AU1949200A - Waterbased microsphere adhesives - Google Patents
Waterbased microsphere adhesives Download PDFInfo
- Publication number
- AU1949200A AU1949200A AU19492/00A AU1949200A AU1949200A AU 1949200 A AU1949200 A AU 1949200A AU 19492/00 A AU19492/00 A AU 19492/00A AU 1949200 A AU1949200 A AU 1949200A AU 1949200 A AU1949200 A AU 1949200A
- Authority
- AU
- Australia
- Prior art keywords
- weight
- adhesive
- adhesives
- belt
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Adhesives Or Adhesive Processes (AREA)
Description
Our Ref:7464866 P/00/011 Regulation 3:2
AUSTRALIA
Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT eq
C
C
C
C
Applicant(s): Address for Service: Minnesota Mining and Manufacturing Company 3M Center PO Box 33427 Saint Paul Minnesota 55133-3427 United States of America DAVIES COLLISON CAVE Patent Trade Mark Attorneys Level 10, 10 Barrack Street SYDNEY NSW 2000 Invention Title: Waterbased microsphere adhesives The following statement is a full description of this invention, including the best method of performing it known to me:- 5020 Waterbased Microsphere Adhesives Technical Field This invention relates to repositionable adhesives and in particular to repositionable adhesives containing microspheres wherein the adhesives are particularly useful for sheet-to-sheet coating processes.
Background of the Invention During the past decade, repositionable products, such as Post-it(* Notes and related products, commercially available from 3M Co., have become virtually indispensable consumer and business office items. The commercial success of these products can be attributed to repositionable, elastomeric, polymeric microsphere adhesives, seefor example, U.S. Patent Nos. 3,691,140 and 4,166,152.
Typically, coating such microsphere adhesives onto paper is accomplished by using a direct coating process. However, stripe coating of water-based adhesives onto paper is often difficult and produces unsatisfactory results due to paper distortions. One way of avoiding paper distortion, or as it is often referred to "cockling" is to transfer coat dry adhesive as stripes.
Although transfer coating (indirect coating) of adhesive is generally known, see for example U.S. Patent No. 3,121,02 1, problems associated with S. coating a particulate or particulate-containing adhesive (such as a microsphere or microsphere-containing adhesive) have not been recognized in the art dealing with film forming adhesives.
Some sheet-to-sheet coating process, which continuously coat a pseudoweb of overlapping paper sheets, use water-based adhesives. The adhesives are coated onto a silicone belt. The adhesive is then dried (either partially or fully) on the belt and transferred to the pseudo-web of sheets. However, the adhesive materials used do not satisfactorily transfer cleanly and with consistency. Various solutions have been proposed to aid in transferring adhesives from a coating intermediate carrier to a moving web, but to date all have been relatively unsuccessful.
2 Although microsphere adhesive formulations including binder, surfactant and thickeners are known, formulations which meet the special transfer coating process needs (as enumerated above), are not known.
Summary of the Invention Briefly, in one aspect of the present invention waterbased microsphere adhesive formulations are provided for use in a sheet-to-sheet transfer coating process. These formulations comprise a combination of microsphere adhesive, binder, surfactant, viscosifier and water. Advantageously, the adhesives of the present invention provide excellent wet-out on the surface of a low surface energy intermediate carrier belt (transfer medium), as well as excellent transfer characteristics from the intermediate carrier belt onto a final substrate. A further advantage of the present invention is that the adhesive formulations are shear stable to allow die-coating or gravure-coating of the adhesives onto a intennediate medium. Furthermore, these adhesives also overcome the challenge of retaining their unique topology throughout the 15 coating and transferring process (during which they are turned upside-down onto the final Ssubstrate).
SThe adhesive formulations provided by this invention are useful in the coating of repositionable note products. A particularly advantageous feature of the present invention is that the adhesives are water-based rather than solvent S.:o 20 based. The elimination of solvents nullifies fire and health hazards that many be present in solvent-based adhesives. Further, many adhesives do not have the topology provided.by the microspheres and thus do not perform as removable, :repositionable adhesives.
Adhesive formulations provided by this invention are particularly useful in a sheet-to-sheet coating process, such as the process described in U.S.S.N.
