AT526635A1 - Formgebungsverfahren zum Herstellen eines Formteils - Google Patents
Formgebungsverfahren zum Herstellen eines Formteils Download PDFInfo
- Publication number
- AT526635A1 AT526635A1 ATA50843/2022A AT508432022A AT526635A1 AT 526635 A1 AT526635 A1 AT 526635A1 AT 508432022 A AT508432022 A AT 508432022A AT 526635 A1 AT526635 A1 AT 526635A1
- Authority
- AT
- Austria
- Prior art keywords
- starting material
- monomer
- polymer starting
- unit
- polymer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- 230000008569 process Effects 0.000 title claims description 24
- 229920000642 polymer Polymers 0.000 claims abstract description 117
- 239000007858 starting material Substances 0.000 claims abstract description 106
- 239000000178 monomer Substances 0.000 claims abstract description 89
- 238000000465 moulding Methods 0.000 claims abstract description 24
- 238000001746 injection moulding Methods 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 3
- 238000002347 injection Methods 0.000 claims description 52
- 239000007924 injection Substances 0.000 claims description 52
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 24
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 24
- 238000007872 degassing Methods 0.000 claims description 23
- 238000007493 shaping process Methods 0.000 claims description 17
- 230000006837 decompression Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- -1 polyethylene terephthalate Polymers 0.000 claims description 8
- 229920000728 polyester Polymers 0.000 claims description 6
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 4
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 4
- 229920001230 polyarylate Polymers 0.000 claims description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 4
- 229920002215 polytrimethylene terephthalate Polymers 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000002776 aggregation Effects 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims description 3
- 239000012764 mineral filler Substances 0.000 claims description 3
- 239000002667 nucleating agent Substances 0.000 claims description 3
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 claims description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 2
- 239000000443 aerosol Substances 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 150000002009 diols Chemical class 0.000 claims description 2
- CAPAZTWTGPAFQE-UHFFFAOYSA-N ethane-1,2-diol Chemical compound OCCO.OCCO CAPAZTWTGPAFQE-UHFFFAOYSA-N 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 20
- 239000000047 product Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 9
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 241000237858 Gastropoda Species 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001634 Copolyester Polymers 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000034659 glycolysis Effects 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013502 plastic waste Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101100258233 Caenorhabditis elegans sun-1 gene Proteins 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 239000010817 post-consumer waste Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/18—Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
- B29C45/1866—Feeding multiple materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0001—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/47—Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
- B29C45/50—Axially movable screw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/7646—Measuring, controlling or regulating viscosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/77—Measuring, controlling or regulating of velocity or pressure of moulding material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/18—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
- C08J11/22—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
- C08J11/24—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/18—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
- C08J11/22—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
- C08J11/26—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76003—Measured parameter
- B29C2945/7605—Viscosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76494—Controlled parameter
- B29C2945/76498—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76655—Location of control
- B29C2945/76658—Injection unit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76929—Controlling method
- B29C2945/76993—Remote, e.g. LAN, wireless LAN
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
- B29K2067/003—PET, i.e. poylethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0002—Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0055—Gaseous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0094—Condition, form or state of moulded material or of the material to be shaped having particular viscosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Formgebungsverfahren zum Herstellen eines Formteils aus einem Polymer-Ausgangsmaterial (1) in einer Formgebungsmaschine (2), insbesondere einer Spritzgießmaschine, wobei das Polymer- Ausgangsmaterial (1) plastifiziert und/oder aufgeschmolzen wird und dem Polymer-Ausgangsmaterial (1) zumindest ein Monomer (2) im gasförmigen Aggregatszustand zugeführt wird.
Description
Die vorliegende Erfindung betrifft ein Formgebungsverfahren gemäß den Merkmalen des Oberbegriffs des Anspruchs 1, eine Formgebungsmaschine gemäß den Merkmalen des Oberbegriffs des Anspruchs 15 sowie einem Formteil gemäß den Merkmalen des
Oberbegriffs Anspruchs 16.
Der Stand der Technik beim Recycling von Kunststoffabfällen umfasst viele verschiedene Technologien. Besonders bei vielfach eingesetzten Kunststoffen wie Polyethylenterephthalat (PET) wird die Wiederverwertung aus Ökologischen sowie ökonomischen Gründen immer wichtiger. Sogenanntes Post-Consumer PET oder allgemein Post-Consumer-Waste (z.B. gebrauchte Getränkeflaschen) wird dabei gesammelt, gereinigt und zu kleinen Stücken, meist Regranulat oder Flakes, verarbeitet. Diese können dann zusammen mit neuen PET-Material gemischt werden, um Produkte aus
teilweise recyceltem PET (rPET) herzustellen.
PET entsteht ursprünglich durch die Polykondensation aus Monoethylenglykol (MEG) und Terephthalsäure (TPA) oder durch Umesterung aus Dimethylterephthalat. Das heißt MEG und TPA sind zum Aufbau von PET geeignete Monomere und damit Grundbestandteile von PET. Diese beiden Monomere reagieren in einer Gleichgewichtsreaktion miteinander zum PET, wobei die Prozessführung dieser Gleichgewichtsreaktion durch die Zugabe oder Wegnahme von Produkten, Edukten und/oder Zwischenprodukten sowie durch Prozessparameter wie Temperatur oder Druck
beeinflusst werden kann.
Gebrauchte Kunststoffartikel wie beispielsweise PET-Flaschen können wiederaufbereitet werden, indem diese Produkte gewaschen und zerkleinert werden. Die daraus entstehenden Regranulate oder Flakes können dann in sogenannte Solid-State- oder Liquid-StateReaktoren unter Ausschluss von Sauerstoff und Wasser,
beispielsweise im Vakuum, auf < 230 °C (solid state) oder
des Polymerwerkstoffs.
Im Gegensatz zu Anwendungen, bei denen eine erhöhte Viskosität wünschenswert ist, können Polymere wieder aufgespalten und/oder
deren Viskosität reduziert werden. Ein Verfahren hierzu ist die
bekannte Glykolyse von PET (Lechleitner, A,, Schwabl, D.+, Schubert, T, et al, Chemisches Rezyoling von gemischten Kunststoffabfällen als ergänzender Recvyolingpfad zur Erhöhung der Recvalingquote, Österr Wasser- und Abfallw 72, 47-60 (2020).
A ne AREA ÖUT A OU Se DR OO — a EN
SO 7 - A EAN ANTTEO am zZ SO 1 ey wrryY 15 FO m NAT ANAL EDEN NEPAL
3-w). Hier wird bei
Temperaturen von 180 °C bis 240 °C und durch die Zugabe eines Glykols das PET-Material aufgespalten. Dabei diffundiert das Glykol in die Struktur des Polymers, welche anschließend aufguillt und das Glykol mit der Esterbindung reagiert. Dieser Mechanismus wird durch eine große, spezifische Oberfläche, etwa bei stark zerkleinertem Einsatzmaterial wie Regranulat oder
Flakes, begünstigt.
In Formgebungsverfahren zum Herstellen von dünnwandigen Formteilen aus rPET kann eine gezielte Viskositätsreduktion sehr wichtig sein. Eine höhere Viskosität führt zur Notwendigkeit höherer Spritzdrücke, die wiederum maschinenbaulich nur schwer umzusetzen sind, zu hohen Temperaturentwicklungen und folglich zu Materialschädigungen. Daher ist es von Vorteil, die Viskosität von Flaschenabfällen aus rPET mit einer typischen, intrinsischen Viskosität (IV-Wert) von 0,7 dl/g bis 0,8 dl/g zu senken, um dünnwandige Spritzprodukte mit Wandstärken < 1,5 mm
herstellen zu können.
entsprechend geringer Viskosität möglich.
