heteroaromatic moiety. The moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate. For instance, the substituents of a substituted alkyl may include substituted and unsubstituted forms of aminos,
azidos, iminos, amidos, phosphoryls (including phosphonates and phosphinates), sulfonyls (including sulfates, sulfonamidos, sulfamoyls and sulfonates), and silyl groups, as well as ethers, alkylthios, carbonyls (including ketones, aldehydes, carboxylates, and esters), -CF3, -CN and the like. Exemplary substituted alkyls are described below. Cycloalkyls can be further substituted with alkyls, alkenyls, alkoxys, alkylthios, aminoalkyls, carbonyl-substituted alkyls, -CF3, -CN, and the like.
The terms "alkenyl" and "alkynyl" refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.
The term "aralkyl", as used herein, refers to an alkyl or alkylenyl group substituted with at least one aryl group. Exemplary aralkyls include benzyl (i.e., phenylmethyl), 2-naphthylethyl, 2-(2-pyridyl)propyl, 5-dibenzosuberyl, and the like.
The term "alkylcarbonyl", as used herein, refers to -C(0)-alkyl. Similarly, the term "arylcarbonyl" refers to -C(0)-aryl. The term "alkyloxycarbonyl", as used herein, refers to the group -C(0)-0-alkyl, and the term "aryloxycarbonyl" refers to -C(0)-0- aryl. The term "acyloxy" refers to -0-C(0)-R , in which R7 is alkyl, alkenyl, alkynyl, aryl, aralkyl or heterocyclyl.
The term "amino", as used herein, refers to -N(Ra)(Rp), in which Ra and Rp are each independently hydrogen, alkyl, alkyenyl, alkynyl, aralkyl, aryl, or in which Rα and Rp together with the nitrogen atom to which they are attached form a ring having 4-8 atoms. Thus, the term "amino", as used herein, includes unsubstituted, monosubstituted (e.g., monoalkylamino or monoarylamino), and disubstituted (e.g., dialkylamino or alkylarylamino) amino groups. The term "amido" refers to -C(O)- N(Rs)(R9), in which R8 and Rg are as defined above. The term "acylamino" refers to - N(R'8)C(0)-R7, in which R7 is as defined above and R'8 is alkyl.
As used herein, the term "nitro" means -N02 ; the term "halogen" designates F, -Cl, -Br or -I; the term "sulfhydryl" means -SH; and the term "hydroxyl" means -OH.
The term "aryl" as used herein includes 5-, 6- and 7-membered aromatic groups that may include from zero to four heteroatoms in the ring, for example, phenyl, pyrrolyl, furyl, thiophenyl, imidazolyl, oxazole, thiazolyl, triazolyl, pyrazolyl, pyridyl, pyrazinyl, pyridazinyl and pyrimidinyl, and the like. Those aryl groups having heteroatoms in the ring structure may also be referred to as "aryl heterocycles" or "heteroaromatics". The aromatic ring can be substituted at one or more ring positions with such substituents as described above, as for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, sulfonamido, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, -CF3, -CN, or the like. Aryl groups can also be part of a polycyclic group. For example, aryl groups include fused aromatic moieties such as naphthyl, anthracenyl, quinolyl, indolyl, and the like.
Modifying groups may include groups comprising biotinyl structures, fluorescein-containing groups, a diethylene-triaminepentaacetyl group, a (-)- menthoxyacetyl group, a N-acetylneuraminyl group, a cholyl structure or an iminiobiotinyl group. A CXCR4 antagonist compound may be modified at its carboxy terminus with a cholyl group according to methods known in the art (see e.g., Wess, G. et al. (1993) Tetrahedron Letters, 34:817-822; Wess, G. et al. (1992) Tetrahedron Letters 33:195-198; and Kramer, W. et al. (1992) J. Biol. Chem. 267:18598-18604). Cholyl derivatives and analogues may also be used as modifying groups. For example, a preferred cholyl derivative is Aic (3-(0-aminoethyl-iso)-cholyl), which has a free amino group that can be used to further modify the CXCR4 antagonist compound. A modifying group may be a "biotinyl structure", which includes biotinyl groups and analogues and derivatives thereof (such as a 2-iminobiotinyl group). In another embodiment, the modifying group may comprise a "fluorescein-containing group", such as a group derived from reacting an SDF-1 derived peptidic structure with 5-(and 6-)-carboxyfluorescein, succinimidyl ester or fluorescein isothiocyanate. In various other embodiments, the modifying group(s) may comprise an N- acetylneuraminyl group, a trans-4-cotininecarboxyl group, a 2-imino-1- imidazolidineacetyl group, an (S)-(-)-indoline-2-carboxyI group, a (-)-menthoxyacetyl group, a 2-norbornaneacetyl group, a -oxo-5-acenaphthenebutyryl, a (-)-2-oxo-4-
thiazolidinecarboxyl group, a tetrahydro-3-furoyl group, a 2-iminobiotinyl group, a diethylenetriaminepentaacetyl group, a 4-morpholinecarbonyl group, a 2- thiopheneacetyl group or a 2-thiophenesulfonyl group.
A CXCR4 antagonist compound of the invention may be further modified to alter the specific properties of the compound while retaining the desired functionality of the compound. For example, in one embodiment, the compound may be modified to alter a pharmacokinetic property of the compound, such as in vivo stability, bioavailability or half-life. The compound may be modified to label the compound with a detectable substance. The compound may be modified to couple the compound to an additional therapeutic moiety. To further chemically modify the compound, such as to alter its pharmacokinetic properties, reactive groups can be derivatized. For example, when the modifying group is attached to the amino-terminal end of the SDF- 1 core domain, the carboxy-terminal end of the compound may be further modified. Potential C-terminal modifications include those that reduce the ability of the compound to act as a substrate for carboxypeptidases. Examples of C-terminal modifiers include an amide group, an ethylamide group and various non-natural amino acids, such as D-amino acids and β-alanine. Alternatively, when the modifying group is attached to the carboxy-terminal end of the aggregation core domain, the amino-terminal end of the compound may be further modified, for example, to reduce the ability of the compound to act as a substrate for aminopeptidases.
A CXCR4 antagonist compound can be further modified to label the compound by reacting the compound with a detectable substance. Suitable detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include 14C, 123l, 124l, 125l, 131l, 99 Tc, 35S or 3H. A CXCR4 antagonist compound may
be radioactively labeled with 14C, either by incorporation of 14C into the modifying group or one or more amino acid structures in the CXCR4 antagonist compound. Labeled CXCR4 antagonist compounds may be used to assess the in vivo pharmacokinetics of the compounds, as well as to detect disease progression or propensity of a subject to develop a disease, for example for diagnostic purposes. Tissue distribution CXCR4 receptors can be detected using a labeled CXCR4 antagonist compound either in vivo or in an in vitro sample derived from a subject. For use as an in vivo diagnostic agent, a CXCR4 antagonist compound of the invention may be labeled with radioactive technetium or iodine. A modifying group can be chosen that provides a site at which a chelation group for the label can be introduced, such as the Aic derivative of cholic acid, which has a free amino group. For example, a phenylalanine residue within the SDF-1 sequence (such as amino acid residue 13 ) may be substituted with radioactive iodotyrosyl. Any of the various isotopes of radioactive iodine may be incorporated to create a diagnostic agent. 123l (half-life=13.2 hours) may be used for whole body scintigraphy, 124l (half life=4 days) may be used for positron emission tomography (PET), 125l (half life=60 days) may be used for metabolic turnover studies and 131l (half life=8 days) may be used for whole body counting and delayed low resolution imaging studies.
