[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

OA16278A - Pyrazolo [1,5-A] pyrimidines as antiviral agents. - Google Patents

Pyrazolo [1,5-A] pyrimidines as antiviral agents.

Info

Publication number
OA16278A
OA16278A OA1201200525 OA16278A OA 16278 A OA16278 A OA 16278A OA 1201200525 OA1201200525 OA 1201200525 OA 16278 A OA16278 A OA 16278A
Authority
OA
OAPI
Prior art keywords
aryl
alkyl
compound
heterocyclyl
nhc
Prior art date
Application number
OA1201200525
Inventor
Kerim Babaoglu
Constantine G. Boojamra
Eugene J. Eisenberg
Hon Chung Hui
Richard L. Mackman
Jay P. Parrish
Michael Sangi
Oliver L. Saunders
Dustin Siegel
David Sperandio
Hai Yang
Original Assignee
Gilead Sciences, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences, Inc. filed Critical Gilead Sciences, Inc.
Publication of OA16278A publication Critical patent/OA16278A/en

Links

Abstract

The invention provides compounds of Formula I or Formula II :

Description

PYRAZOLO[1,5-A|PYRIMIDINES FOR ANTIVIRAL TREATMENT
CROSS REFERENCE TO RELATED APPLICATION
This patent application claims the benefit of priority of U.S. application serial No. 61/358122, filed June 24,2010.
FIELD OF THE INVENTION
The invention relates generally to methods and compounds for treating Pneumovirinae virus infections, particularly methods and nucleosides for treating respiratory syncytial virus infections.
BACKGROUND OF THE INVENTION
Pneumovirinae viruses are negative-sense, single-stranded, RNA viruses that are responsible for many prevalent human and animal diseases. The Pneumovirinae sub-family of viruses is a part of the family Paramyxoviridae and includes human respiratory syncytial virus (HRSV). Almost all children will have had an HRSV infection by their second birthday. HRSV is the major cause of lower respiratory tract infections in infancy and childhood with 0.5% to 2% of those infected requiring hospitalization. The elderly and adults with chronic heart, lung disease or those that are immunosuppressed also have a high risk for developing severe HRSV disease (http://www.cdc.gov/rsv/index.html). No vaccine to prevent HRSV infection is currently available. The monoclonal antibody palivizumab is available for immunoprophylaxis, but its use is restricted to infants at high risk, e.g., premature infants or those with either congenital heart or lung disease, and the cost for general use is often prohibitive. In addition, nucleoside analog ribavirin has been approved as the only antiviral agent to treat HRSV infections but has limited efficacy. Therefore, there is a need for anti-Pneumovirinae therapeutics.
Certain racemic phenyl(2-(pyrazolo[l,5-a]pyriinidin-2-yl)piperidin-l-yl)methanone compounds are offered for sale by Asinex Corporation (101 N. Chestnet St., Winston-Salem, NC 27101) but the utility of these^Çûmgojjnds for treating Pneumovirinae virus infections has not been disclosed.
SUMMARY OF THE INVENTION
Provided are methods and compounds for the treatment of infections caused by the
Pneumovirinae virus family.