PET wird außerdem bei Temperaturen > 300 °C für ausreichende Zeit unkontrolliert abgebaut. Dieser Abbau wird noch verstärkt bei Vorhandensein von Wasser und/oder Sauerstoff. Dies führt zu einem steigenden Gehalt an Acetaldehyd als Spaltprodukt und damit zu schlechteren mechanischen Eigenschaften und/oder zu
einer unerwünschten Gelbfärbung.
Es ist somit vorteilhaft, den IV-Wert des Polymer-Materials auf 0,5 dl/g bis 0,6 dl/g zu senken, um den Spritzdruck < 2400 sowie die Temperatur < 300 °C zu halten und vollständig ausgespritzte
Qualitätsprodukte zu erzeugen.
Um eine Viskositätsreduktion zu bewerkstelligen, wird beispielsweise ein Monomer wie MEG einem rPET-Ausgangsmaterial in einem drucklosen Bereich, vorzugsweise im Massetrichter durch Vormischung oder im Anschluss zu einer Entgasungszone im Extruder, beigemengt. Es wurde bereits nachgewiesen, dass die Zugabe von 2 Gew.-% bis 3 Gew.-% Glykol zu einer signifikanten Reduktion der Viskosität führt. Wenn MEG im fließfähigen Zustand (> 270 °C) statt durch eine Vormischung zu einer rPET-Schmelze hinzugegeben wird, kann es bei abgestimmten Konzentrationsverhältnissen zu einer besseren Viskositätsreduktion nach der Art einer Glykolyse von PET
kommen. Hierzu wurde kürzlich ein Artikel in der Zeitschrift
Kunststoffe veröffentlicht (Keilbach, F.-X., Prizinitzki D. Mit
Verlag München, 1 (2022).
ee —der-
SE aa LA Tr De Ta ce mM sy RC EA A A KA EEE MORAL AL CA
Jedoch zeigt sich bei Glykol-Mengen > 5%, dass es zu einer Dampfentwicklung und folglich zur Gefahr einer Entflammung (Flammpunkt 111 °C, Zündtemperatur 410 °C) kommen kann. Der Siedepunkt von Ethylenglykol liegt bei 197 °C, die Verarbeitungstemperatur von PET üblicherweise im Bereich 270 °C
bis 290 °C.
Neben dem Gefahrenpotential ergibt sich ein weiterer Nachteil durch die unzureichende Homogenisierung, das heißt die gleichmäßige Einmischung und Verteilung, des Monomers in dem Polymer-Ausgangsmaterial. Die Verteilung des Monomers muss verbessert werden, um eine gleichmäßiger wirkende und besser
kontrollierte Viskositätsreduktion im Material zu erreichen.
Die Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren bereitzustellen, das den oben genannten Stand der Technik in Bezug auf dessen Nachteile verbessert. Es soll somit ein Verfahren bereitgestellt werden, das eine bessere Verteilung der gewünschten Viskositätsreduktion eines Polymer-
Ausgangsmaterials bewirkt.
Hinsichtlich der vorliegenden Erfindung wird dies durch die Merkmale des Anspruchs 1 gelöst, nämlich durch Bereitstellung eines Formgebungsverfahrens zum Herstellen eines Formteils aus einem Polymer-Ausgangsmaterial in einer Formgebungsmaschine, insbesondere einer Spritzgießmaschine, wobei das PolymerAusgangsmaterial plastifiziert und/oder aufgeschmolzen wird und dem Polymer-Ausgangsmaterial zumindest ein Monomer im
gasförmigen Aggregatszustand zugeführt wird.
Polymer-Ausgangsmaterial zugeführt wird.
Durch das gasförmige Zuführen des Monomers kommt es zu einer besseren und gleichmäßigeren Verteilung und Einmischung des Monomers innerhalb des Polymer-Ausgangsmaterials. Dadurch kommt es in weitere Folge zu einer homogeneren Viskositätsreduktion innerhalb des Polymer-Ausgangsmaterials sowie damit einhergehend zu einer Qualitätssteigerung des Polymer-Ausgangsmaterials und
eines damit hergestellten Formteils.
Auf diese Weise können beispielsweise dünnwandige Spritzprodukte aus r-PET, leichter, effizienter, mit Hilfe geringerer Injektionsdrücke bzw. Spritzdrücke, in besserer Qualität, mit weniger Ausschussteilen, in kürzerer Zeit und/oder
kostengünstiger produziert werden.
Es kann bevorzugt vorgesehen sein, dass das zumindest eine Monomer in einem abgeschlossenen, insbesondere in einem vor Sauerstoff geschützten, Behälter erwärmt und dem plastifizierten und/oder aufgeschmolzenen Polymer-Ausgangsmaterial zugeführt wird, insbesondere in das plastifizierte und/oder aufgeschmolzene Polymer-Ausgangsmaterial injiziert wird. So können Leckagen und die Bildung eines entzündbaren Luft-Gas-
Gemisches weitgehend vermieden werden.
Es kann auch vorgesehen sein, dass mehr als eine Art von Polymer-Ausgangsmaterial Verwendung findet. Beispielsweise kann bei Verwendung des Polymer-Ausgangsmaterials PET zusätzlich auch
noch ein zweites Polymer-Ausgangsmaterial wie beispielsweise
Aufbau der verwendeten Polymer-Ausgangsmaterialien geeignet ist.
Insbesondere im Fall der beiden Polymer-Ausgangsmaterialien PET und/oder PEN aber auch bei anderen Polymer-Ausgangsmaterialien kann MEG ein passendes Monomer für mehr als ein Polymer-
Ausgangsmaterials sein.
Es kann dabei vorgesehen sein, dass das Monomer zuerst in einem vorgelagerten Schritt auf eine bestimmte Temperatur, vorzugsweise > 200 °C, erwärmt und/oder mit einem bestimmten Druck komprimiert wird, bevor es im gasförmigen Aggregatszustand
dem Polymer-Ausgangsmaterial zugeführt wird.
Ein Polymer ist ein aus Makromolekülen bestehender Stoff. Synthetische Polymere sind dabei Stoffe, die durch Polyreaktionen, das heißt mit anderen Worten durch Polymerisationsreaktionen wie Kettenpolymerisation, Polyaddition
oder Polykondensation, entstehen.
Ein Monomer ist ein kleines, reaktionsfähiges Molekül, das als
Grundbaustein für Makromoleküle und/oder Polymere geeignet ist.
Die Formulierung „dem Polymer-Ausgangsmaterial wird zumindest ein Monomer im gasförmigen Aggregatszustand zugeführt“ kann wie
folgt mit anderen Worten ausgedrückt werden:
Im gasförmigen Aggregatszustand befindet sich das zumindest eine Monomer, wenn der Siedepunkt des zumindest einen Monomers
erreicht und/oder überschritten wird. Das heißt die
7738
Das heißt das zumindest eine Monomer liegt als Gas vor.