In an alternative chemical modification, a CXCR4 antagonist compound of the invention may be prepared in a "prodrug" form, wherein the compound itself does not act as a CXCR4 antagonist, but rather is capable of being transformed, upon metabolism in vivo, into a CXCR4 antagonist compound as defined herein. For example, in this type of compound, the modifying group can be present in a prodrug form that is capable of being converted upon metabolism into the form of an active CXCR4 antagonist. Such a prodrug form of a modifying group is referred to herein as a "secondary modifying group." A variety of strategies are known in the art for preparing peptide prodrugs that limit metabolism in order to optimize delivery of the active form of the peptide-based drug (see e.g., Moss, J. (1995) in Peptide-Based Drug Design: Controlling Transport and Metabolism, Taylor, M. D. and Amidon, G. L. (eds), Chapter 18.
CXCR4 antagonist compounds of the invention may be prepared by standard techniques known in the art. A peptide component of a CXCR4 antagonist may be composed, at least in part, of a peptide synthesized using standard techniques (such as those described in Bodansky, M. Principles of Peptide Synthesis, Springer Verlag, Berlin (1993); Grant, G. A. (ed.). Synthetic Peptides: A User's Guide, W. H. Freeman and Company, New York (1992); or Clark-Lewis, I., Dewald, B., Loetscher, M., Moser, B., and Baggiolini, M., (1994) J. Biol. Chem., 269, 16075-16081). Automated peptide synthesizers are commercially available (e.g., Advanced ChemTech Model 396; Milligen/Biosearch 9600). Peptides may be assayed for CXCR4 antagonist activity in accordance with standard methods. Peptides may be purified by HPLC and analyzed by mass spectrometry. Peptides may be dimerized via a disulfide bridge formed by gentle oxidation of the cysteines using 10% DMSO in water. Following HPLC purification dimer formation may be verified, by mass spectrometry. One or more modifying groups may be attached to a SDF-1 derived peptidic component by standard methods, for example using methods for reaction through an amino group (e.g., the alpha-amino group at the amino-terminus of a peptide), a carboxyl group (e.g., at the carboxy terminus of a peptide), a hydroxyl group (e.g., on a tyrosine, serine or threonine residue) or other suitable reactive group on an amino acid side chain (see e.g., Greene, T. W. and Wuts, P. G. M. Protective Groups in Organic Synthesis, John Wiley and Sons, Inc., New York (1991)).
In another aspect of the invention, CXCR4 antagonist peptides may be prepared according to standard recombinant DNA techniques using a nucleic acid molecule encoding the peptide. A nucleotide sequence encoding the peptide may be determined using the genetic code and an oligonucleotide molecule having this nucleotide sequence may be synthesized by standard DNA synthesis methods (e.g., using an automated DNA synthesizer). Alternatively, a DNA molecule encoding a peptide compound may be derived from the natural precursor protein gene or cDNA (e.g., using the polymerase chain reaction (PCR) and/or restriction enzyme digestion) according to standard molecular biology techniques.
The invention also provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a peptide of the invention. In some embodiments, the
peptide may comprise an amino acid sequence having at least one amino acid deletion compared to native SDF-1. The term "nucleic acid molecule" is intended to include DNA molecules and RNA molecules and may be single-stranded or double- stranded. In alternative embodiments, the isolated nucleic acid encodes a peptide wherein one or more amino acids are deleted from the N-terminus, C-terminus and/or an internal site of SDF-1.
To facilitate expression of a peptide compound in a host cell by standard recombinant DNA techniques, the isolated nucleic acid encoding the peptide may be incorporated into a recombinant expression vector. Accordingly, the invention also provides recombinant expression vectors comprising the nucleic acid molecules of the invention. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been operatively linked. Vectors may include circular double stranded DNA plasmids, viral vectors. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (such as bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (such as non-episomal mammalian vectors) may be integrated into the genome of a host cell upon introduction into the host cell, and thereby may be replicated along with the host genome. Certain vectors may be capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" or "expression vectors".
In recombinant expression vectors of the invention, the nucleotide sequence encoding a peptide may be operatively linked to one or more regulatory sequences, selected on the basis of the host cells to be used for expression. The terms "operatively linked" or "operably" linked mean that the sequences encoding the peptide are linked to the regulatory sequence(s) in a manner that allows for expression of the peptide compound. The term "regulatory sequence" includes promoters, enhancers, polyadenylation signals and other expression control elements. Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) (incorporated herein be reference). Regulatory sequences include those
that direct constitutive expression of a nucleotide sequence in many types of host cell, those that direct expression of the nucleotide sequence only in certain host cells (such as tissue-specific regulatory sequences) and those that direct expression in a regulatable manner (such as only in the presence of an inducing agent). The design of the expression vector may depend on such factors as the choice of the host cell to be transformed and the level of expression of peptide compound desired.
The recombinant expression vectors of the invention may be designed for expression of peptide compounds in prokaryotic or eukaryotic cells. For example, peptide compounds may be expressed in bacterial cells such as E. coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector may be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase. Examples of vectors for expression in yeast S. cerivisae include pYepSed (Baldari et al., (1987) EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, Calif.). Baculovirus vectors available for expression of proteins or peptides in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., (1983) Mol. Cell. Biol. 3:2156-2165) and the pVL series (Lucklow, V. A., and Summers, M. D., (1989) Virology 170:31-39). Examples of mammalian expression vectors include pCDMδ (Seed, B., (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987), EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.
In addition to regulatory control sequences, recombinant expression vectors may contain additional nucleotide sequences, such as a selectable marker gene to identify host cells that have incorporated the vector. Selectable marker genes are well known in the art. To facilitate secretion of the peptide compound from a host cell, in particular mammalian host cells, the recombinant expression vector preferably
encodes a signal sequence operatively linked to sequences encoding the amino- terminus of the peptide compound, such that upon expression, the peptide compound is synthesised with the signal sequence fused to its amino terminus. This signal sequence directs the peptide compound into the secretory pathway of the cell and is then cleaved, allowing for release of the mature peptide compound (i.e., the peptide compound without the signal sequence) from the host cell. Use of a signal sequence to facilitate secretion of proteins or peptides from mammalian host cells is well known in the art.
A recombinant expression vector comprising a nucleic acid encoding a peptide compound may be introduced into a host cell to produce the peptide compound in the host cell. Accordingly, the invention also provides host cells containing the recombinant expression vectors of the invention. The terms "host cell" and "recombinant host cell" are used interchangeably herein. Such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell may be any prokaryotic or eukaryotic cell. For example, a peptide compound may be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells. The peptide compound may be expressed in vivo in a subject to the subject by gene therapy (discussed further below).
Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation, transfection or infection techniques. The terms "transformation", "transfection" or "infection" refer to techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co- precipitation, DEAE-dextran-mediated transfection, lipofection, electroporation, microinjection and viral-mediated infection. Suitable methods for transforming, transfecting or infecting host cells can for example be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory manuals. Methods for introducing DNA into
mammalian cells in vivo are also known, and may be used to deliver the vector DNA of the invention to a subject for gene therapy.
For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (such as resistance to antibiotics) may be introduced into the host cells along with the gene of interest. Preferred selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acids encoding a selectable marker may be introduced into a host cell on the same vector as that encoding the peptide compound or may be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid may be identified by drug selection (cells that have incorporated the selectable marker gene will survive, while the other cells die).