08/196,490, filed February 15, 1994 (corresponding PCT WO-EP94/00421). In general, the process comprises the steps of coating an adhesive solution onto an intermediate carrier belt, fully or partially drying the adhesive, and (c) transferring the dried adhesive from the intermediate carrier web onto sheets of paper that are overlapped into a pseudo-web that travels by the transfer belt under laminating pressure. These sheets can then be converted into repositionable note products.
3 A particularly useful water based adhesive composition comprises: 60-65 weight of polymeric microspheres, 0.01-25 weight of acrylic latex binder, 0.01-5.0 weight of surfactant, 0. 0 1 0 weight of a thickener, and sufficient amount of de-ionized water, such that the weight% is equal to 100 weight Preferably, the solids in the formulation ranges from 20 to 60 and the ratio of microsphere to binder is in the range of 4:1 to 7000:1 and the formulations comprise: 60-65 weight of polymeric microspheres, 2-5 weight of acrylic latex binder, 0.1-1.5weight of surfactant, 0.1-1.5 weight of a thickener, and sufficient amount of de-ionized water, such that the weight is equal to 100 weight Adhesive formulations of the present invention are particularly useful in 15 this process because of several advantageous characteristics, such as the ability to wet-out a low surface energy intermediate carrier belt (such as a silicone belt), shear stability, thus permitting die-coating or gravure coating of these formulations onto the intermediate carrier belt without coagulation, sufficient integrity to remain on the intermediate carrier belt in its coated state, that is, the adhesive does not flow down the belt until it is dried (partially or fully) and/or transferred off of the intermediate carrier belt, that is, an adhesive with a viscosity in the range of 400 to 100 centipoise, would not tend to flow down the low .i .energy intermediate carrier belt, sufficient elasticity to remain cohesive, and yet not too much as to prevent homogeneous and total transfer off of the intermediate onto the final substrate (usually precoated paper) and adhesive removability, repositionability, both initially and after being aged under different aging conditions. In addition to the advantages cited above, these adhesives can be directly coated onto paper (both onto dry and non-dry precoated paper), producing a flat, repositionable note product.
Description of the Preferred Embodiment(s) During the past decade, Post-it® Notes and related products (commercially available from the 3M Company) have become indispensable 4 consumer and business office items. One of the advantages of these products is repositionability. Such repositionability is generally believed to be a result of the adhesive applied to the paper substrate. Many of the repositionable products are coated with an adhesive comprising solid, elastomeric polymeric microspheres.
Such microsphere containing adhesives are described in U.S. Patent Nos.
3,691,140 and 4,166,152.
In the present invention, microspheres are used in combination with a water-based binder. Binder was generally used to prevent adhesive transfer of the microspheres. Useful binders are those that provide tack and mechanical locking, as well as the additional advantage of providing superior aging characteristics.
Furthermore, useful binders are able to bind adhesive microspheres together such that repositionability of the final product is maintained whether the adhesive is coated directly or by a transfer process. Typically, the microsphere to binder ratio is in the range of 4:1 to 7000: 1.
15 Typically, such adhesives are coated directly onto the final substrate and the microspheres are then raised above the surface of the binder, giving rise to repositionability characteristics. However, in a transfer process, these sockets would end up upside-down, with the microspheres next to the substrate with the conventional binder adhesive exposed.
20 In addition to the microspheres and binders, a surfactant, such as Surfynol 3 6 (commercially available from Air Products and Chemicals, Inc.) can be included in the adhesive formulations, although surfactants are typically not added to adhesive formulations as this usually causes the adhesive properties to decrease, seefor example EP 0 439 941 AI. However, in the adhesive formulation described hereinabove, a surfactant is included in the adhesive formulations so that the adhesives provide good wet-out of the silicone intermediate carrier belt, without the characteristic decrease in adhesive properties. If used, a surfactant is present in an amount sufficient to provide effective wet-out of the adhesive formulation and such sufficient amounts tend to be in the range of 0.0 1 -5.0 parts by weight (or by weight).