„Zuführen“ heißt in diesem Zusammenhang, dass das zumindest eine Monomer in Kontakt mit dem Polymer-Ausgangsmaterial gebracht wird. In einer Formgebungsmaschine bietet es sich daher in einem bevorzugten Ausführungsbeispiel an, dass das zumindest eine Monomer in einen Massezylinder eingebracht wird, in dem sich das Polymer-Ausgangsmaterial befindet. „Zuführen des zumindest einen Monomers im gasförmigen Aggregatszustand“ kann in diesem Ausführungsbeispiel heißen, dass das zumindest eine Monomer als Gas in den Massezylinder injiziert wird und infolgedessen mit dem plastifizierten und/oder aufgeschmolzenen PolymerAusgangsmaterial in Kontakt gebracht wird. Dieser Kontakt kann durch die Drehbewegung einer Schnecke, die das Stoffgemisch bestehend aus gasförmigem Monomer sowie plastifiziertem und/oder aufgeschmolzenem Polymer-Ausgangsmaterial vermischt,
vorzugsweise homogenisiert, verstärkt werden.
An dieser Stelle wird noch explizit darauf hingewiesen, dass die Formulierung „dem Polymer-Ausgangsmaterial wird zumindest ein Monomer im gasförmigen Aggregatszustand zugeführt“ heißt, dass das zumindest eine Monomer im Moment des Zuführens zum PolymerAusgangsmaterial, konkret beim Einführen in einen Massezylinder einer Plastifiziereinheit oder eines Spritzaggregats und/oder beim ersten In-Kontakt-Bringen und/oder beim ersten In-KontaktTreten mit dem Polymer-Ausgangsmaterial, im Wesentlichen im gasförmigen Aggregatszustand vorliegt. Es ist darüber hinaus denkbar, dass das zumindest eine Monomer vor oder nach dem Zuführen zumindest teilweise oder vollständig einen anderen
Aggregatszustand einnimmt.
Plastifiziereinheit gleichzeitig auch um ein Spritzaggregat.
Die Schnecke kann eine Plastifizierschnecke und/oder eine Schubschnecke sein. Plastifizierschnecken sind im Massezylinder drehbar gelagert und angetrieben. Beispielsweise in einem Extruder werden Plastifizierschnecken verwendet, welche axial fix im Massezylinder verbaut sind. Schubschnecken sind nicht nur drehbar sondern auch axial verschiebbar im Massezylinder angeordnet und angetrieben. Mit Schubschnecken können somit auch
Einspritzvorgänge realisiert werden.
Ein Einspritzaggregat ist eine Plastifiziereinheit, die in der Lage ist Polymer-Ausgangsmaterial, vorzugsweise mit einem
bestimmten Druck in ein Formgebungswerkzeug, einzuspritzen.
Die Schnecke einer Plastifiziereinheit kann verschiedene Zonen
aufweisen, die nachfolgend erklärt werden: Eine Einzugszone ist Jener Bereich einer Schnecke einer
Plastifiziereinheit, in dem das Polymer-Ausgangmaterial von der
Schnecke aufgenommen und eventuell bereits begonnen wird, dieses
aufzuschmelzen.
Eine Kompressionszone ist Jener Bereich einer Schnecke einer Plastifiziereinheit, in dem das Polymer-Ausgangsmaterial plastifiziert und/oder aufgeschmolzen sowie verdichtet wird. Der Füllgrad im Schneckengang nimmt infolgedessen zu. Der Druck des plastifizierten und/oder aufgeschmolzenen PolymerAusgangsmaterials nimmt in der Kompressionszone meist kontinuierlich zu. Es kann entlang einer Schnecke mehr als eine
Kompressionszone geben.
Eine Dekompressionszone ist jener Bereich einer Schnecke einer Plastifiziereinheit, in dem der Druck des plastifizierten und/oder aufgeschmolzenen Polymer-Ausgangsmaterials geringer ist als in einem anderen Bereich der Schnecke. Es kann entlang einer
Schnecke mehr als eine Dekompressionszone geben.
Bevorzugt weisen Dekompressionszonen im Vergleich zu Kompressionszonen eine größere Gangtiefe und/oder eine größere Gangsteigung zumindest eines Schneckengangs - vorzugsweise aller
Schneckengänge - der Schnecke auf.
Eine Mischzone ist jener Bereich einer Schnecke einer Plastifiziereinheit, in dem spezielle Mischelemente auf der Schnecke vorgesehen sind, wodurch sich die Mischleistung erhöht. Dies ist besonders bei homogenen Einmischungen von Zusatzstoffen, wie beispielsweise bei einem Monomer, wichtig. Es
kann entlang einer Schnecke mehr als eine Mischzone geben.
Eine Entgasungszone ist jener Bereich einer Schnecke einer Plastifiziereinheit, in dem der Füllgrad im Schneckengang unter 100 % Liegt und somit flüchtige Bestandteile der Schmelze in
Form von Gas entweichen können. Das Entweichen erfolgt meistens
10738
über einen Entgasungsstutzen. Es kann entlang einer Schnecke
mehr als eine Entgasungszone geben.
Eine Meteringzone ist jener Bereich einer Schnecke einer Plastifiziereinheit, in dem das plastifizierte und/der aufgeschmolzene Polymer-Ausgangsmaterial homogenisiert, komprimiert und anschließend durch eine Auslassöffnung weitergeführt wird. Im Fall eines Einspritzaggregats kann das plastifizierte und/der aufgeschmolzene Polymer-Ausgangsmaterial durch eine axial beweglichen Schnecke noch weiter komprimiert und anschließend mit einem bestimmten Spritzdruck durch eine
Einspritzdüse in ein Formgebungswerkzeug eingespritzt werden.
Ein Niederdruckbereich ist ein Bereich in einer Plastifiziereinheit und/oder eines Einspritzaggregats, in dem ein niederer Druck als in einem anderen Bereich der Plastifiziereinheit und/oder des Einspritzaggregats herrscht. Bevorzugt kann ein solcher Niederdruckbereich einen Druck von unter 5 bar aufweisen. Ein solcher Bereich kann dadurch entstehen, dass das Kanalvolumen in einer Plastifiziereinheit und/oder einem Einspritzaggregats größer ist als das geförderte Volumen eines plastifizierten und/oder aufgeschmolzenen PolymerAusgangsmaterials. Vorzugsweise erstreckt sich ein solcher Niederdruckbereich über eine Länge von einmal bis zweimal die Länge des Schneckendurchmessers in diesem Bereich. Es kann
entlang einer Schnecke mehr als einen Niederdruckbereich geben. Zu bemerken ist, dass ein Niederdruckbereich gleichzeitig eine Dekompressionszone, eine Entgasungszone und/oder eine
Einzugszone sein kann.
Eine erfindungsgemäße Vorrichtung kann durch ihren Einsatz bei
bereits bekannten Ausführungsformen des Standes der Technik, wie
beispielsweise in dieser Beschreibung offenbart, ihren Einsatz
finden und nachträglich installiert werden.
Weitere vorteilhafte Ausführungsformen der Erfindung werden in
den abhängigen Ansprüchen definiert.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass das Polymer-Ausgangsmaterial von einer Plastifiziereinheit
in ein Spritzaggregat überführt wird.