A nucleic acid of the invention may be delivered to cells in vivo using methods such as direct injection of DNA, receptor-mediated DNA uptake or viral-mediated transfection. Direct injection has been used to introduce naked DNA into cells in vivo (see e.g., Acsadi et al. (1991) Nature 332:815-818; Wolff et al. (1990) Science 247:1465-1468). A delivery apparatus (e.g., a "gene gun") for injecting DNA into cells in vivo may be used. Such an apparatus may be commercially available (e.g., from BioRad). Naked DNA may also be introduced into cells by complexing the DNA to a cation, such as polylysine, which is coupled to a ligand for a cell-surface receptor (see for example Wu, G. and Wu, C H. (1988) J. Biol. Chem. 263:14621 ; Wilson el al. (1992) J. Biol. Chem. 267:963-967; and U.S. Pat. No. 5,166,320). Binding of the DNA-ligand complex to the receptor may facilitate uptake of the DNA by receptor- mediated endocytosis. A DNA-ligand complex linked to adenovirus capsids which disrupt endosomes, thereby releasing material into the cytoplasm, may be used to avoid degradation of the complex by intracellular lysosomes (see for example Curiel el al. (1991) Proc. Natl. Acad. Sci. USA 88:8850; Cristiano et al. (1993) Proc. Natl. Acad. Sci. USA 90:2122-2126).
Defective retroviruses are well characterized for use in gene transfer for gene therapy purposes (for reviews see Miller, A. D. (1990) Blood 76:271 , Kume et al. (1999) International. J. Hematol. 69:227-233). Protocols for producing recombinant retroviruses and for infecting cells in vitro or in vivo with such viruses can be found in Current Protocols in Molecular Biology, Ausubel, F. M. et al. (eds.) Greene Publishing Associates, (1989), Sections 9.10-9.14 and other standard laboratory manuals. Examples of suitable retroviruses include pLJ, pZIP, pWE and pEM, which are well known to those skilled in the art. Examples of suitable packaging virus lines include .pψi.Crip, .pψi.Cre, .pψi.2 and .pψi.Am. Retroviruses have been used to introduce a variety of genes into many different cell types, including epithelial cells, endothelial cells, lymphocytes, myoblasts, hepatocytes, bone marrow cells, in vitro and/or in vivo (see for example Eglitis, et al. (1985) Science 230:1395-1398; Danos and Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:6460-6464; Wilson et al. (1988) Proc. Natl. Acad. Sci. USA 85:3014-3018; Armentano et al. (1990) Proc. Natl. Acad. Sci. USA 87:6141-6145; Huber et al. (1991) Proc. Natl. Acad. Sci. USA 88:8039-8043; Ferry et al. (1991) Proc. Natl. Acad. Sci. USA 88:8377-8381 ; Chowdhury et al. (1991) Science 254:1802-1805; van Beusechem et al. (1992) Proc. Natl. Acad. Sci. USA 89:7640- 7644; Kay et al. (1992) Human Gene Therapy 3:641-647; Dai et al. (1992) Proc. Natl. Acad. Sci. USA 89:10892-10895; Hwu et al. (1993) J. Immunol. 150:4104-4115; U.S. Pat. No. 4,868,116; U.S. Pat. No. 4,980,286; PCT Application WO 89/07136; PCT Application WO 89/02468; PCT Application WO 89/05345; and PCT Application WO 92/07573). In various embodiments, a genome of a retrovirus that encodes and expresses a polypeptide compound of the invention, may be utilized for the propagation and/or survival of cells, such as hematopoietic progenitor stem cells, for the purposes of maintaining and/or growing cells for the clinical purposes of blood transfusion or engraftment, host conditioning or applications relevant to chemotherapy, radiation therapy or myeloablative therapy.
For use as a gene therapy vector, the genome of an adenovirus may be manipulated so that it encodes and expresses a peptide compound of the invention, but is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. See for example Berkner et al. (1988) BioTechniques 6:616; Rosenfeld et al. (1991)
Science 252:431-434; and Rosenfeld et al. (1992) Cell 68:143-155. Suitable
adenoviral vectors derived from the adenovirus strain Ad type 5 dl324 or other strains of adenovirus (e.g., Ad2, Ad3, Ad7 etc.) are well known to those skilled in the art. Recombinant adenoviruses are advantageous in that they do not require dividing cells to be effective gene delivery vehicles and can be used to infect a wide variety of cell types, including airway epithelium (Rosenfeld et al. (1992) cited supra), endothelial cells (Lemarchand et al. (1992) Proc. Natl. Acad. Sci. USA 89:6482- 6486), hepatocytes (Herz and Gerard (1993) Proc. Natl. Acad. Sci. USA 90:2812- 2816) and muscle cells (Quantin el al. (1992) Proc. Natl. Acad. Sci. USA 89:2581- 2584). In various embodiments, a genome of an adenovirus that encodes and expresses a polypeptide compound of the invention, may be utilized for the propagation and/or survival of cells, such as hematopoietic progenitor stem cells, stromal cells, or mesenchymal cells, for the purposes of maintaining and/or growing cells for the clinical purposes of blood transfusion or engraftment, host conditioning or applications relevant to chemotherapy, radiation therapy or myeloablative therapy.
In some embodiments, adeno-associated virus (AAV) may be used as a gene therapy vector for delivery of DNA for gene therapy purposes. AAV is a naturally occurring defective virus that requires another virus, such as an adenovirus or a herpes virus, as a helper virus for efficient replication and a productive life cycle (Muzyczka et al. Curr. Topics in Micro, and Immunol. (1992) 158:97-129). AAV may be used to integrate DNA into non-dividing cells (see for example Flotte et al. (1992) Am. J. Respir. Cell. Mol. Biol. 7:349-356; Samulski et al. (1989) J. Virol. 63:3822- 3828; and McLaughlin et al. (1989) J. Virol. 62:1963-1973). An AAV vector such as that described in Tratschin et al. (1985) Mol. Cell. Biol. 5:3251-3260 may be used to introduce DNA into cells (see for example Hermonat et al. (1984) Proc. Natl. Acad. Sci. USA 81 :6466-6470; Tratschin et al. (1985) Mol. Cell. Biol. 4:2072-2081 ; Wondisford et al. (1988) Mol. Endocrinol. 2:32-39; Tratschin et al. (1984) J. Virol. 51 :611-619; and Flotte et al. (1993) J. Biol. Chem. 268:3781-3790). In some embodiments, a genome of an AAV that encodes and expresses a polypeptide compound of the invention, may be utilized for the propagation and/or survival of cells, such as hematopoietic progenitor stem cells, stromal cells or mesenchymal cells, for the purposes of maintaining and/or growing cells for the clinical purposes of
blood transfusion or engraftment, host conditioning or applications relevant to chemotherapy, radiation therapy or myeloablative therapy.
General methods for gene therapy are known in the art. See for example, U.S. Pat. No. 5,399,346 by Anderson et al. A biocompatible capsule for delivering genetic material is described in PCT Publication WO 95/05452 by Baetge et al. Methods for grafting genetically modified cells to treat central nervous system disorders are described in U.S. Pat. No. 5,082,670 and in PCT Publications WO 90/06757 and WO 93/10234, all by Gage et al. Methods of gene transfer into hematopoietic cells have also previously been reported (see Clapp, D. W., et al., Blood 78: 1132-1139 (1991); Anderson, Science 288:627-9 (2000); and, Cavazzana-Calvo et al., Science 288:669- 72 (2000), all of which are incorporated herein by reference).