In one aspect, this invention provides a compound of Formula I or Formula II:
Formula I Formula II or a pharmaceutically acceptable salt or ester, thereof;
wherein:
A is -(C(R4)2)n- wherein any one C(R4)2 of said -(C(R4)2)n- may be optionally replaced with -0-, -S-, -S(O)P-, NH or NRa;
n is 3,4, 5 or 6;
each p is 1 or 2;
Ar is a C2-C2o heterocyclyl group or a C6-C2o aryl group, wherein the C2”C2o heterocyclyl group or the C6-C20 aryl group is optionally substituted with 1 to 5 R6 ;
X is -C(RI3)(R14)-, -N(CH2R14)- or X is absent;
YisNorCR7;
each R1, R2, R3, R4, R5, R6, R7or R8is independently H, oxo, OR11, NRnR12, NRnC(O)Rn, NRllC(O)ORn, NRI1C(O)NR1IR12, N3, CN, NO2, SRU, S(O)pRa, NR1!S(O)pRa, C(=O)Rn, -C(=O)ORn, “C(=O)NRnR12, -C(=O)SRn, -S(O)p(ORn), -SOiNR1^12, NR11S(O)p(ORil),-NR11SOpNRHR12, NR1IC(=NR11)NR11R12,halogen, (Ci-Cg)alkyl, (C2-Cg)alkenyl, (C2-C8)alkynyl, aryl(Ci-C8)alkyl, C6-C20 aryl, C2-C2o heterocyclyl, (C3C7)cycloalkyl or (C4-C8)carbocyclylalkyl;
two R4 on adjacent carbon atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)P-, NH- or-NR3-;
four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted C6 aryl ring;
two R4 on the same carbon atom, when taken together, may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)P-, -NH- or -NRa-;
two R5 on adjacent carbon atoms, when taken together, may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)p-, -NH- or-NRa~;
any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R3, may form a bond or a -(C(R5)2)m- group wherein m is I or 2;
any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R2, may form a bond;
each Ra is independently (C|-Cg)alkyl, (Ci-Cg)haloalkyl, (Co-Cgjalkenyl, (C2-Cg)alkynyl, aryl(Ci-CB)alkyl, C6-C2o aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4-Cg)carbocyclylalkyl wherein any (Ci-Cg)alkyl, (Ci-Cg)haloalkyl, (C2-Cg) alkenyl or (C2Cg)alkynyl of Ra is optionally substituted with one or more (e.g. 1, 2, 3,4 or 5) OH, NH2, CO2H, C2-C20 heterocyclyl, and wherein any aryl(Ci-Cg)alkyl, C6-C2o aryl, C2-C20 heterocyclyl, (C3C7)cycloalkyl or (C^Cgjcarbocyclylalkyl of Ra is optionally substituted with one or more (e.g.
1, 2, 3, 4 or 5) OH, NH2, CO2H, C2-C2o heterocyclyl or (Ci-Cg)alkyl;
each R[1 or R12 is independently H, (Ci-Cs)alkyl, (C2-Cg)alkenyl, (C2-C8)alkynyl, aryl(Ci-Cs)alkyl, C6-C20 aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl, (C4-Cg)carbocyclylalkyl, -C(=O)Ra, -S(O)pRa, or aryl(CrCg)alkyl; or R11 and R12 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(O)P-, -NH-, -NRa- or
R13 is H or (Ch-Cg)alkyl;
R14 is H, (Ci-Cs)alkyl, NRnR12, NR11C(O)R]1, NRHC(O)ORLl, NR,1C(O)NR11R12, NRllS(O)pRa, -NRnS(O)p(ORu) orNRllSOpNR11R12; and wherein each (Ci-C8)alkyl, (C2-C8)alkenyl, (C2-Cg)alkynyl, aryl(C]-Cg)alkyl, C^-Qo aryl, C2-C20 heterocyclyl, (C3-C?)cycloalkyl or (C^Cgjcarbocydylalkyl of each R1, R2, R3, R4, 5 6 7 8 11 12 « * ' * *
R , R , R 5 R 5 R or R is, independently, optionally substituted with one or more,(e.g. 1, 2, 3 4 or 5) oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-C8)alkyl, (CrCg)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2, -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)0Ra, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O)pNH2, NHS(O)pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof by administering a therapeutically effective amount of a compound of Formula I or Formula II or a pharmaceutically acceptable salt or ester thereof.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof by administering a therapeutically effective amount of a racemate, enantiomer, diastereomer, tautomer, polymorph, pseudopolymorph, amorphous form, hydrate or solvate of a compound of a compound of Formula I or Formula II or a pharmaceutically acceptable salt or ester thereof.
In another embodiment, provided is a method treating a respiratory syncytial virus infection in a mammal in need thereof by administering a therapeutically effective amount of a compound of Formula I or Formula II or a pharmaceutically acceptable salt or ester thereof.