Es kann dabei vorgesehen sein, dass das Polymer-Ausgangsmaterial vor, während und/oder nach dem Zuführen des Monomers von einer
Plastifiziereinheit in ein Spritzaggregat überführt wird.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass das Monomer in einem Niederdruckbereich, vorzugsweise in eine Dekompressionszone, in eine Entgasungszone und/oder in eine Einzugszone, der Plastifiziereinheit und/oder des Spritzaggregats zu dem Polymer-Ausgangsmaterial zugeführt wird, vorzugsweise wobei ein Niederdruckbereich einen Bereich mit
einem Druck weniger als 5 bar darstellt.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass der Niederdruckbereich, vorzugsweise die Dekompressionszone, die Einzugszone und/oder die Entgasungszone, der Plastifiziereinheit und/oder des Spritzaggregats einen Bereich niederen Drucks, vorzugsweise über eine Länge von einem bis zu zwei Schneckendurchmessern, aufweist, in dem durch Atmosphärendruck oder Unterdruck eine Entgasung des Polymer-
Ausgangsmaterials bewirkt und/oder das Monomer zugeführt wird.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass das Monomer in eine Mischzone der Plastifiziereinheit
und/oder des Spritzaggregats zugeführt wird.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass die Plastifiziereinheit und/oder das Spritzaggregat mit einer Schubschnecke ausgestattet ist, vorzugsweise die in einem Niederdruckbereich, vorzugsweise in einer Dekompressionszone, in einer Einzugszone und/oder in einer Entgasungszone, teilgefüllt
ist.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass das Polymer-Ausgangsmaterial vor, während und/oder nach dem
Zuführen des Monomers mit einem Filter filtriert wird.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass die Viskosität des Polymer-Ausgangsmaterials vor, während und/oder nach dem Zuführen des Monomers mit zumindest einem Rheometer an der Formgebungsmaschine, insbesondere an der Spritzgießmaschine, gemessen wird, wobei das zumindest eine Rheometer nach der Plastifiziereinheit, vorzugsweise zwischen der Plastifiziereinheit und der Schließeinheit und/oder zwischen der Plastifiziereinheit und dem Spritzaggregat und/oder zwischen
dem Spritzaggregat und der Schließeinheit, angeordnet ist.
Es könnte weiters in einem besonders bevorzugten Ausführungsbeispiel vorgesehen sein, dass durch die Messwerte des Rheometers oder eines anderen Messgeräts das Zuführen des Monomers gesteuert und/oder geregelt wird. So kann beispielsweise bei einer zu niedrigen Viskosität, gemessen nach dem Zuführen des Monomers, eine geringere Menge an zugeführtem Monomer und vice versa eingestellt werden. Andererseits ist es ebenfalls denkbar mit Hilfe einer vor dem Zuführen des Monomers gemessenen Viskosität und/oder korrelierenden Größe die
Zuführparameter des Monomers zu steuern und/oder zu regeln.
Sämtliche Messgrößen vor, während und/oder nach dem Zuführen des Monomers können zur Prozessüberwachung, Prozesssteuerung und/oder Prozessregelung herangezogen werden. Ein Adaptieren der Menge, der Temperatur und/oder des Druckes des zugeführten Monomers in das Polymer-Ausgangmaterial und/oder des PolymerAusgangmaterials kann in einem bevorzugten Ausführungsbeispiel während des Betriebes überwacht, gesteuert und/oder geregelt
werden.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass die Viskosität des Polymer-Ausgangsmaterials nach dem Zuführen des Monomers eine intrinsische Viskosität von höchstens 0,8 dl/g, insbesondere 0,4 dl/g bis 0,7 dl/g, insbesondere
0,5 dl/g bis 0,6 dl/g aufweist.
Die intrinsische Viskosität kann dabei beispielsweise laut Norm
DIN EN ISO 1628-5:2015-05 gemessen werden.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass die zugeführte Menge des Polymer-Ausgangsmaterials und/oder
des Monomers gemessen, gesteuert und/oder geregelt wird.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass das Polymer-Ausgangsmaterial ein Polykondensat, insbesondere ein Polyester, insbesondere Polyethylenterephthalat (PET), Polytrimethylenterephthalat (PTT), Polybutylenterephthalat (PBT), Polylactid (PLA), Polyhydroxybutyrat (PHB), Polyethylennaphthalat (PEN), Polycarbonat (PC), Polyestercarbonat (PEC) und/oder Polyarylat (PAR) ist.
In einem weitere Ausführungsbeispiel kann vorgesehen sein, dass das Polymer-Ausgangsmaterial ein Copolymer, insbesondere ein
Copolykondensate, vorzugsweise ein Copolvester ist. Ein
Copolymer ist dabei ein Polymer, das aus zwei oder mehr verschiedenartigen Monomeren aufgebaut ist. Analog dazu ist ein Copolyester ein Polyester, der neben den zwei zum Aufbau dieses Polyesters notwendigen Monomeren zumindest ein anderes Monomer beinhaltet. Beispielsweise kann ein Copolyester ein modifiziertes PET sein, bei dem neben den für den PET-Aufbau notwendigen Monomeren Terephthalsäure und Ethylenglykol auch noch weitere Monomere wie Isophthalsäure und/oder 1,4-
Cyclohexandimethanol eingebaut werden.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass das Monomer zum Aufbau des Polymer-Ausgangsmaterials geeignet ist und zumindest eine Hydroxylgruppe, Carboxvylgruppe, Organyloxycarbonylgruppe und/oder eine Halogencarbonylgruppe aufweist, vorzugsweise ein Diol oder eine Hydroxycarbonsäure oder eine Dicarbonsäure, insbesondere Ethylenglykol (1,2Ethandiol), 1,3-Propandiol, 1,4-Butandiol, 2-Hydroxypropansäure
und/oder 3-Hydroxybutansäure, ist.
Wird ein zum Aufbau des Polymer-Ausgangsmaterials geeignetes Monomer ohne weitere Bestandteile, das heißt ohne weitere Fremdbestandteile, verwendet, werden die Polymerketten des Polymer-Ausgangsmaterials gekürzt und somit dessen Viskosität reduziert. Werden neben dem Monomer weitere Bestandteile hinzugeführt, können neben einer Kürzung der Polymerketten auch andere chemische Reaktionen und/oder werkstoffliche Veränderungen bewirkt werden. Die Modifizierung eines PolymerAusgangsmaterials ist in keiner Art und Weise darauf beschränkt nur durch das Zuführen eines Monomers, eine Viskositätsverringerung zu bewirken. Jegliche Materialmodifikation, die neben dem erfindungsgemäßen Formgebungsverfahren denkbar ist, kann zusätzlich und ergänzend
implementiert werden.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass ein Gasgemisch aus Monomer und Inertgas als Schleppmittel, vorzugsweise Stickstoff und/oder Kohlenstoffdioxid, zugeführt
wird.
Bei einem solchen Ausführungsbeispiel kann durch ein Gasgemisch aus einem Monomer und einem Treibgas wie Stickstoff eine Formgebungsmaschine und ein Formgebungsverfahren bereitgestellt werden, bei dem die Viskosität des Polymer-Ausgangsmaterials gezielt verändert wird und gleichzeitig ein Aufschäumen bewirkt
wird.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass ein Gemisch aus Monomer und einem Nukleierungsmittel, vorzugsweise mineralischen Füllstoffen und/oder sich vom Polymer-Ausgangsmaterial unterscheidende Polymer-Materialien,
als Gasgemisch und/oder als Aerosol zugeführt wird.
Manche Verpackungen aus dem Lebensmittelbereich werden entweder bei bis zu 100 °C befüllt oder heiß sterilisiert, das heißt kurzzeitig bis zu 120 °C erwärmt. PET besitzt eine Glasübergangstemperatur von 70 °C und hält im amorphen Zustand dieser thermischen Belastung nicht stand. Daher werden derartige Produkte nach dem Stand der Technik nukleiert, wodurch sich kristalline Bereiche bilden, die erst bei 250 °C bis 260 °C schmelzen. Eine unkontrollierte Kristallisation führt leicht zur Versprödung der Produkte, weshalb eine langsamere Kühlung im Spritzgießwerkzeug nicht den erwünschten Effekt hat. Als Nukleierungsmittel werden beispielsweise mineralische Füllstoffe wie Kreide oder Fremdkunststoffe wie Polyethylen (PE) in geringen Mengen verwendet. Es gibt auch speziell abgestimmte Masterbatches zur Erzielung einer möglichst großen Zahl an
keimbildenden Stellen und fein verteilten Sphärolithen.