Cancers susceptible to treatment with CXCR4 antagonists in accordance with various aspects of the invention may include both primary and metastatic tumors, such as solid tumors, including carcinomas of the breast, colon, rectum, oropharynx, hypopharynx, esophagus, stomach, pancreas, liver, gall bladder and bile ducts, small intestine, urinary tract (including kidney, bladder, and urothelium), female genital tract (including cervix, uterus, and ovaries as well as choriocarcinoma and gestational trophoblast disease), male genital tract (including prostate, seminal vesicles, testes, and germ cell tumors), endocrine glands (including the thyroid, adrenal and pituitary glands), and skin, as well as hemangiomas, melanomas, sarcomas (including those arising from bone and soft tissues as well as Kaposi's sarcoma) and tumors of the brain, nerves, eyes, and meninges (including astrocytomas, gliomas, retinoblastomas, neuromas, neuroblastomas, Schwannomas, and meningiomas). In some aspects of the invention, CXCR4 antagonists may also serve in treating solid tumors arising from hematopoietic malignancies such as leukemias (i.e., chloromas, plasmacytomas and the plaques and tumors of mycosis fungoides and cutaneous T- cell lymphoma/leukemia) as well as in the treatment of lymphoma (both Hodgkin's and non-Hodgkin's lymphomas). In addition, CDCR4 antagonists may be therapeutic in the prevention of metastasis from the tumors described above either when used alone or in combination with cytotoxic agents such as radiotherapy or
chemotherapeutic agents (for instance refer to Ziotnik et al., Nature 410, 50-56, 2001).
In alternative aspects of the invention, CXCR4 antagonists such as SDF-1 polypeptides and non-peptide small molecule antagonists may target CD34+ cells to mediate release of CD34+ cells to the peripheral blood. In these aspects of the invention, CXCR4 antagonists may enhance circulating CD34+ cell proliferation and hematopoietic stem or progenitor cell survival or levels, which may for example be useful in stem cell transplantation or ex vivo expansion. Furthermore, CXCR4 antagonists may enhance hematopoietic stem or progenitor cell mobilization.
In various aspects of the invention, CXCR4 antagonists may be used in maintaining or augmenting the rate of hematopoietic cell multiplication. Method of the invention may comprise administration of an effective amount of CXCR4 antagonists to cells selected from the group consisting of hematopoietic stem cells and hematopoietic progenitor cells, stromal cells or mesenchymal cells. In alternative embodiments, a therapeutically effective amount of the CXCR4 antagonist may be administered to a patient in need of such treatment. Patients in need of such treatments may include, for example: patients having cancer, patients having an autoimmune disease, patients requiring functional gene transfer into hematopoietic stems cells, stromal cells or mesenchymal cells (such as for the dysfunction of any tissue or organ into which a stem cell may differentiate), patients requiring lymphocyte depletion, patients requiring depletion of a blood cancer in the form of purging autoreactive or cancerous cells using autologous or allgenic grafts, or patients requiring autologous peripheral blood stem cell transplantation. A patient in need of treatment in accordance with the invention may also be receiving cytotoxic treatments such as chemotherapy or radiation therapy. In some embodiments, CXCR4 antagonists may be used in treatment to purge an ex vivo hematopoietic stem cell culture of cancer cells with cytotoxic treatment, while preserving the viability and self-renewal of the hematopoietic progenitor or stem cells.
In alternative aspects the methods of treatment of the invention may be utilized where a patient is undergoing myelosuppressive treatment causing hematopoietic cell
depletion, including pancytopenia, granulocytopenia, thrombocytopenia, anemia or a combination thereof. In further alternative embodiments, the patient to be treated may be suffering from AIDS, and the treatment may for example be effected to augment hematopoietic cell counts.
Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the invention in order to achieve the same result in substantially the same way. Numeric ranges are inclusive of the numbers defining the range. In the claims, the word "comprising" is used as an open-ended term, substantially equivalent to the phrase "including, but not limited to". The disclosed uses for various embodiments are not necessarily obtained in all embodiments, and the invention may be adapted by those skilled in the art to obtain alternative utilities.
EXAMPLES
The following examples illustrate, but do not limit, the present invention.
Example 1
Figure 1 shows the results of CXCR4 receptor binding assay. To obtain the results, antagonists (competing ligands) (20 M) were added to 5x106 CEM cell/ml in the presence of 4nM 125I-SDF-1. CEM cells were assessed for 125I-SDF-1 binding following 2 hr incubation. The results are expressed as percentages of the maximal specific binding in the absence of a competing ligand, and are the mean of three independent experiments. In Figure 1 , the antagonists tested were: CTCE0012: KGVSLSYRCPCRFFESHVARANVKHLKILNTPACALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN-COOH CTCE9908: [KGVSLSYR]2-K-CONH2 CTCE9907: KGVSLSYRC(CONH2)-(CONH2)RYSLSVGK
CTCE0014: KGVSLSYRCPCRFF-GGGG- LKWIQEYLEKALN- COOH
CTCE0018: KGVSLSYRCPCRFF-GGGG- LKWIQEYLEKALN- CONH2
CTCE0019: KGVSLSYRCPCRFF-GGGG- LKWIQEYLEKALN- CONH2 K20/E24 lactamization
CTCE0020: KGVSLSYRCPCRFF-GGGG- LKWIQEYLEKALN- CONH2 K28/E24 lactamization
CTCE0016: KGVSLSYRCPCRFFESH-GGGG- LKWIQEYLEKALN- COOH
Example 2
Table 1 shows the effect of CXCR4 antagonists on hematopoietic cells, particularly primitive erythroide cells and primitive granulocytes (hematopoietic progenitor cells), compared to mature granulocytes. To obtain the data in Table 1, cells were pre-incubated with each of the compounds or saline alone (as control). The cells were then exposed to high dose H3-thymidine, a cytotoxic agent. Rapidly dividing cells accumulate proportionally more of the cytotoxic radioactive thymidine and as a result are preferentially killed. The relative proportion of cells killed by the thymidine treatment compared to the control is indicative of the relative effectiveness of the compounds in increasing cellular multiplication, i.e. increasing the rate of cell cycle progression and DNA synthesis. A higher proportion of killed cells compared to the control is indicative that a compound increases cellular multiplication of the given cell type.
Table 1: Effect of CXCR4 Peptide Antagonists on the Cycling of Bone Marrow Progenitor Cells Exposed to H3-Thymidine (% Cells Killed).
% Kill After 3H-Thvmidine
Treatment Dose (uq/ml) BFU-E CFU-GM None 10 3 +/- 2 3 +/- 3
SDF-1 (G2) 10 48 +/- 5 38 +/- 4 CTCE9907 50 39 +/ 7 28 +/- 6 CTCE9908 50 51 +/- 7 36 +/- 6 CTCE0012 10 60 +/- 8 44 +/- 4
CTCE0016 10 63 +/- 5 54 +/- 4 CTCE0017 50 57 +/- 3 52 +/- 6
In Table 1 , SDF-1 (G2) is the peptide KGVSLSYRCPCRFFESHVARANVKHLKILNTPACALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN-COOH, CTCE9907 is the peptide [KGVSLSYRC-CONH2]2 , CTCE9908 is the peptide [KGVSLSYR]2K-CONH2, CTCE0012 is the peptide KGVSLSYRCPCRFFESHVARANVKHLKILNTPACALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN-COOH, CTCE0016 is the peptide KGVSLSYRCPCRFFESH-GGGG- LKWIQEYLEKALN-COOH, and CTCE0017 is the peptide KGVSLSYRCPCRFF- GGGG-LKWIQEYLEKALN-CONH2
Example 3 Figure 2 shows the efficacy of CXCR4 antagonists on enhancing the proliferation of human progenitor cells in an in vivo engraftment model.