Furthermore, a thickener, such as Polyphobe I 0 1 (commercially available from Union Carbide and Plastics Company Inc. Cary, can also be included in these adhesive formulations. Such an addition can be beneficial for transfercoating process. Viscosifiers are often added to adhesive compositions to optimize coatability of the adhesives. It is generally believed that the addition of the thickener to an adhesive formulation will permit coating the formulation by methods such as die or gravure methods. Furthermore, it is believed that an appropriate viscosity aids in the clean and non-elastic transferrence from the intermediate carrier belt onto a substrate web. If used, a thickener is present in an amount sufficient to provide effective adhesive coating, such as die or gravure coating methods of the adhesive formulation and such sufficient amounts tend to be in the range of 0.01-3.0 parts by weight (or by weight).
The objects, features and advantages of the present invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention. All materials are commercially available or known to those skilled in the art unless otherwise stated or apparent.
Examples e Erample 1: Preparation of Polymeric Microspheres This example illustrates a general method by which solid, infusible, S- inherently tacky, elastomeric, polymeric microspheres are prepared. To a one (1) o liter, 3 -necked flask equipped with a thermometer, a reflux condenser, a mechanical stirrer and a gas inlet tube were charged 300 grams of deionized water, 100 grams ofisooctyl acrylate, 2.5 grams of acrylic acid, 0.25 gram of 98% active benzoyl peroxide (commercially available from the Pennwalt Corporation under the tradename of Lucidol 98) and 4.2 grams of ammonium laurel sulfate (commercially available from the Stepan Company under the tradename of Stepanol AMV). Concentrated ammonium hydroxide was added until a pH of was obtained. Agitation of the mixture was set at 500 revolutions per minute (rpm) and the reaction mixture was purged with nitrogen. The stirring and nitrogen purge were maintained throughout the reaction period. The reaction mixture was allowed 5 to stir at room temperature for 15 minutes and then was heated to 75°C to initiate the reaction. The reaction became exothermic after 6 about 30 minutes, and after the exotherm had subsided, the batch was heated to for 12 hours. The reaction mixture was cooled to room temperature and filtered through a 16 mesh screen. The resulting suspension was found to be about 25% in solids, with the average size of the polymeric microspheres being micrometers (jm).
Example 2: Preparation of Microsphere Concentrate The material from Example 1 was allowed to stand overnight in a separatory funnel (approximately 8-12 hours). This resulted in the formation of two phases, wherein the upper phase was the microsphere concentrate and the lower phase was mother liquid. The mother liquid was drained off and discarded, and provided a fluid microsphere concentrate containing about 50% solids. When the mixture was allowed to separate for a longer time 1 6 hours), the microsphere concentrate contained approximately 70% solids.
Example 3 15 This example illustrates the methods by which the adhesives of this invention are formulated. To a container were added and stirred together 64.4 grams of the microsphere concentrate from Example 2, and 3.6 grams of "Rhoplex N580" binder (commercially available from Rohm and Haas). To this mixture was added 31 grams of a mixture of 30.9 grams deionized water and 0.9 grams of 20 "Surfynol 336" surfactant (commercially available from Air Products), slowly, while stirring. Finally, 1.0 grams of"Polyphobe 101" thickening agent (commercially available from Union Carbide) was added to the adhesive mixture, slowly, while stirring. The resulting adhesive composition was neutralized with ammonium hydroxide to a pH of at least 7.5. This adhesive had a solids content of approximately Example 4 This example illustrates the coating method by which the adhesives of this invention are tested. An adhesive, such as that described and formulated as in Example 3, was coated onto a silicone-coated fiberglass belt material with-sufficiently low surface energy as to be deemed a release material, using a knife coater at a coating orifice of between 2 and 4 mils. The initial determination 7 made was whether the adhesive formulations would "wet-out" this low-energy surface sufficiently so that the coated adhesive rather than "bead-up" before it dries. The adhesive formulations were dried at room temperature. Once dried, the adhesive formulations were evaluated as to the ease and completeness of transfer from the intermediate carrier belt. This was done by performing a "Belt Adhesion" test as described below. This test involved placing a wide strip of MagicTm Tape perpendicularly across a dried adhesive stripe (so that the ends of the tape strip are not in contact with the adhesive). The tape strip was then laminated to the dried adhesive stripe using finger pressure or a 4-lb roller once across the belt. The tape strip was then lifted offofthe belt, taking the dried adhesive with it. The force required to do this (using a Chatillion gauge or Instron machine) was measured. The thoroughness (cleanness) of the transfer was also noted. The adhesives described in Example 3 sufficiently wet out the surface of the low-energy silicone belt and did not bead-up before drying occurs (approximately 30 seconds). The force to remove the laminated strip of Magic T M Tape (the Belt Adhesion) was about 10 grams and the transfer was easy and complete.