Weiters wird Schutz begehrt für eine Formgebungsmaschine, insbesondere eine Spritzgießmaschine, insbesondere eingerichtet zum Durchführen eines Formgebungsverfahrens nach einem der vorangegangenen Ansprüche, zum Herstellen eines Formteils aus einem Polymer-Ausgangsmaterial mit einer Plastifiziereinheit und/oder eines Spritzaggregats zum Plastifizieren, zum Aufschmelzen und/oder zum Einspritzen des PolymerAusgangsmaterials sowie mit einer Zuführvorrichtung zum Zuführen zumindest eines Monomers im gasförmigen Aggregatszustand zum
Polymer-Ausgangsmaterial.
Weiters wird Schutz begehrt für ein Formteil, insbesondere Spritzgießerzeugnis, welches nach einem erfindungsgemäßen
Formgebungsverfahren hergestellt wird.
In einem bevorzugten Ausführungsbeispiel kann vorgesehen sein, dass das Formteil, insbesondere Spritzgießerzeugnis, ein Polymererzeugnis ist und das Polymererzeugnis dünnwandig ist, vorzugsweise eine Wandstärke von unter 1,5 mm, vorzugsweise
unter 1 mm aufweist.
Unter Formgebungsmaschinen können Spritzgießmaschinen, Spritzpressen, Pressen und dergleichen verstanden werden. Auch Formgebungsmaschinen, bei welchen die plastifizierte Masse einem
geöffneten Formwerkzeug zugeführt wird, sind durchaus denkbar. Weitere Vorteile und Einzelheiten bevorzugter Ausführungsbeispiele der Erfindung ergeben sich aus den Figuren
sowie der dazugehörigen Figurenbeschreibungen. Dabei zeigen:
Fig. 1: ein Ausführungsbeispiel eines erfindungsgemäßen
Verfahrens im einstufigen Prozess;
Fig. 2: ein Ausführungsbeispiel eines erfindungsgemäßen Verfahrens im zweistufigen Prozess mit Zuführung des gasförmigen Monomers in die erste Plastifiziereinheit;
Fig. 3: ein Ausführungsbeispiel eines erfindungsgemäßen Verfahrens im zweistufigen Prozess mit Zuführung des gasförmigen
Monomers in die zweite Plastifiziereinheit.
Fig. 1 zeigt eine Formgebungsmaschine 2 mit angedeuteter Schließeinheit 20 sowie einer Plastifiziereinheit 4, Das Formgebungswerkzeug 19 ist in diesem Ausführungsbeispiel zweiteilig und im an der Schließeinheit 20 montierten Zustand
gezeigt.
In diesem Ausführungsbeispiel erfolgt das Verfahren in einem einstufigen Prozess. Das heißt die Zuführung eines Monomers 3 und die Plastifizierung und/oder das Aufschmelzen eines Polymer-
Ausgangsmaterials 1 finden in einer Plastifiziereinheit 4 statt.
Die Plastifiziereinheit 4 weist einen Massezylinder 21 auf.
Die Plastifiziereinheit 4 ist auf einer Seite über eine Leitung mit einem der beiden Formgebungswerkzeuge 19 und auf der anderen Seite mit einem Antrieb 15, der die Plastifizierschnecke 22 in der Plastifiziereinheit 4 antreibt, verbunden. Über einen Massetrichter 13, der antriebsseitig an der
Plastifiziereinheit 4 angeordnet ist, kann das Polymer-
Ausgangsmaterial 1 der Plastifizierschnecke 22 zugeführt werden.
Nachdem das Polymer-Ausgangsmaterial 1 aus dem Massetrichter 13, welches dort meistens als Granulat in Form von Flakes, Pellets oder Ähnlichem vorliegt, in die Einzugszone 8 eingezogen ist, wird das Polymer-Ausgangsmaterial 1 über die rotierende
Plastifizierschnecke 22 weitertransportiert. Die
Plastifizierschnecke 22 besteht wie üblich bei
Plastifiziereinheiten 4 aus verschiedenen Zonen.
Niederdruckbereiche 6 sind in diesem Ausführungsbeispiel die Entgasungszone 7 sowie die Einzugszone 8. Die Einzugszone 8 ist jener Bereich der Plastifizierschnecke 22, in dem das PolymerAusgangsmaterial 1 über den Massetrichter 13 zugeführt wird. In der Einzugszone 8 ist meistens der Schneckenkerndurchmesser konstant. Nach der Einzugszone 8 folgt in diesem Ausführungsbeispiel eine Kompressionszone, in der der Schneckenkerndurchmesser stetig zunimmt und somit das PolymerAusgangsmaterial 1 durch geeignete Druck- (Kompressions-) und Temperaturbedingungen plastifiziert oder aufgeschmolzen wird. Diese Zone wird daher Kompressionszone genannt. Die Entgasungszone 7 weist einen geringeren Schneckenkerndurchmesser auf als der größte Schneckenkerndurchmesser der Kompressionszone, daher handelt es sich bei der Entgasungszone 7 um einen Niederdruckbereich 6, der auch Dekompressionszone genannt wird. Als letzte Zone folgt in diesem Ausführungsbeispiel die Meteringzone 14, in welcher die gewünschte Menge an ausreichend plastifiziertem oder aufgeschmolzenem sowie homogenisiertem PolymerAusgangsmaterial 1 vorliegt und über eine Leitung in das Formgebungswerkzeug 19 eingeleitet, vorzugsweise eingespritzt,
wird.
In diesem Ausführungsbeispiel erfolgt die Zuführung zumindest eines Monomers 3 über eine Zuführvorrichtung 12 in einen Niederdruckbereich 6, konkret in die Entgasungszone 7. Die Zuführvorrichtung 12 weist einen Behälter 16, in dem sich das gasförmige oder zumindest teilweise gasförmige Monomer 3 befindet, und ein den Behälter 16 beheizendes Heizelement 17
auf. Durch einen Kompressor 18 kann das gasförmige sowie
vorgewärmte Monomer 3 über eine Leitung in die Entgasungszone 7
eingeleitet werden.
Durch den Kompressor 18 ist der Gasdruck ausreichend hoch, um das gasförmige Monomer 3 dem Polymer-Ausgangsmaterial 1 in der Entgasungszone 7 zuzuführen. Das heißt mit anderen Worten der Gasdruck übersteigt den Druck des plastifizierten und/oder des aufgeschmolzenen Polymer-Ausgangsmaterials 1 an der Stelle der Zuführung des Monomers 3. Es kann in bevorzugten Ausführungsvarianten vorgesehen sein, den Druck und/oder die Temperatur des gasförmigen Monomers 3 und/oder des plastifizierten und/oder des aufgeschmolzenen PolymerAusgangsmaterials 1 beispielsweise mit Hilfe eines Sensors zu messen. Hierzu kann in einer bevorzugten Ausführungsform mindestens ein Druckaufnehmer und/oder mindestens ein Temperatursensor und/oder mindestens ein anderes geeignetes Messgerät in einem Massezylinder und/oder in einem Kompressor
verwendet werden.