In Figure 2, the cycling status of mature and primitive colony forming cells (CFU-GM; colony forming unit-granulocyte-monocyte precursor, BFU-E; burst forming unit-erythroid precursor; LTC-IC, long-term culture initiating cell) in the suspension of CD34+ cells isolated from the marrow of transplanted NOD/SCID mice was determined by assessing the proportion of these progenitors that were inactivated (killed) by short term (20 min) or overnight (16 hour) exposure of the cells to 20μg/ml of high specific activity 3H-thymidine (values represent the mean +/- the S.D. of data from up to four experiments with up to four mice per point in each). Significant in the results is the observation that the SDF-1 peptide antagonists are effective at enhancing the proliferation of "primitive" human progenitor cells, as measured by the reduction of cells killed by exposure to high specific activity 3H-thymidine (which only affects proliferating cells).
In Figure 2, the Control represents untreated cells, CTCE9907 is the peptide [KGVSLSYRC-CONH2]2 , CTCE9908 is the peptide [KGVSLSYR]2K-CONH2, CTCE0012 is the peptide
KGVSLSYRCPCRFFESHVARANVKHLKILNTPACALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN-COOH, CTCE0016 is the peptide KGVSLSYRCPCRFFESH-GGGG- LKWIQEYLEKALN-COOH, and CTCE0017 is the peptide KGVSLSYRCPCRFF- GGGG-LKWIQEYLEKALN-CONH2
Example 4
Figure 3. This example illustrates the effect of CXCR4 peptide antagonists on the engraftment of human cells in human fetal liver transplanted NOD/SCID mice. The frequency of the phenotypically defined human hematopoietic cells detected in the long bones (tibias and femurs) of mice was determined. Administration of 0.5mg/kg of SDF-1 had no significant effect on the number of CD45/71 , CD19/20, or CD34 cells, nor on the CFC or LTC-IC In addition, none of the human cell types were detectably affected by this schedule of CXCR4 agonist administration. This data indicates that SDF-1 peptide antagonists may effectively augment secondary engraftment of human progenitor cells, and that these compounds are essentially not toxic to the animals at the indicated doses.
In Figure 3, the Control represents untreated cells, CTCE9907 is the peptide [KGVSLSYRC-CONH2]2 , CTCE9908 is the peptide [KGVSLSYR]2K-CONH2, CTCE0012 is the peptide
KGVSLSYRCPCRFFESHVARANVKHLKILNTPACALQIVARLKNNNRQVCIDPKLKWI QEYLEKALN-COOH, CTCE0016 is the peptide KGVSLSYRCPCRFFESH-GGGG- LKWIQEYLEKALN-COOH, and CTCE0017 is the peptide KGVSLSYRCPCRFF- GGGG-LKWIQEYLEKALN-CONH2
Claims
WHAT IS CLAIMED IS:
1. A method of promoting the rate of hematopoietic cell multiplication, comprising administering an effective amount of a CXCR4 antagonist to hematopoietic cells.
2. The method of claim 1 , wherein the hematopoietic cells are hematopoietic stem or progenitor cells.
3. A method of increasing the circulation of hematopoietic cells in a patient in need of such treatment, comprising administering to the patient an effective amount of a CXCR4 antagonist to mobilize the hematopoietic cells from a marrow locus to a peripheral blood locus.
4. The method of claim 1 or 2, further comprising introducing a heterologous gene into the hematopoietic cells for gene therapy.
5. The method of claim 1 , 2 or 3, wherein the hematopoietic cells are ex vivo.
6. The method of claim 1 , 2 or 3 wherein the hematopoietic cells are in vivo.
7. The method of any one of claims 1 through 6, wherein the hematopoietic cells are selected from the group consisting of hematopoietic stem cells and hematopoietic progenitor cells (including CFU-GEMM, BFU-E, CFU-Meg, CFU-GM, CFU-M/DC CFU-E0, CFU- Bas, Pro-B cells and lymphoid stem cells), that are known to differentiate into mature myeloid and lympoid blood cells, including erythrocytes, platelets, neutrophils, monocytes, macrophages, dendritic cells (myeloid and lymphoid related), eosinophils, basophils, mast cells, B cells, and T cells.
8. The method of any one of claims 1 through 7, wherein the CXCR4 antagonist comprises a CXCR4 antagonist peptide.
9. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of:
KGVSLSYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQ VCIDPKLKWIQEYLEKALN (SEQ ID No.1); KGVSPSYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQ
VCIDPKLKWIQEYLEKALN (SEQ ID No.2);
KGVSLPYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQ VCIDPKLKWIQEYLEKALN (SEQ ID No. 3);
KGVSLSPRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQ VCIDPKLKWIQEYLEKALN (SEQ ID No. 4);
KGVSLSYPCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQ VCIDPKLKWIQEYLEKALN (SEQ ID No. 5);
KGVSP*SYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNR QVCIDPKLKWIQEYLEKALN (SEQ ID No. 6); KGVSLP*YRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNR
QVCIDPKLKWIQEYLEKALN (SEQ ID No. 7);
KGVSLSP*RCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNR QVCIDPKLKWIQEYLEKALN (SEQ ID No. 8);
KGVSLSYP*CPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNR QVCIDPKLKWIQEYLEKALN (SEQ ID No. 9);
KGVSBtdYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNR QVCIDPKLKWIQEYLEKALN (SEQ ID No. 10);
KGVSLBtdRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNR QVCIDPKLKWIQEYLEKALN (SEQ ID No. 11); KGVSLSBtdCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNR
QVCIDPKLKWIQEYLEKALN (SEQ ID No. 12);
wherein P* =
X= Ar, Ar-OH, alkyl and more
and Btd =
X= Alkyl, Ar, Ar-OH and more
10. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of: a) KGVSLSYRCPCRFFESH b) KGVSLSYRC
11. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of:
KGVSPSYRCPCRFFESH (SEQ ID No. 17)
KGVSLPYRCPCRFFESH (SEQ ID No. 18)
KGVSLSPRCPCRFFESH (SEQ ID No. 19)
KGVSLSYPCPCRFFESH (SEQ ID No. 20)
KGVSP*SYRCPCRFFESH (SEQ ID No. 21)
KGVSLP*YRCPCRFFESH (SEQ ID No. 22)
KGVSLSP*RCPCRFFESH (SEQ ID No. 23)
KGVSLSYP*CPCRFFESH (SEQ ID No. 24)
KGVSBtdYRCPCRFFESH (SEQ ID No. 25)
KGVSLBtdRCPCRFFESH (SEQ ID No. 26)
KGVSLSBtdCPCRFFESH (SEQ ID No. 27)
KGVSPSYRC (SEQ ID No. 28)
KGVSLPYRC (SEQ ID No. 29)
KGVSLSPRC (SEQ ID No. 30)
KGVSLSYPC (SEQ ID No. 31)
KGVSP*SYRC (SEQ ID No. 32)
KGVSLP*YRC (SEQ ID No. 33)
KGVSLSP*RC (SEQ ID No. 34)
KGVSLSYP*C (SEQ ID No. 35)
KGVSBtdYRC (SEQ ID No. 36)
KGVSLBtdRC (SEQ ID No. 37)
KGVSLSBtdC (SEQ ID No. 38)
wherein P* =
X= Ar, Ar-OH, alkyl and more
and Btd =
X= Alkyl, Ar, Ar-OH and more
12. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of:
KGVSPSYRC KGVSLPYRC KGVSLSPRC KGVSLSYPC
I I I
KGVSPSYRC KGVSLPYRC KGVSLSPRC KGVSLSYPC
KGVSP*SYRC KGVSLP*YRC KGVSLSP*RC KGVSLSYP*C l l l l
KGVSP*SYRC KGVSLP*YRC KGVSLSP*RC KGVSLSYP*C
KGVSBtdYRC KGVSLBtdRC KGVSLSBtdC
I I I
KGVSBtdYRC KGVSLBtdRC KGVSLSBtdC
wherein P* =
X= Ar, Ar-OH, alkyl and more
and Btd =
X= Alkyl, Ar, Ar-OH and more
13. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of:
KGVSPSYR KGVSLPYR KGVSLSPR KGVSLSYP
I
1 1 1 X X X X
KGVSPSYR KGVSLPYR KGVSLSPR KGVSLSYP
KGVSP*SYR KGVSLP*YR KGVSLSP*R KGVSLSYP*
I I
1 1 1 1 X X X X
KGVSP*YR KGVSLP*YR KGVSLSP*R KGVSLSYP*
KGVSBtdYR KGVSLBtdR KGVSLSBtd
I
1 1 X X X
KGVSBtdYR KGVSLBtdR KGVSLSBtd wherein X is a natural or unnatural amino acid linker between each of the arginines at position 8 in each sequencel; and,
wherein p*
and Btd —
X= Alkyl, Ar, Ar-OH and more
14. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of: KGVSLSYRCPCRFF-Gn-LKWIQEYLEKALN (SEQ No. 63)
KGVSLSYRCPCRFFESH-Gn-LKWIQEYLEKALN (SEQ No. 64)
wherein n is 0 or an integer from 1 to 10.
15. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of:
KGVSLSYRCPCRFF-(CH2)n -LKWIQEYLEKALN (SEQ No. 65) KGVSLSYRCPCRFFESH-(CH2)n-LKWIQEYLEKALN (SEQ No. 66)
where n is 0 or an integer from 1 to 20.
16. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of: KGVSPSYRCPCRFF-GGGG-LKWIQEYLEKALN; KGVSLPYRCPCRFF-GGGG-LKWIQEYLEKALN; KGVSLSPRCPCRFF-GGGG-LKWIQEYLEKALN; KGVSLSYPCPCRFF-GGGG-LKWIQEYLEKALN; KGVSPSYRCPCRFFESH-GGGG-LKWIQEYLEKALN; KGVSLPYRCPCRFFESH-GGGG-LKWIQEYLEKALN; KGVSLSPRCPCRFFESH-GGGG-LKWIQEYLEKALN; KGVSLSYPCPCRFFESH-GGGG-LKWIQEYLEKALN; KGVSPSYRCPCRFF-(CH2)n-LKWIQEYLEKALN; KGVSLPYRCPCRFF-(CH2)„-LKWIQEYLEKALN; KGVSLSPRCPCRFF-(CH2)n-LKWIQEYLEKALN; KGVSLSYPCPCRFF-(CH2)n-LKWIQEYLEKALN; KGVSPSYRCPCRFFESH-(CH2)n-LKWIQEYLEKALN; KGVSLPYRCPCRFFESH-(CH2)n-LKWIQEYLEKALN; KGVSLSPRCPCRFFESH-(CH2)n-LKWIQEYLEKALN; KGVSLSYPCPCRFFESH- (CH2)n -LKWIQEYLEKALN,
wherein n is 0 or an integer from 1 to 20.
7. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of: KGVS SYRCPCRFF-GGGG-LKWIQEYLEKALN; KGVSL YRCPCRFF-GGGG-LKWIQEYLEKALN; KGVSLS RCPCRFF-GGGG-LKWIQEYLEKALN; KGVSLSY CPCRFF-GGGG-LKWIQEYLEKALN; KGVS SYRCPCRFFESH-GGGG-LKWIQEYLEKALN; KGVSL YRCPCRFFESH-GGGG-LKWIQEYLEKALN; KGVSLS RCPCRFFESH-GGGG-LKWIQEYLEKALN; KGVSLSY CPCRFFESH-GGGG-LKWIQEYLEKALN; KGVS SYRCPCRFF-(CH2)π-LKWIQEYLEKALN; KGVSL YRCPCRFF-(CH2)n-LKWIQEYLEKALN; KGVSLS RCPCRFF-(CH2)n-LKWIQEYLEKALN; KGVSLSY CPCRFF-(CH2)n~LKWIQEYLEKALN; KGVS SYRCPCRFFESH-(CH2)n-LKWIQEYLEKALN; KGVSL YRCPCRFFESH-(CH2)n-LKWIQEYLEKALN; KGVSLS RCPCRFFESH-(CH2)π-LKWIQEYLEKALN; KGVSLSY CPCRFFESH- (CH2)n -LKWIQEYLEKALN;
KGVS YRCPCRFF-GGGG-LKWIQEYLEKALN KGVSL RCPCRFF-GGGG-LKWIQEYLEKALN KGVSLS CPCRFF-GGGG-LKWIQEYLEKALN KGVS YRCPCRFFESH-GGGG-LKWIQEYLEKALN KGVSL RCPCRFFESH-GGGG-LKWIQEYLEKALN KGVSLS CPCRFFESH-GGGG-LKWIQEYLEKALN KGVS YRCPCRFF-(CH2)n-LKWIQEYLEKALN KGVSL RCPCRFF-(CH2)rt-LKWIQEYLEKALN KGVSLS CPCRFF-(CH2)n-LKWIQEYLEKALN KGVS YRCPCRFFESH-(CH2)n-LKWIQEYLEKALN; KGVSL RCPCRFFESH-(CH )n-LKWIQEYLEKALN; KGVSLS CPCRFFESH- (CH2)n -LKWIQEYLEKALN
wherein n is 0 or an integer from 1 to 20 and
wherein P* =
with X= Ar, Ar-OH, alkyl and more H
and Btd =
X= Alkyl, Ar, Ar-OH and more
18. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of: KGVSLSYRCPCRFFGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFESHGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFESHGGGGLKWIQEYLEKALN
19. A CXCR4 antagonist peptide selected from the group consisting of:
KGVSLSYRCPCRFFGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFESHGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFGGGGLKWIQEYLEKALN
KGVSLSYRCPCRFFESHGGGGLKWIQEYLEKALN
20. The method of claim 8, wherein the CXCR4 antagonist peptide is selected from the group consisting of: KGVSLSYRCPCRFFGGGGSKPGVIFLTKRSRQV; KGVSLSYRCPCRFF(CH2)n SKPGVIFLTKRSRQV; KGVSLSYRCPCRFFGGGGEEWVQKYVDDLELSA; KGVSLSYRCPCRFF(CH2)n EEWVQKYVDDLELSA,
where n is 0 or an integer between 1 and 20.