In another embodiment, provided is a method of treating a respiratory syncytial virus infection in a mammal in need thereof by administering a therapeutically effective amount of a racemate, enantiomer, diastereomer, tautomer, polymorph, pseudopolymorph, amorphous form; hydrate or solvate of a compound of a compound of Formula I or Formula II or a pharmaceutically acceptable salt or ester thereof.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof by administering a therapeutically effective amount of a compound of Formula I or Formula II or a pharmaceutically acceptable salt or ester thereof, in combination with a pharmaceutically acceptable diluent or carrier.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof by administering a therapeutically effective amount of a compound of Formula I or Formula II or a pharmaceutically acceptable salt or ester thereof in combination with at least one additional therapeutic agent.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof, by administering a therapeutically effective amount of a combination pharmaceutical agent comprising:
a) a first pharmaceutical composition comprising a compound of Formula I or Formula II; or a pharmaceutically acceptable salt or ester thereof; and
b) a second pharmaceutical composition comprising at least one additional therapeutic agent active against infectious Pneumovirinae viruses.
In another embodiment, provided is a method of treating a respiratory syncytial virus infection in a mammal in need thereof, by administering a therapeutically effective amount of a combination pharmaceutical agent comprising:
a) a first pharmaceutical composition comprising a compound of Formula I or Formula II; or a pharmaceutically acceptable salt or ester thereof; and
b) a second pharmaceutical composition comprising at least one additional therapeutic agent active against infectious respiratory syncytial viruses.
In another embodiment, provided is the use of a compound of Formula I or Formula II or a pharmaceutically acceptable salt and/or ester thereof to treat a viral infection caused by a Pneumovirinae virus or a respiratory syncytial virus.
In another aspect, the invention also provides processes and novel intermediates disclosed herein which are useful for preparing Formula I or Formula II compounds of the invention.
In other aspects, novel methods for synthesis, analysis, separation, isolation, purification, characterization, and testing of the compounds of this invention are provided.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
Reference will now be made in detail to certain embodiments of the invention, examples of which are illustrated in the accompanying description, structures and formulas. While the
invention will be described in conjunction with the enumerated embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents, which maybe included within the full scope of the present invention as described herein.
In one embodiment, provided is a compound of Formula I or Formula II represented by Formula la or Formula Ila:
R1 R1
Formula la Formula Ila or a pharmaceutically acceptable salt or ester, thereof;
wherein:
A is -(C(R4)2)n- wherein any one C(R4)2 of said -(C(R4)2)n- may be optionally replaced with -0-, -S-, or -S(O)p-;
n is 3 or 4;
each p is 1 or 2;
Y is Nor CR7;
Ar is a C6-C2n aryl group optionally substituted with 1 to 5 R6 ; each R1, R2, R3, R4, R5, R6, R7or R8is independently H, OR11, NRnR12, NR^CfOjR11, NR11C(O)OR11, NR11C(O)NR11R12, N3, CN, NO2, SR11, S(O)pRa, NRnS(O)pRa, -C(=O)RH, C(=O)ORn, -C(=O)NRHR!2, -C(=O)SR”, -S(0)p(ORn), -SO2NRRj2, -NRnS(O)p(OR]1), -NR11SOPNR11R12, halogen, (Ci-Cg)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(Cj-C8)alkyl, Cfi-C20 aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C<i-Cs)carbocyclylalkyl;
two R4 on adjacent carbon atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)p-, NH- or-NRa-;
four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Cs aryl ring;
two R4 on the same carbon atom, when taken together, may form a (C3-C7)cyclo alkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-,-S(O)p-,-NH- or-NRa-;
two R6 on adjacent carbon atoms, when taken together, may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)P-, -NH- or-NRa-;
any R5 adjacent to the obligate carbonyl group of said Ar, when taken together with R3, may form a bond or a -(C(R5)2)m- group wherein m is I or 2;
any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R2, may form a bond;
each Ra is independently (Ci-Cg)alkyl, (Ct-Cg)haloalkyl, (C2-Cg)alkenyl, (C2-Cg)alkynyl, aryl(Ci-Cg)alkyl, C6-C2o aryl, C2-C2q heterocyclyl, (C3-C7)cycloalkyl or (C4-Cg) carbocyclylalkyl ;
each R11 or R12 is independently H, (Ci-Cg)alkyl, (C2-Cg)alkenyl, (C2-Cg)alkynyl, aryl(Ci-Cg)alkyl, C6-C2o aryl, C2-C2q heterocyclyl, (C3-C7)cycloalkyl, (C4-Cg)carbocyclylalkyl, -C(=O)Ra, -S(O)pRa, or aryl(Ci-Cg)alkyl; or R11 and R12 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(O)P-, -NH- or -NRa-; and wherein each (Ci-Cg)alkyl, (Ci-Cg)haloalkyl, (C2-CB)alkenyl, (C2-Cg)alkynyl, aryl(CiCg)alkyl, C6-C20 aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4~Cg)carbocyclylalkyl of each R1, R2, R3, R4, R5, R6, R7, R8, R11 or R12 is, independently, optionally substituted with one or more halogen, hydroxy, NH2, CN, N3, N(Ra)2, SH, SRa, S(O)pRa or ORa.