Fig. 2 zeigt eine Formgebungsmaschine 2 mit angedeuteter Schließeinheit 20, einer Plastifiziereinheit 4 sowie einem Spritzaggregat 5. Das Formgebungswerkzeug 19 ist in diesem Ausführungsbeispiel zweiteilig und im an der Schließeinheit 20
montierten Zustand gezeigt.
Die Plastifiziereinheit 4 und die Zuführung eines PolymerAusgangsmaterials 1 sowie eines Monomers 3 in diesem Ausführungsbeispiel entsprechen dem Ausführungsbeispiel in
Fig. 1.
Zusätzlich zu dem Ausführungsbeispiel in Fig. 1 sind hier zwischen der Plastifiziereinheit 4 und der Schließeinheit 20 samt Formgebungswerkzeugen 19 noch ein Filter 10, ein
Rheometer 11 und ein Spritzaggregat 5 vorgesehen.
In diesem Ausführungsbeispiel erfolgt das Verfahren in einem zweistufigen Prozess. Das heißt die Zuführung eines Monomers 3 und die Plastifizierung oder das Aufschmelzen eines PolymerAusgangsmaterials 1 finden in der Plastifiziereinheit 4 statt. Nach einem Filter 10 und einem Rheometer 11 ist in diesem Ausführungsbeispiel eine zweite Stufe mit einem Spritzaggregat 5 vorgesehen, bei der das Polymer-Ausgangsmaterial 1 mit dem zugeführtem Monomer 3 weiter homogenisiert und entgast wird. Das heißt, dass im Zuge der zweiten Stufe flüchtige Stoffe wie nicht
reagiertes MEG und/oder Verunreinigungen entfernt werden können.
Der Filter 10 kann ein handelsüblicher Schmelzefilter sein. Durch die vom ersten Antrieb 15 angetriebene Plastifizierschnecke 22 der Plastifiziereinheit 4 kann das Polymer-Ausgangsmaterial 1 durch den Filter 10 gedrückt werden,
um damit Verunreinigungen zu entfernen.
Durch das zugeführte Monomer 3 kann die Viskosität des PolymerAusgangsmaterials 1 reduziert werden. Wenn das Zuführen des Monomers 3 vor dem Filter 10 stattfindet, wie in diesem Ausführungsbeispiel, so können feinere Filter verwendet werden, um kleine Verunreinigungen aus dem plastifiziertem oder aufgeschmolzenen Polymer-Ausgangsmaterial 1 mit dem zugeführtem
Monomer 3 zu entfernen.
Je niederer die Viskosität des Polymer-Ausgangsmaterials 1 ist, desto feinere Filter können verwendet werden und desto kleinere Verunreinigungen können aus dem Polymer-Ausgangsmaterial 1
entfernt werden.
Es ist denkbar, wie in einem anderen Ausführungsbeispiel in Figur 3 gezeigt, dass das Zuführen des Monomers 3 nach dem
Filter 10 stattfinden kann. Es aber auch denkbar, dass das
Zuführen des Monomers 3 an einer oder mehreren beliebigen Stellen innerhalb der Formgebungsmaschine 2, insbesondere der
Spritzgießmaschine, vorgesehen ist.
Ein Filtern kann vor, nach und/oder während der Zuführung des
Monomers 3 erfolgen.
Nach dem Filter 10 ist ein Rheometer 11 angeordnet, welches die
Viskosität des Polymer-Ausgangsmaterials 1 misst.
In diesem Ausführungsbeispiel ist eine Inline-Messung vorgesehen, bei der das Rheometer 11 direkt und unmittelbar in der das Polymer-Ausgangsmaterial 1 führenden Prozessleitung angeordnet ist. Auf diese Weise sind kontinuierliche, exakte und
in Echtzeit durchgeführte Messungen möglich.
Eine Inline-Messung kann vor, nach und/oder während der
Zuführung des Monomers 3 erfolgen.
Die Messung der Viskosität kann in einem anderen Ausführungsbeispiel online erfolgen. Dabei ist beispielsweise eine Abzweigung oder ein Bypass von der das PolymerAusgangsmaterial 1 führenden Prozessleitung vorgesehen, an der das Rheometer 11 angeordnet ist. Die Messung findet dann nicht mehr direkt und unmittelbar in der Prozessleitung statt. Bei einer Online-Messung können kontinuierliche Messungen
durchgeführt werden.
Eine Online-Messung kann vor und/oder nach der Zuführung des
Monomers 3 erfolgen.
Statt oder zusätzlich zu Inline- und/oder Online-Messungen der Viskosität des Polymer-Ausgangsmaterials 1 kann vorgesehen sein,
dass Proben des Polymer-Ausgangsmaterials 1 aus der
Formgebungsmaschine 2 entnommen werden und vor Ort und/oder an
einem anderen Ort untersucht werden.
Durch eine Messung der Viskosität des PolymerAusgangsmaterials 1 können Entscheidungen während des Formgebungsverfahrens getroffen werden. Beispielsweise kann durch eine Messung der Viskosität des PolymerAusgangsmaterials 1, die inline oder online durchgeführt wird, die Menge an zugegebenen Monomer 3 oder eingezogenen PolymerAusgangsmaterials 1 während des Betriebes der Formgebungsmaschine 2 adaptiert werden. Es können auch aufgrund der gemessenen Daten, die durch den Filter 10 und/oder das Rheometer 11 erhalten werden, auch andere Verfahrensparameter adaptiert werden, wie zum Beispiel Extrusionsgeschwindigkeit, Temperatur, Temperaturverlauf, Dosiervolumen, Druck,
Druckverlauf, Notstopp etc.
Adaptionen der Verfahrensparameter können durch Messergebnisse des Filters 10 und/oder des Rheometers 11 sowohl manuell durch Bedienpersonal als auch automatisiert durch entsprechende Programme sowie Steuer- und Regelkreise durchgeführt werden. In diesem Zusammenhang ist auch eine Kommunikation in einem Netzwerk, zum Beispiel einem Maschinenpark mit mehreren
Maschinen, möglich.
Nach dem Rheometer 11 ist in diesem Ausführungsbeispiel in Fig. 2 ein Spritzaggregat 5 vorgesehen, welches eine durch einen
zweiten Antrieb 15 angetriebene Schubschnecke 9 beinhaltet. Unter Schubschnecken werden Schnecken verstanden, die sowohl
rotierbar als auch axial verschiebbar in einem Massezylinder
gelagert sind.
Die Schubschnecke 9 des Spritzaggregats 5 kann einen konstanten Schneckendurchmesser aufweisen. Es ist in einem anderen Ausführungsbeispiel möglich, dass die Gangtiefe und /oder die Gangsteigung zumindest einer der Schneckengänge der Schubschnecke variiert, um Kompressionszonen und Dekompressionszonen vorzusehen. Das Spritzaggregat 5 kann neben Begasung und Entgasung eine höhere Qualität des Polymer-
Ausgangsmaterials 1 durch weiteres Homogenisieren bewirken.
Es kann bevorzugt vorgesehen sein, dass die Einzugszone 8 der Schubschnecke 9 des Spritzaggregats 5 teilgefüllt ist und somit
einen Niederdruckbereich 6 darstellt.
Es kann bevorzugt vorgesehen sein, dass die Einzugszone 8 der Schubschnecke 9 des Spritzaggregats 5 teilgefüllt ist und somit einen Niederdruckbereich 6 darstellt, in dem das Monomer 3 im gasförmigen Aggregatszustand zugeführt werden kann. Ein solches
Ausführungsbeispiel ist in Fig. 3 dargestellt.