21. A method of treating a cancer in a patient in need of such treatment comprising administering an effective amount of a CXCR4 antagonist to the patient to promote the rate of hematopoietic cell multiplication.
22. A method of treating an autoimmune disease in a patient in need of such treatment comprising administering an effective amount of a CXCR4 antagonist to the patient to promote the rate of hematopoietic cell multiplication.
23. The use of a CXCR4 antagonist to promote the rate of hematopoietic cell multiplication.
24. The use of the CXCR4 antagonist according to claim 23, wherein the hematopoietic cells are hematopoietic stem or progenitor cells.
25. The use of a CXCR4 antagonist to formulate a medicament for mobilizing hematopoietic cells from a marrow locus to a peripheral blood locus.
26. The use of a CXCR4 antagonist to formulate a medicament to promote the rate of hematopoietic cell multiplication.
27. The use of an effective amount of a CXCR4 antagonist to treat a cancer in a patient by promoting the rate of hematopoietic cell multiplication in the patient.
28. The use of an effective amount of a CXCR4 antagonist to treat an autoimmune disease in a patient by promoting the rate of hematopoietic cell multiplication in the patient.
29. The use of a CXCR4 antagonist to formulate a medicament to treat a cancer in a patient by promoting the rate of hematopoietic cell multiplication in the patient.
30. The use of a CXCR4 antagonist to formulate a medicament to treat an autoimmune disease in a patient by promoting the rate of hematopoietic cell multiplication in the patient.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002305787A CA2305787A1 (en) | 2000-05-09 | 2000-05-09 | Cxcr4 antagonist treatment of hematopoietic cells |
CA2.305.787 | 2000-05-09 | ||
US20546700P | 2000-05-19 | 2000-05-19 | |
US60/205,467 | 2000-05-19 | ||
PCT/CA2001/000659 WO2001085196A2 (en) | 2000-05-09 | 2001-05-09 | Cxcr4 antagonist treatment of hematopoietic cells |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2001258110A1 true AU2001258110A1 (en) | 2002-02-07 |
AU2001258110B2 AU2001258110B2 (en) | 2006-10-19 |
Family
ID=25681731
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU5811001A Pending AU5811001A (en) | 2000-05-09 | 2001-05-09 | Cxcr4 antagonist treatment of hematopoietic cells |
AU2001258110A Ceased AU2001258110B2 (en) | 2000-05-09 | 2001-05-09 | Cxcr4 antagonist treatment of hematopoietic cells |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU5811001A Pending AU5811001A (en) | 2000-05-09 | 2001-05-09 | Cxcr4 antagonist treatment of hematopoietic cells |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1286684B1 (en) |
JP (1) | JP2003532683A (en) |
AT (1) | ATE265219T1 (en) |
AU (2) | AU5811001A (en) |
DE (1) | DE60103052T2 (en) |
WO (1) | WO2001085196A2 (en) |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2305787A1 (en) | 2000-05-09 | 2001-11-09 | The University Of British Columbia | Cxcr4 antagonist treatment of hematopoietic cells |
ATE258444T1 (en) | 1998-03-13 | 2004-02-15 | Univ British Columbia | THERAPEUTIC CHEMOKINE RECEPTOR ANTAGONISTS |
CA2245224A1 (en) | 1998-08-14 | 2000-02-14 | Jiang-Hong Giong | Chemokine receptor antagonists and chemotherapeutics |
US7368425B2 (en) | 2006-03-24 | 2008-05-06 | Chemokine Therapeutics Corp. | Cyclic peptides for modulating growth of neo-vessels and their use in therapeutic angiogenesis |
US20050059584A1 (en) | 2002-08-16 | 2005-03-17 | Ahmed Merzouk | Novel chemokine mimetics synthesis and their use |
US7091310B2 (en) * | 2002-09-13 | 2006-08-15 | Chemokine Therapeutics Corporation | Chemokine analogs for the treatment of human disease |
US8435939B2 (en) | 2000-09-05 | 2013-05-07 | Biokine Therapeutics Ltd. | Polypeptide anti-HIV agent containing the same |
DK1411918T3 (en) | 2001-07-31 | 2012-04-23 | Genzyme Global S A R L | Methods for mobilizing progenitor / stem cells |
US7169750B2 (en) | 2001-07-31 | 2007-01-30 | Anormed, Inc. | Methods to mobilize progenitor/stem cells |
IL146970A0 (en) * | 2001-12-06 | 2002-08-14 | Yeda Res & Dev | Migration of haematopoietic stem cells and progenitor cells to the liver |
US7521530B2 (en) * | 2002-06-11 | 2009-04-21 | Universite De Montreal | Peptides and peptidomimetics useful for inhibiting the activity of prostaglandin F2α receptor |
JP4781621B2 (en) * | 2002-08-27 | 2011-09-28 | バイオカイン セラピューティックス リミテッド | CXCR4 antagonist and use thereof |
US7423007B2 (en) | 2002-08-27 | 2008-09-09 | Biokine Therapeutics Ltd. | Cxcr4 antagonist and use thereof |
DE10240064A1 (en) * | 2002-08-30 | 2004-03-11 | Universitätsklinikum Freiburg | Use of chemokine receptor antagonist for treatment of cancer and inhibition of metastasis, functions as ligand for the CXCR4 receptor |
ES2393188T3 (en) * | 2003-04-22 | 2012-12-19 | Genzyme Corporation | Heterocyclic compounds that bind to chemokine receptors and have improved efficacy |
AU2006203826A1 (en) | 2005-01-07 | 2006-07-13 | Emory University | CXCR4 antagonists for the treatment of HIV infection |
JP4839032B2 (en) * | 2005-07-13 | 2011-12-14 | 国立大学法人 岡山大学 | Chemokine receptor enhancer |
IL172896A0 (en) * | 2005-12-29 | 2006-06-11 | Yeda Res & Dev | Cxcr4 inhibition |
WO2007079460A2 (en) * | 2006-01-04 | 2007-07-12 | Chemokine Therapeutics Corporation | Design of cxc chemokine analogs for the treatment of human diseases |
US8202902B2 (en) | 2006-05-05 | 2012-06-19 | The Regents Of The University Of Michigan | Bivalent SMAC mimetics and the uses thereof |
SI2019671T1 (en) | 2006-05-05 | 2015-03-31 | The Regents Of The University Of Michigan | Intermediates for the preparation of bivalent smac mimetics |
WO2008008854A2 (en) | 2006-07-11 | 2008-01-17 | Emory University | Cxcr4 antagonists including diazine and triazine structures for the treatment of medical disorders |
EP2104507A4 (en) | 2006-12-21 | 2011-05-25 | Biokine Therapeutics Ltd | T-140 peptide analogs having cxcr4 super-agonist activity for cancer therapy |
EP2053060A1 (en) * | 2007-10-24 | 2009-04-29 | Protaffin Biotechnologie AG | SDF-1-based glyocosaminoglycan antagonists and methods of using same |
WO2009074807A2 (en) | 2007-12-12 | 2009-06-18 | Imperial Innovations Limited | Methods |