Example
S
The adhesives listed in Table I were formulated as described in Example 3, 20 but different thickeners and surfactants were used in these formulations. Table 2 summarizes the results from Belt Adhesion tests performed as described in Example 4, for all the adhesives listed in Table 1. The adhesive described in SExample 3 is identified as Reviewing the data in Table 2, it can be seen that none of these other combinations of surfactants and thickeners provided the necessary adhesive properties such as sufficient wet-out of the low energy surface 30 secs) and easy, complete transfer of the dried adhesive (<10 grams, clean transfer). These additional adhesives further illustrate the novelty of the adhesives in this invention (as described by Example by showing the importance of choosing the correct surfactant-thickener combination.
Example 6 The adhesives listed in Table I were allowed to stand for 2 days with no jarring of the containers, to study the creaming/settling of the formulations.
8 Samples of the creamed/settled adhesives were taken from both the top and the bottom layers and tested for solids; the results are summarized in Table 1.
These results show that few surfactant/thickener combinations yield adhesives that have the unique quality of being more stable to creaming and settling. Table 3 shows that only adhesives 4B, 5B and 6C (Example 3) show minimal settling/creaming. Of these three adhesives, however, 4B and 5B do not meet the necessary performance criteria for these adhesives, as illustrated by the results in Table 2, and in Example In addition to these adhesives, modified adhesives were formulated to observe the effects of thickener alone, surfactant alone, and thickener and surfactant acting together. These adhesives were formulated as in Example 3, with the indicated modifications. Creaming/settling results for these modified adhesives are summarized in Table 4. Upon review of the data summarized in Table 4, a combination of the chosen thickener and surfactant (in this invention) S 15 provided these stabilizing characteristics.
Critical Surface Energy of Silicone Transfer Blts In addition to evaluating the adhesive formulations, the intermediate carrier belt was evaluated to determine the contribution of the belt on the transfer process of the adhesive formulations of the present invention. The critical surface 20 energy, Yc, for different silicone transfer belts was measured to determine if there existed a maximum surface energy for a transfer belt to successfully work in a sheet to sheet process, such as the one described in U.S.S.N. 08/196,490, filed February 15, 1994. Six different belt surfaces were measured.
Measurement ofge Zisman Plots can be used to determine critical surface energy values by plotting cos 0 (where 0 is the contact angle of a liquid) vs. YLv (where YLv is the surface tension of the same liquid from the literature). The y, is the point at which YLV equals 1.0. See Adhesion and Adhesives by A. Pocius and C. Dahlquist (1986,
ACS),
Four solvents with different surface tensions were selected: Solvent yc water 72.8 formamide 58-.2 diethyl phthalate 37.5 hexadecane 27.6 a.
Contact angles of these solvents on the 6 different belts were measured.
Zisman plots were made from this data and the graphs were extrapolated to find where Lv equals Belts Studied The six different belts studied and their properties are summarized in the following table. The belts all consist of a backing of some type, commercially available from J. P. Stevens Company, under the specified trade names.
Belt ID Belt Backing Coating Wet Transfer I, Side Out MSRG8 NA fiberglass Dow good poor 15.98 1523-18oz Coming (leaves 25630 white pattern) MTMP matte fiberglass Dow great great 17.55 side 3116 Coming 25630 white MTMP shiny fiberglass Dow none NA 17.62 side 3116 Silicone SL5000 MSRG6 NA fiberglass Dow good poor 17.71 1523-16 oz Coming (leaves 25630 white pattern) RI outside cotton silicone good poor 21.53 rubber R2 inside cotton silicone good better than 22.29 rubber outside *Difficult to measure because of heavy pattern of belt There did not appear to be a large difference between the critical surface energy of the two sides of the current belt. The matte side is the side presently used in the sheet to sheet process and the shiny side did not allow for adhesive wet-out. All belts with less-than-excellent wet-out have yc values of greater than 17.55, the yc value of the current belt that allows excellent wet-out of our adhesive (the yc value for MSRG8 is an estimate since the heavy belt pattern makes contact angle measurements difficult and often meaningless) but since the belts other than the non-wetting shiny side of the 3M belt have 7c values that are higher than the shiny side, it is difficult to ascertain the ideal yc for transfer belts in general.