Es kann bevorzugt vorgesehen sein, dass die Einzugszone 8 der Schubschnecke 9 des Spritzaggregats 5 teilgefüllt ist und durch Atmosphärendruck oder Unterdruck eine Entgasung des Polymer-
Ausgangsmaterials 1 ermöglicht.
ES kann bevorzugt vorgesehen sein, dass die Einzugszone 8 der Schubschnecke 9 des Spritzaggregats 5 teilgefüllt ist und somit einen Niederdruckbereich 6 darstellt, welcher über eine Länge
von 1 bis 2 Schneckendurchmessern reicht.
Fig. 3 zeigt eine Formgebungsmaschine 2 mit angedeuteter Schließeinheit 29, einer Plastifiziereinheit 4 und einem Spritzaggregat 5. Das Formgebungswerkzeug 19 ist in diesem Ausführungsbeispiel zweiteilig und im an der Schließeinheit 20
montierten Zustand gezeigt.
24 /38
Die Plastifiziereinheit 4 und das Spritzaggregat 5 sowie die angedeutete Schließeinheit 20 in diesem Ausführungsbeispiel
entsprechen dem Ausführungsbeispiel in Fig. 2.
In diesem Ausführungsbeispiel erfolgt das Verfahren wie bei
Fig. 2 in einem zweistufigen Prozess. In diesem Ausführungsbeispiel wird das Polymer-Ausgangsmaterial 1 in einem ersten Schritt durch die Plastifiziereinheit 4 plastifiziert. Danach wird das Polymer-Ausgangsmaterial 1 durch den Filter 10 und das Rheometer 11 geleitet und dem Spritzaggregat 5 zugeführt. In der zweiten Stufe wird in dem Spritzaggregat 5 das Monomer 3 dem Polymer-Ausgangsmaterial 1 zugeführt und durch die Schubschnecke 9 homogenisiert, um anschließend durch das Spritzaggregat 5 in das Formgebungswerkzeug 19 eingeleitet zu werden. Die Art und Weise des Zuführens des Monomers 3
entspricht jenem Ausführungsbeispiel aus Fig. 2.
Im Gegensatz zu dem Ausführungsbeispiel in Fig. 2 ist hier das
Zuführen des Monomers 3 erst im Spritzaggregat 5 vorgesehen.
In Bezug auf das Spritzaggregat 5 kann in einem anderen
Ausführungsbeispiel vorgesehen sein, dass die Einzugszone
gleichzeitig eine Entgasungszone ist.
1 Polymer-Ausgangsmaterial 2 Formgebungsmaschine 3 Monomer
4 Plastifiziereinheit 5 Spritzaggregat
6 Niederdruckbereich 7 Entgasungszone
8 Einzugszone
9 Schubschnecke
10 Filter
11 Rheometer
12 Zuführvorrichtung 13 Massetrichter
14 Meteringzone
15 Antrieb
16 Behälter
17 Heizelement
18 Kompressor
19 Formgebungswerkzeug 20 Schließeinheit
21 Massezylinder
22 Plastifizierschnecke
Innsbruck, am 7. November 2022
25
Claims (1)
- PatentansprücheFormgebungsverfahren zum Herstellen eines Formteils aus einem Polymer-Ausgangsmaterial (1) in einerFormgebungsmaschine (2), insbesondere einer Spritzgießmaschine, wobei das Polymer-Ausgangsmaterial (1) plastifiziert und/oder aufgeschmolzen wird und dem PolymerAusgangsmaterial (1) zumindest ein Monomer (2) im gasförmigenAggregatszustand zugeführt wird.Formgebungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Polymer-Ausgangsmaterial (1) von einer Plastifiziereinheit (4) in ein Spritzaggregat (5) überführtwird.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Monomer (3) in einem Niederdruckbereich (6), vorzugsweise in eine Dekompressionszone, in eine Entgasungszone (7) und/oder in eine Einzugszone (8), der Plastifiziereinheit (4) und/oder des Spritzaggregats (5) zu dem Polymer-Ausgangsmaterial (1) zugeführt wird, vorzugsweise wobei ein Niederdruckbereich (6)einen Bereich mit einem Druck weniger als 5 bar darstellt.Formgebungsverfahren nach dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass der Niederdruckbereich (6), vorzugsweise die Dekompressionszone, die Einzugszone (7) und/oder die Entgasungszone (8), der Plastifiziereinheit (4) und/oder des Spritzaggregats (5) einen Bereich niederen Drucks, vorzugsweise über eine Länge von einem bis zu zwei Schneckendurchmessern, aufweist, in dem durch Atmosphärendruck oder Unterdruck eine Entgasung des PolymerAusgangsmaterials (1) bewirkt und/oder das Monomer (3)zugeführt wird.Spritzaggregats (5) zugeführt wird.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Plastifiziereinheit (4) und/oder das Spritzaggregat (5) mit einer Schubschnecke (9) ausgestattet ist, vorzugsweise die in einem Niederdruckbereich (6), vorzugsweise in einer Dekompressionszone, in einer Einzugszone (7) und/oder ineiner Entgasungszone (8), teilgefüllt ist.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das PolymerAusgangsmaterial (1) vor, während und/oder nach dem Zuführendes Monomers (3) mit einem Filter (10) filtriert wird.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Viskosität des Polymer-Ausgangsmaterials (1) vor, während und/oder nach dem Zuführen des Monomers (3) mit zumindest einem Rheometer (11) an der Formgebungsmaschine (2), insbesondere an der Spritzgießmaschine, gemessen wird, wobei das zumindest eine Rheometer nach der Plastifiziereinheit (4), vorzugsweise zwischen der Plastifiziereinheit (4) und derSchließeinheit (20) und/oder zwischen der Plastifiziereinheit (4) und dem Spritzaggregat (5) und/oder zwischen dem Spritzaggregat (5) und der Schließeinheit (20),angeordnet ist.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Viskosität des Polymer-Ausgangsmaterials (1) nach dem Zuführen desMonomers (3) eine intrinsische Viskosität von höchstens11.12.13.14.0,8 dl/g, insbesondere 0,4 dl/g bis 0,7 dl/g, insbesondere 0,5 dl/g bis 0,6 dl/g aufweist.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die zugeführte Menge des Polymer-Ausgangsmaterials (1) und/oder des Monomers (3)gemessen, gesteuert und/oder geregelt wird.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das PolymerAusgangsmaterial (1) ein Polykondensat, insbesondere ein Polyester, insbesondere Polyethylenterephthalat (PET), Polytrimethylenterephthalat (PTT), Polybutylenterephthalat (PBT), Polylactid (PLA), Polyhydroxybutyrat (PHB), Polyethylennaphthalat (PEN), Polycarbonat (PC), Polyestercarbonat (PEC) und/oder Polyarylat (PAR) ist.