DK2262808T3 (en) | 2008-03-28 | 2013-11-04 | Altiris Therapeutics | CHEMOKINE RECEPTOR MODULATORS |
WO2010092571A2 (en) | 2009-02-11 | 2010-08-19 | Yeda Research And Development Co. Ltd. | Short beta-defensin-derived peptides |
EP2442822B1 (en) * | 2009-06-14 | 2014-03-05 | Biokine Therapeutics Ltd. | Peptide therapy for increasing platelet levels |
WO2012058241A2 (en) | 2010-10-26 | 2012-05-03 | University Of South Alabama | Methods and compositions for ameliorating pancreatic cancer |
EP2709991B1 (en) | 2011-05-16 | 2020-09-02 | Genzyme Corporation | Use of cxcr4 antagonists for treating WHIM syndrome, myelokathexis, neutropenia and lymphocytopenia |
EP2729487A2 (en) | 2011-07-08 | 2014-05-14 | Protaffin Biotechnologie AG | Novel sdf-1-based glycosaminoglycan antagonist and methods of using same |
AR087364A1 (en) | 2011-07-29 | 2014-03-19 | Pf Medicament | ANTI-CXCR4 ANTIBODY AND ITS USE FOR CANCERES DETECTION AND DIANOSTIC |
AR087363A1 (en) | 2011-07-29 | 2014-03-19 | Pf Medicament | USE OF ANTIBODY I-3859 FOR THE DETECTION AND DIAGNOSIS OF CANCERES |
WO2013160895A1 (en) | 2012-04-24 | 2013-10-31 | Biokine Therapeutics Ltd. | Peptides and use thereof in the treatment of large cell lung cancer |
CN106470699A (en) | 2014-02-03 | 2017-03-01 | 耶路撒冷希伯来大学的益生研究开发有限公司 | Consume the purposes of stem cell using casein kinase i inhibitor |
US9375406B2 (en) * | 2014-09-30 | 2016-06-28 | Taigen Biotechnology Co., Ltd. | Substituted pyrimidines for mobilizing cells expressing a type 4 CXC chemokine receptor |
EP3943098A3 (en) | 2015-07-16 | 2022-05-11 | Biokine Therapeutics Ltd. | Compositions and methods for treating cancer |
US10709697B2 (en) | 2015-07-16 | 2020-07-14 | Emory University | Bis-amines, compositions, and uses related to CXCR4 inhibition |
US11433136B2 (en) | 2015-12-18 | 2022-09-06 | The General Hospital Corporation | Polyacetal polymers, conjugates, particles and uses thereof |
US9623050B1 (en) * | 2016-01-14 | 2017-04-18 | Bio Inventors & Entrepreneur's Network LLC | Patient-and condition-specific platelet transfusion support |
BR112018016924A2 (en) | 2016-02-23 | 2019-01-02 | Biokine Therapeutics Ltd | treatment regimen selection method for individual who has acute myeloid leukemia (LMA), acute response myeloid leukemia (LMA) treatment maximization method, lma treatment method, cxcr4 antagonist, and chemotherapeutic agent in the treatment of lma |
JP7100639B2 (en) * | 2016-09-06 | 2022-07-13 | メインライン バイオサエンシズ | CXCR4 antagonist and usage |
WO2018106738A1 (en) | 2016-12-05 | 2018-06-14 | Massachusetts Institute Of Technology | Brush-arm star polymers, conjugates and particles, and uses thereof |
JP7352807B2 (en) | 2017-04-12 | 2023-09-29 | マジェンタ セラピューティクス インコーポレイテッド | Aryl hydrocarbon receptor antagonists and uses thereof |
EP3704232A1 (en) | 2017-10-31 | 2020-09-09 | Magenta Therapeutics, Inc. | Compositions and methods for the expansion of hematopoietic stem and progenitor cells |
CN111683669A (en) | 2017-10-31 | 2020-09-18 | 美真达治疗公司 | Compositions and methods for hematopoietic stem and progenitor cell transplantation therapy |
BR112020011186A2 (en) | 2017-12-06 | 2020-11-17 | Magenta Therapeutics, Inc. | dosing regimens for stem cell mobilization and hematopoietic progenitors |
US11260079B2 (en) | 2017-12-06 | 2022-03-01 | Magenta Therapeutics, Inc. | Dosing regimens for the mobilization of hematopoietic stem and progenitor cells |
CN111902411A (en) | 2018-01-03 | 2020-11-06 | 美真达治疗公司 | Compositions and methods for expanding hematopoietic stem and progenitor cells and treating inherited metabolic disorders |
EP4051298A1 (en) | 2019-11-01 | 2022-09-07 | Magenta Therapeutics, Inc. | Dosing regimens for the mobilization of hematopoietic stem and progentor cells |
EP4143302A1 (en) | 2020-04-27 | 2023-03-08 | Magenta Therapeutics, Inc. | Methods and compositions for transducing hematopoietic stem and progenitor cells in vivo |
WO2022197776A1 (en) | 2021-03-16 | 2022-09-22 | Magenta Therapeutics, Inc. | Dosing regimens for hematopoietic stem cell mobilization for stem cell transplants in multiple myeloma patients |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2751658B1 (en) * | 1996-07-26 | 1998-10-02 | Pasteur Institut | USE OF A LIGAND CHEMOKINE (SDF-1) FOR LESTR / FUSIN / CXCR4 RECEPTOR TO PREVENT OR TREAT INFECTION WITH HIV-LIKE VIRUSES |
WO2000009152A1 (en) * | 1998-08-14 | 2000-02-24 | The University Of British Columbia | Therapeutic chemokine receptor antagonists |
EP1189609A4 (en) * | 1999-05-03 | 2002-10-30 | Smithkline Beecham Corp | Cxcr-4 receptor antagonists - thrombopoietin mimetics |
-
2001
- 2001-05-09 AU AU5811001A patent/AU5811001A/en active Pending
- 2001-05-09 EP EP01931279A patent/EP1286684B1/en not_active Expired - Lifetime
- 2001-05-09 DE DE60103052T patent/DE60103052T2/en not_active Expired - Lifetime
- 2001-05-09 WO PCT/CA2001/000659 patent/WO2001085196A2/en active IP Right Grant
- 2001-05-09 JP JP2001581849A patent/JP2003532683A/en active Pending
- 2001-05-09 AU AU2001258110A patent/AU2001258110B2/en not_active Ceased
- 2001-05-09 AT AT01931279T patent/ATE265219T1/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1286684B1 (en) | use of cxcr4 antagonists for treating autoimmune diseases and cancer | |
US7435718B2 (en) | CXCR4 antagonist treatment of hematopoietic cells | |
AU2001258110A1 (en) | Cxcr4 antagonist treatment of hematopoietic cells | |
AU2001252081B2 (en) | Cxcr4 agonist treatment of hematopoietic cells | |
EP1061944B1 (en) | Therapeutic chemokine receptor antagonists | |
US7354899B2 (en) | Methods of treating autoimmune diseases comprising administering CXCR4 antagonists | |
US7378098B2 (en) | CXC chemokine receptor 4 agonist peptides | |
AU2001252081A1 (en) | CXCR4 Agonist Treatment of Hematopoietic Cells | |
WO2000009152A1 (en) | Therapeutic chemokine receptor antagonists | |
KR100222274B1 (en) | Compositions and methods using unbound mpl receptor for stimulating platelet production | |
AU2005201244B2 (en) | CXCR4 agonist treatment of hematopoietic cells | |
CA2408319A1 (en) | Cxcr4 antagonist treatment of hematopoietic cells | |
CA2405907A1 (en) | Cxcr4 agonist treatment of hematopoietic cells | |
CA2305036A1 (en) | Cxcr4 agonist treatment of hematopoietc cells | |
CA2322764A1 (en) | Therapeutic chemokine receptor antagonists |