Surfactants: Non-Ionic NISA acetylenic diol blend commercially available from Air Products under the trade name of Surfynole 336 NISB alkcyl phenoxy commercially available from poly(oxyalkyene) alkanol Rhone Poulenc under the tradename of Igepale CO-71 0 NISC mixture of fluorinated commercially available from polyoxethylene, ethanols and non-fluorinated 3M under the trade name of FC-1I70C Anionic ASA sodium dodecyl benzene commercially available from suiphonate Rhone Poulenc under the trade name of Rhodacal®D DS-4 ASB potassium'fluorinated alkyl commercially available from carboxylate 3M under the trade name of FC-129 ASC ammonium laurel sulphate commercially available from Henkel Corporation under the trade name of Standopol A Thickeners: TA xanthan gum commercially available from Kelco (a division of Merck) under the trade name of Keizan TB poly acrylic acid commercially available from Rohmn and Haas under the trade name of TC associative thickener, commercially available from *6 alkli-soluble, alklfiswellable urethane Union Carbide under the trade name of UCAR® Polyphobe® 101 Table 1 Percent Solids of Adhesives With Differ~ent Suifactant'Thickener Combinations Adhesive Exrample
IA
2A 3A 4A 6A lB 2B Surfactant
ASC
ASB
ASA
NISC
NISB
NISA
ASC
ASB
Parts by Weight 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 Thicicene Parts by r Weight
TA
TA
TA
TA
TA
TA
TB
Upper Layer Solids 54 43 21.8 47.7 49 .~3 76.7 40 35.2 Lower Layer Solids 0.6 0.02 11.4 9.8 7.7 8 23.5 -100
ASA
NISC
NISB
NISA
ASC
ASB
ASA
NISC
NISB
NISA
37.2 39.7 39 73 56.5 67.1 57 64.5 58.27 37 38.6 6 74 6 6 6.6 22.4 Table 2 Wet-out and Belt Adhesion Test Results of Different Adhesive Formulations Example Transfer Time to Bead <3 sec >30 sec <8 sec <13 sec <5 sec <3 sec <8 sec sec; sec 30 sec <8 sec sec <2 sec sec <3 sec <3 sec sec Belt Adhesion Adhesive clean fairly clean clean 15-20 9 stnngy clean sog fairly clean v. clean Table 3 Percent Solids of Upper and Lower Phases of Different Waterbased Adhesives solids tested after 1 day and after 5 days to allow for settling/creaming) Adhesive SampleDescription,Upper/Lower,%solids-Iday,%solids-Sday 1,6C (Example 3),Upper,34.54,58.27 ,,Lower,28.55,22.4 2,no, thickener (Example 3 without TC),Upper,67.91,70.1 1 ,,Lower,8.3,6.74 3,no surfactant Upper 61.91 65.43 (Example 3Lowr without NISA) less thickenerUpper (Example MLower 4.7 46.49 5.27 6.23 67.95 6.72 I' \PDOCS\GRS\SPECI\680690.PS 24/2/00 -12with 0.5 wto/o TC) less surfactantUpper 45.89 66.99 (Example 3Lower 45.28 3.43 with 0.5 wt% NISA) 6 no thickenerUpper 75.28 68.28 no surfactantLower 4.71 6.12 (Example 3 without TC or NISA) Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and principles of this invention, and it should be understood that this invention is not be unduly limited to the illustrative embodiments set forth hereinabove. All publications and patents are incorporated herein by reference to the same extent as if each individual publication or patent was specifically and 15 individually indicated to be incorporated by reference.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but note the exclusion of any other integer or step or group of integers or steps.