In one embodiment of Formula la or Ila, A is ~(C(R4)2)3-. In another aspect of this embodiment, A is -(C(R4)2)4-. In another aspect of this embodiment, R4 is H. In another aspect of this embodiment, R4 is optionally substituted (Cj-Cg)alkyl. -. In another aspect of this embodiment, R1 is H, optionally substituted (C]-Cg)alkyl, or OH. In another aspect of this
Q embodiment, R is H or CH3. In another aspect of this embodiment, R is optionally substituted (Ci-Cg)alkyl, optionally substituted (C3-C7)cycloalkyl or optionally substituted (C4-Cg)carbocyclylalkyl. In another aspect of this embodiment, R8 is optionally substituted cyclopropyl.
L
In one embodiment, provided is a compound of Formula I or Formula II represented by
Formula III or Formula IV:
Formula IV or a pharmaceutically acceptable salt or ester, thereof;
wherein:
A is -(C(R4)2)n- wherein any one C(R4)2 of said -(C(R4)2)n- may be optionally replaced with -0-, -S-, or -S(O)p-;
n is 3 or 4;
each p is 1 or 2;
each R1, R2, R3, R4, R6, R7or R8 is independently H, OR11, NRnR12, NRnC(O)Rn, NRllC(O)OR11, NR11C(O)NR11R12, N3, CN, NO2, SR11, S(O)pRa, NRnS(O)pRa, -C(=O)Rn, C(-O)OR!1, -C(=O)NRR12s -C(=O)SRh, -S(O)p(ORn), -SO2NR1]R12, -NR^SfOipCOR11),
-NRnSOpNR13R12, halogen, (Ci~C8)alkyl, (C2-Cg)alkenyl, (C2-C8)alkynyl, aryl(Ci-Cg)alkyl, C6”C2q aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl;
two R4 on adjacent carbon atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)P-, NH- or -NR\ four R4 on adjacent carbon atoms,when taken together, may form an optionally substituted C& aryl ring;
two R4 on the same carbon atom, when taken together, may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)p-, -NH- or-NRa-;
each Ra is independently (Ci-C8)alkyl, (CL-C8)haloalkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(C]-C8)alkyl, C5-C2o aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl;
each R11 or R12 is independently H, (Ci-Cg)alkyl, (C2-Cs)alkenyl, (C2-C8)alkynyl, aryl(Ci-Cs)alkyl, C6-C2o aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl, (C4-C8)carbocyclylalkyl, -C(=O)Ra, -S(O)pRa, or aryl(C[-Ca)alkyl; or R11 and R12 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(O)P-, -NH- or -NRa-; and wherein each (Ci-C8)alkyl, (Ci-C8)haloalkyl, (C2-C8)alkenyl, (C2-Cg)alkynyl, aryl(CiCs)alkyl, Cô-Qo aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-Cs)carbocyclylalkyl of each R1, R2, R3, R4, R6, R7, R8, R11 or R12 is, independently, optionally substituted with one or more halogen, hydroxy, NH2, CN, N3, N(Ra)2, SH, SRa, S(O)pRa or ORa.