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Monomer (3) zum Aufbau des Polymer-Ausgangsmaterials (1) geeignet ist und/oder zumindest eine Hydroxylgruppe, Carboxylgruppe, Organyloxycarbonylgruppe und/oder eine Halogencarbonylgruppe aufweist, vorzugsweise ein Diol und/oder eine Hydroxycarbonsäure und/oder eine Dicarbonsäure, insbesondere Ethylenglykol (1,2-Ethandiol), 1,3-Propandiol, 1,4-Butandiol,2-Hydroxypropansäure und/oder 3-Hydroxybutansäure, ist.Formgebungsverfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass ein Gasgemisch aus Monomer (3) und Inertgas als Schleppmittel, vorzugsweiseStickstoff und/oder Kohlenstoffdioxid, zugeführt wird. Formgebungsverfahren nach einem der vorangegangenenAnsprüche, dadurch gekennzeichnet, dass ein Gemisch ausMonomer (3) und einem Nukleierungsmittel, vorzugsweisemineralischen Füllstoffen und/oder sich vom PolymerAusgangsmaterial (1) unterscheidende Polymer-Materialien, alsGasgemisch und/oder als Aerosol zugeführt wird.15. Formgebungsmaschine (2), insbesondere eine Spritzgießmaschine, insbesondere eingerichtet zum Durchführen eines Formgebungsverfahrens nach einem der vorangegangenen Ansprüche, zum Herstellen eines Formteils aus einem PolymerAusgangsmaterial (1) mit einer Plastifiziereinheit (4) und/oder einem Spritzaggregat (5) zum Plastifizieren, zum Aufschmelzen und/oder zum Einspritzen des PolymerAusgangsmaterials (1) sowie mit einer Zuführvorrichtung (12) zum Zuführen zumindest eines Monomers (3) im gasförmigenAggregatszustand zum Polymer-Ausgangsmaterial (1).16. Formteil, insbesondere Spritzgießerzeugnis, welches nach einem Formgebungsverfahren der vorangegangenen Ansprüche 1bis 14 hergestellt wird.17. Formteil, insbesondere Spritzgießerzeugnis, nach dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass das Formteil ein Polymererzeugnis ist und das Polymererzeugnis dünnwandig ist, vorzugsweise eine Wandstärke von unter1,5 mm, vorzugsweise unter 1 mm aufweist.Innsbruck, am 7/7. November 2022
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50843/2022A AT526635A1 (de) | 2022-11-07 | 2022-11-07 | Formgebungsverfahren zum Herstellen eines Formteils |
DE102023129018.5A DE102023129018A1 (de) | 2022-11-07 | 2023-10-23 | Formgebungsverfahren zum Herstellen eines Formteils |
US18/500,435 US20240149510A1 (en) | 2022-11-07 | 2023-11-02 | Molding method for producing a molded part |
CN202311461487.9A CN117984514A (zh) | 2022-11-07 | 2023-11-06 | 用于制造成型件的成型方法、成型机和成型件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50843/2022A AT526635A1 (de) | 2022-11-07 | 2022-11-07 | Formgebungsverfahren zum Herstellen eines Formteils |
Publications (1)
Publication Number | Publication Date |
---|---|
AT526635A1 true AT526635A1 (de) | 2024-05-15 |
Family
ID=90732273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ATA50843/2022A AT526635A1 (de) | 2022-11-07 | 2022-11-07 | Formgebungsverfahren zum Herstellen eines Formteils |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240149510A1 (de) |
CN (1) | CN117984514A (de) |
AT (1) | AT526635A1 (de) |
DE (1) | DE102023129018A1 (de) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69714070T2 (de) * | 1996-12-06 | 2003-01-30 | Continental Pet Technologies | Verfahren zur herstellung von pen/pet mischungen und transparante gegenstände daraus |
WO2004106025A1 (de) * | 2003-05-27 | 2004-12-09 | Ohl Technologies Gmbh | Verfahren zum lebensmittelechten recyceln von polyethylen-terephthalat (pet) |
DE102006023354A1 (de) * | 2006-05-17 | 2007-11-22 | Lurgi Zimmer Gmbh | Verfahren und Vorrichtung zur Wiederverwertung von Polyestermaterial |
-
2022
- 2022-11-07 AT ATA50843/2022A patent/AT526635A1/de unknown
-
2023
- 2023-10-23 DE DE102023129018.5A patent/DE102023129018A1/de active Pending
- 2023-11-02 US US18/500,435 patent/US20240149510A1/en active Pending
- 2023-11-06 CN CN202311461487.9A patent/CN117984514A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69714070T2 (de) * | 1996-12-06 | 2003-01-30 | Continental Pet Technologies | Verfahren zur herstellung von pen/pet mischungen und transparante gegenstände daraus |
WO2004106025A1 (de) * | 2003-05-27 | 2004-12-09 | Ohl Technologies Gmbh | Verfahren zum lebensmittelechten recyceln von polyethylen-terephthalat (pet) |
DE102006023354A1 (de) * | 2006-05-17 | 2007-11-22 | Lurgi Zimmer Gmbh | Verfahren und Vorrichtung zur Wiederverwertung von Polyestermaterial |
Also Published As
Publication number | Publication date |
---|---|
CN117984514A (zh) | 2024-05-07 |
US20240149510A1 (en) | 2024-05-09 |
DE102023129018A1 (de) | 2024-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2525951B1 (de) | Verfahren zur herstellung eines mit längeren fasern gefüllten polymeren materials | |
AT394051B (de) | Formteil aus gespritzten oder extrudierten kunststoffabfaellen und verfahren zu seiner herstellung | |
DE2727486C2 (de) | Verfahren zur Herstellung von thermoplastischen Formmassen | |
DE2302564A1 (de) | Verfahren zur herstellung von polyurethan-elastomeren | |
DE202016101935U1 (de) | Extrusionsanlage zur Herstellung von Formstücken aus Kunststoffen | |
DE2412538A1 (de) | Verfahren zur herstellung von warmformbaren platten | |
DE2638840A1 (de) | Verfahren zur herstellung von gussprodukten aus polyaethylenterephthalat | |
WO1992010539A1 (de) | Mit synthetischen polymerverbindungen modifizierte werkstoffe und/oder formteile auf stärkebasis und verfahren zu ihrer herstellung | |
CH713339A1 (de) | PET-Regranulat mit hoher intrinsischer Viskosität und Verfahren zu dessen Herstellung. | |
EP1263562B1 (de) | Verfahren zum spritzpressen von kunststoffmischungen | |
EP3250356B1 (de) | Verfahren zur herstellung eines spritzgussproduktes, entsprechendes spritzgussprodukt sowie verwendung speziell zubereiteter sonnenblumenschalenfasern als additiv | |
EP0633108B1 (de) | Verfahren und Vorrichtung zur Wiederaufbereitung von festem Polyestermaterial | |
EP2561971B1 (de) | Verfahren und Vorrichtung zur Herstellung von Spritzgußteilen | |
AT506658A1 (de) | Verfahren zur herstellung eines gefüllten polymermaterials | |
DE102012109502A1 (de) | Verfahren zur Herstellung einer anorganischen oder organischen pastösen schmelzeförmigen Masse | |
DE4402943C2 (de) | Polymerwerkstoff und Verfahren zu dessen Herstellung | |
AT526635A1 (de) | Formgebungsverfahren zum Herstellen eines Formteils | |
DE19800166A1 (de) | Verfahren und Vorrichtung zur Herstellung von Polyester-Schaumstoffen | |
WO2000027925A1 (de) | Verfahren zur herstellung eines faserverstärkten kunststoff-werkstoffs | |
DE2420686A1 (de) | Verfahren und vorrichtung zum spritzgiessen von mit glasfasern verstaerktem thermoplastischem material | |
DE10210107A1 (de) | Verfahren zum Herstellen eines thermoplastischen Naturfaserprodukts | |
EP0620776A1 (de) | Verfahren zur herstellung eines recyclefähigen agglomerates aus kunststoffabfällen. | |
AT525907B1 (de) | Verfahren zur Bearbeitung von Polykondensaten | |
DE69230201T2 (de) | Wiederaufbereitung eines flüssigkristallinen Verbundharzes | |
WO2002000408A2 (de) | Verfahren zur herstellung thermoplastischer kunststoffe mit anteilen nativer fasern |