Claims (2)
- 2. The water based adhesive composition according to claim 1 wherein the overall solids ranges from 20-60/%. 15 3. The water based adhesive composition according to claim 1 wherein the composition comprises:
- 60-65 weight of polymeric microspheres, 0.01-25 weight of acrylic latex binder, 0.01-5.0 weight of surfactant, 20 0.0 1 -3.0 weight of a thickener, and sufficient amount of de-ionized water, such that the weight is equal to 100 weight 4. The water based adhesive composition according to claim 1 comprising: 60-65 weight of polymeric microspheres, 2-5 weight of acrylic latex binder, 0. 1- 1. 5weight of surfactant, 0. 1- 1. 5 weight% of a thickener, and sufficient amount of de-ionized water, such that the weight is equal to 1 00 weight 14 The water based adhesive composition according to claim 1 wherein the adhesive: wet-outs a low energy intermediate carrier belt, has a viscosity in the range of 400 to 100 centipoise, such that the adhesive does not flow down the low energy intermediate carrier belt, and is removable and repositionable. 6. A waterbased adhesive composition, a method for its manufacture and uses thereof substantially as hereinbefore described especially with reference to the Examples. DATED this 24th day of February 2000 MINNESOTA MINING AND MANUFACTURING COMPANY o By their Patent Attorneys DAVIES COLLISON CAVE
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU19492/00A AU1949200A (en) | 1995-10-17 | 2000-02-25 | Waterbased microsphere adhesives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US543958 | 1995-10-17 | ||
AU19492/00A AU1949200A (en) | 1995-10-17 | 2000-02-25 | Waterbased microsphere adhesives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU69168/96A Division AU6916896A (en) | 1995-10-17 | 1996-09-06 | Water-based microsphere adhesives |
Publications (1)
Publication Number | Publication Date |
---|---|
AU1949200A true AU1949200A (en) | 2000-06-01 |
Family
ID=3708980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU19492/00A Abandoned AU1949200A (en) | 1995-10-17 | 2000-02-25 | Waterbased microsphere adhesives |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU1949200A (en) |
-
2000
- 2000-02-25 AU AU19492/00A patent/AU1949200A/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5877252A (en) | Waterbased microsphere adhesives for sheet-to-sheet coating process | |
US5620796A (en) | Acrylic emulsion adhesive, method of production, and adhesive tape or sheet, and surfacer | |
EP0439941B1 (en) | Aqueous, repositionable, high peel strength pressure sensitive adhesives | |
EP0419020B1 (en) | Pressure-sensitive adhesive comprising hollow tacky microspheres and macromonomer-containing binder copolymer | |
AU720856B2 (en) | Stabilized adhesive microspheres | |
EP0371635B1 (en) | Hollow acrylate polymer microspheres | |
JP5320683B2 (en) | Water-dispersed acrylic pressure-sensitive adhesive composition and double-sided pressure-sensitive adhesive tape | |
US20170283669A1 (en) | Pressure-sensitive adhesive containing nanocrystalline cellulose | |
US5049608A (en) | Acrylic pressure sensitive adhesive compositions having improved low temperature adhesion | |
EP0596642A2 (en) | Aqueous release coating composition | |
US5221706A (en) | Tackifiable acrylic emulsion pressure-sensitive adhesive having excellent low-temperature performance | |
US20030109630A1 (en) | Microsphere adhesive formulations | |
JPS61261382A (en) | Releasable self-adhesive composition | |
EP0466911B1 (en) | Tackifiable acrylic emulsion pressure-sensitive adhesive having excellent low-temperature performance | |
JP6185303B2 (en) | Emulsion-type pressure-sensitive adhesive composition, emulsion-type pressure-sensitive adhesive, emulsion-type peelable pressure-sensitive adhesive, and pressure-sensitive adhesive sheet using the same | |
AU1949200A (en) | Waterbased microsphere adhesives | |
MXPA98002921A (en) | Adhesives of microspheres, based on a | |
JPH07102229A (en) | Self-adhesive composition | |
JPS61101555A (en) | Aqueous pressure-sensitive adhesive | |
JPH06322355A (en) | Water-soluble or water-dispersible pressure-sensitive adhesive composition and tacky tape using the same | |
JP2001200235A (en) | Thermosensitive adhesive composition and manufacturing method thereof and thermosensitive adhesive sheet or label | |
JPH1046118A (en) | Pressure-sensitive adhesive tape for re-releasable packaging | |
JPH04248888A (en) | Tacky adhesive composition and tacky adhesive sheet | |
JPH0532947A (en) | Tacky adhesive composition | |
JPS62263273A (en) | Adhesive fine particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4 | Application lapsed section 142(2)(d) - no continuation fee paid for the application |