In one embodiment of Formula III or IV, the compound is represented by Formula III.
J >
In another aspect of this embodiment, A is -(C(R )2)3-. hi another aspect of this embodiment, A is - (C(R4)2)4-. In another aspect of this embodiment, A is -C(R4)2O C(R4)2-. In another aspect of this embodiment, A is -C(R4)2SC(R4)2-. In another aspect of this embodiment, A is C(R4)2S(O)PC(R4)2-. In another aspect of this embodiment, each R3 is H. In another aspect of this embodiment, R2 is H. In another aspect of this embodiment, each R3 and R2 is H, In another aspect of this embodiment, R8 is optionally substituted (C3-C7)cycloalkyl.
ΙΟ
In another embodiment of Formula III or IV, the compound is represented by Formula III wherein A is -(C(R4)2)3-· In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, at least one R4 is optionally substituted (Ci-Cgjalkyl. In another aspect of this embodiment, at least one R4 is methyl. In another aspect of this embodiment, each R3 is H. In another aspect of this embodiment, R2 is H. In another aspect of this embodiment, each R3 η Λ and R is H. In another aspect of this embodiment, R is optionally substituted (C3C7)cycloalkyl. In another aspect of this embodiment, at least one R6 is -NR51 S(O)pRa. In another aspect of this embodiment, at least one R6 is NR1 ’CfOjR11. In another aspect of this embodiment, at least one R6 is NR1 ’R12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci-Cg)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, R1 is OR1 *. In another aspect of this embodiment, each R3 and R2 is H.
In another embodiment of Formula III or IV, the compound is represented by Formula III wherein A is -(C(R4)2)3- and each R3 is H. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, at least one R4 is optionally substituted (Ci-Cg)alkyl. In another aspect of this embodiment, at least one R4 is methyl. In another aspect of this embodiment, R is H. In another aspect of this embodiment, R is optionally substituted (C3C7)cyclo alkyl. In another aspect of this embodiment, at least one R6 is -NR1 ’StOipRf In another aspect of this embodiment, at least one R6 is NR11C(O)R11. In another aspect of this embodiment, at least one R6 is NR1 'R12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci-Cs)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, R1 is OR11.
In another embodiment of Formula III or IV, the compound is represented by Formula III wherein A is -(C(R4)2)3- and each R2 is H. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, at least one R4 is optionally substituted (Ci-C8)alkyl. In another aspect of this embodiment, at least one R4 is methyl. In another aspect of this embodiment, each R3 is H. In another aspect of this embodiment, R8 is optionally substituted (Ca-Cvjcycloalkyl. In another aspect of this embodiment, at least one R6 is -NRnS(O)pRa. In another aspect of this embodiment, at least one R6 is NR1 'CfOjR1 *. In another aspect of this
C embodiment, at least one R6 is NRnR12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci-Cs)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, R1 is OR11.
In one embodiment of Formula III or IV, the compound is represented by Formula IV.
In another aspect of this embodiment, A is -(C(R4)2)3-. In another aspect of this embodiment, A is -(C(R4)2)4-- In another aspect of this embodiment, A is -C(R4)2O C(R4)2-. In another aspect of this embodiment, A is -C(R4)2SC(R4)2-. In another aspect of this embodiment, A is C(R4)2S(O)PC(R4)2-. In another aspect of this embodiment, each R3 is H. In another aspect of this embodiment, R is H. In another aspect of this embodiment, each R and R is H. In π 'Ί another aspect of this embodiment, each R and R is H. In another aspect of this embodiment,
R8 is optionally substituted (C3-C7)cycloalkyl.
In another embodiment of Formula III or IV, the compound is represented by Formula IV wherein A is -(C(R4)2)3-. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, at least one R4 is optionally substituted (Ci-Cgjalkyl. In another aspect of this embodiment, at least one R4 is methyl. In another aspect of this embodiment, each R3 is H. In another aspect of this embodiment, R2 is H. In another aspect of this embodiment, each R3 and R2 is H. In another aspect of this embodiment, R8 is optionally substituted (C3Cvjcycloalkyl. In another aspect of this embodiment, at least one R6 is -NRnS(O)pRa. In another aspect of this embodiment, at least one R6 is NR11C(O)R11. In another aspect of this embodiment, at least one R6 is NR1 !R12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci-Cgjalkyl. In another aspect of this embodiment, R1 is methyl.
In another aspect of this embodiment, R1 is OR11. In another aspect of this embodiment, each R3 and R2 is H.
In another embodiment of Formula III or IV, the compound is represented by Formula
IV wherein A is -(C(R4)2)3- and each R3 is H. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, at least one R4 is optionally substituted (C]-Cs)alkyl. In another aspect of this embodiment, at least one R4 is methyl. In another aspect of this embodiment, R is H. In another aspect of this embodiment, R is optionally substituted (C335 C7)cycloalkyl. In another aspect of this embodiment, at least one R6 is -NRHS(O)pRa. In
C another aspect of this embodiment, at least one R6 is NRllC(O)Ril. In another aspect of this embodiment, at least one R6 is NRnR12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci-C8)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, R1 is OR11.
In another embodiment of Formula III or IV, the compound is represented by Formula
IV wherein A is -(C(R4)2)3- and each R2 is H. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, at least one R4 is optionally substituted (Cj-C8) alkyl. In another aspect of this embodiment, at least one R4 is methyl. In another aspect of this embodiment, each R3 is H. In another aspect of this embodiment, R8 is optionally substituted (Cj-Cvjcycloalkyl. In another aspect of this embodiment, at least one R6 is -NRllS(O)pRa. In another aspect of this embodiment, at least one R6 is NRllC(O)R1 '. In another aspect of this embodiment, at least one R6 is NR1 ’R12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, Rl is optionally substituted (Ci-C8)alkyl. In another aspect of this embodiment, R1 is methyl.
In another aspect of this embodiment, R1 is OR11.
In another embodiment, provided is a compound of Formula I or Formula II represented
Formula V
B
Formula VI or a pharmaceutically acceptable salt or ester, thereof;
wherein:
A is -C(R4)2-, -(C(R4)2)2-, -0-, -S-, or -S(O)P-;
each p is I or 2;
each R1, R2, R4, R6, R7or R8 is independently H, OR11, NR^R12, NRlIC(O)R11, NRllC(O)ORn, NR11C(O)NR1IR12, N3, CN, NO2, SR11, S(O)pRa, NRnS(O)pRa, -C(=O)Rn, C(=O)ORn, -C(=O)NRnR12,-C(=O)SR, -S(O)p(ORn), -SO2NRnR12, -NRI!S(O)p(OR1!), -NR11SOpNR1IR12, halogen, (Ci-Cg)alkyl, (C2-Cg)alkenyl, (C2-Cg)alkynyl, aryl(Ci-Cg)alkyl, Cfi-C2o aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4-Cg)carbocyclyl alkyl;
each Ra is independently (Ci-Cg)alkyl, (Ci-Cs)haloalkyl, (C2-Cg)alkenyl, (C2-Cg)alkynyl, aryl(Ci-Cg)alkyl, C6-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-Cg)carbocyclyl alkyl;
each R9 is independently H, (Ci-Cs)alkyl, (C2-Cg)alkenyl, (C2-Cg)alkynyl, (C3C7)cycloalkyl or (C4-Cg)carbocyclyl alkyl;
each R11 or R12 is independently H, (Cj-Cgjalkyl, (C2-Cg)alkenyl, (C2-Cg)alkynyl, aryl(Ci-Cg)alkyl, Cs-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl, (C4-Cg)carbocyclylalkyl, -C(=O)Ra, -S(O)pRa, or aryI(Ci-Cg)alkyl; or R11 and R12 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S~, -S(O)p-, -NH- or -NRa-; and wherein each (Ci-Cg)alkyl, (Ci-Cg)haloalkyl, (C2-Cg)alkenyl, (C2-Cg)alkynyl, aryl(CjCs)alkyl, Cs-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4~Cg)carbocyclylaIkyl of
each R1, R2, R4, R6, R7, R8, R9, R11 or R12 is, independently, optionally substituted with one or more halogen, hydroxy, NH2, CN, N3, N(Ra)2, SH, SRa, S(O)pRa or ORa.
In one embodiment of Formula V or VI, the compound is represented by Formula V. In another aspect of this embodiment, A is ~(C(R4)2)2-. In another aspect of this embodiment, A is -C(R4)2-. In another aspect of this embodiment, A is -O-. In another aspect of this embodiment, A is -S-. In another aspect of this embodiment, A is -S(O)P-. In another aspect of this embodiment, R is H. In another aspect of this embodiment, R is optionally substituted (C3-C7)cycloalkyl. In another aspect of this embodiment, at least one R6 is -NR11S(O)pRa. In another aspect of this embodiment, at least one R6 is NR1 ’CîOIR”. In another aspect of this embodiment, at least one R6 is NRnR12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci—C8)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, R1 is OR11. In another aspect of this embodiment, each R3 and R2 is H.
In another embodiment of Formula V or VI, the compound is represented by Formula V wherein A is -C(R4)2-. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, one R4 is optionally substituted (Ci-Cg)alkyl and the remaining R4 is H. In another aspect of this embodiment, one R4 is CH3 and the remaining R4 is H. In another aspect of this embodiment, R is H. In another aspect of this embodiment, R is optionally substituted (C3-C7)cycloalkyl. In another aspect of this embodiment, at least one R6 is -NRHS(O)pRa. In another aspect of this embodiment, at least one R6 is NR1 'QC^R11. In another aspect of this embodiment, at least one R6 is NRnR12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci-C8)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, RL is OR11. In another aspect of this embodiment, each R3 and R2 is H. In another aspect of this embodiment, each R9 is H. In another aspect of this embodiment, one R9 is H and the other R9 is optionally substituted (Ci-C8)alkyl. In another aspect of this embodiment, one R9 is H and the other R9 is methyl.
In another embodiment of Formula V or VI, the compound is represented by Formula V wherein A is -C(R4)2- and R2 is H. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, one R4 is optionally substituted (Ci-C8)alkyl and the
remaining R4 is H. In another aspect of this embodiment, one R4 is CH3 and the remaining R4 is H. In another aspect of this embodiment, R8 is optionally substituted (C3-C7)cyclo alkyl. In another aspect of this embodiment, at least one R6 is -NR1 ’S(O)pRa. In another aspect of this embodiment, at least one R6 is NR1 ’C(O)R’ In another aspect of this embodiment, at least one
R6 is NRnR12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (C]-Cg)alkyl. In another aspect of this embodiment, R1 is CH3. In another aspect of this embodiment, R1 is OR1 ’. In another aspect of this embodiment, at least one R6 is NHSO2CH3. In another aspect of this embodiment, R1 is OR11. In another aspect of this embodiment, R1 is OH. In one aspect of this embodiment, Rl is optionally substituted ft (Ci-Cs)alkyl and R is optionally substituted (Cg-Cvjcycloalkyl. In another aspect of this embodiment, R1 is methyl and R8 is cyclopropyl. In another aspect of this embodiment, each R3 and R is H. In another aspect of this embodiment, each R is H. In another aspect of this embodiment, one R9 is H and the other R9 is optionally substituted (Cj-Cg)alkyl. In another aspect of this embodiment, one R9 is H and the other R9 is methyl. In another aspect of this embodiment,
In one embodiment of Formula V or VI, the compound is represented by Formula VI. In another aspect of this embodiment, A is -(C(R4)2)2-· In another aspect of this embodiment, A is
-C(R4)2-. In another aspect of this embodiment, A is -O-. In another aspect of this embodiment, A is -S-. In another aspect of this embodiment, A is -S(O)P-. In another aspect of this embodiment, R2 is H. In another aspect of this embodiment, at least one R6 is NR1'SIOipR'1. In another aspect of this embodiment, at least one R6 is NR11C(O)R11. In another aspect of this embodiment, at least one R6 isNRnR12. In another aspect of this embodiment, at least one Râ is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci-Cs)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, R1 is OR1 In another aspect of this embodiment, each R3 and R2 is H. In another aspect of this embodiment, R8 is optionally substituted (C3-C7)cycloalkyl. *
In another embodiment of Formula V or VI, the compound is represented by Formula VI wherein A is -C(R4)2-. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, one R4 is optionally substituted (Ci~C8)alkyl and the remaining R4 is H. In another aspect of this embodiment, one R4 is CH3 and the remaining R4 is H. In another aspect of this embodiment, R is H. In another aspect of this embodiment, R is optionally substituted (C3-C7)cycloalkyl. In another aspect of this embodiment, at least one R6 is -NRnS(O)pRa. In
another aspect of this embodiment, at least one R6 is NR1 *C(O)Rl 1. In another aspect of this embodiment, at least one R6 is NRnR12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, Rl is H. In another aspect of this embodiment, R1 is optionally substituted (C]-Cs)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, R1 is OR11. In another aspect of this embodiment, each R3 and R is H. In another aspect of this embodiment, each R is H. In another aspect of this embodiment, one R9 is H and the other R9 is optionally substituted (Ci~C8)alkyl. In another aspect of this embodiment, one R9 is H and the other R9 is methyl.
In another embodiment of Formula V or VI, the compound is represented by Formula VI wherein A is -C(R4)2- and R2 is H. In another aspect of this embodiment, each R4 is H. In another aspect of this embodiment, one R4 is optionally substituted (Cj-Cgjalkyl and the remaining R4 is H. In another aspect of this embodiment, one R4 is CH3 and the remaining R4 is H. In another aspect of this embodiment, R8 is optionally substituted (C3-C7)cycloalkyl. In another aspect of this embodiment, at least one R6 is -NRnS(O)pRa. In another aspect of this embodiment, at least one R6 is NR11C(O)R11. In another aspect of this embodiment, at least one R6 is NRnR12. In another aspect of this embodiment, at least one R6 is halogen. In another aspect of this embodiment, R1 is H. In another aspect of this embodiment, R1 is optionally substituted (Ci-C8)alkyl. In another aspect of this embodiment, R1 is methyl. In another aspect of this embodiment, R1 is OR11. In another aspect of this embodiment, at least one Rs is NHSO2CH3. In another aspect of this embodiment, R1 is OR11. In another aspect of this embodiment, each R3 and R2 is H. In another aspect of this embodiment, each R9 is H. In another aspect of this embodiment, one R9 is H and the other R9 is optionally substituted (Ci-Cgjalkyl. In another aspect of this embodiment, one R9 is H and the other R9 is methyl.
In another embodiment of the compounds of Formula I-VI, each R7 or R8 is independently H, OR1’, NRHR12, NRnC(O)R”, NRnC(O)ORn, NR11C(O)NR11R12, N3, CN, NO2, SR11, S(O)PR\ NR11S(O)pRa, -C(=O)R11, -C( O)OR. -C(=O)NR”R12, -C(O)SRn, S(O)p(ORn), -SO2NRnR12, -NRllS(O)p(ORn), -NRI1SOPNR11R12, halogen, (Q-Cgjalkyl, (C2-C8)alkenyl, (C2-Cg)alkynyl, aryl(C]-C8)alkyl, C6-C20 aryl, C2-C20 heterocyclyl, (C3C7)cycloalkyl or (C4-C8)carbocyclylalkyl, In one aspect of this embodiment, R or R is H, OR11, halogen, (Ci-C8)alkyl, (C2-C8)alkenyl, or (C2-C8)alkynyl. In one aspect of this
8 embodiment, R and R are each optionally substituted (Cj-Cg)alkyl. In one aspect of this embodiment, one of R7 or R8 is H and the other of R7 or R8 is optionally substituted (Ci-Cg)alkyl. In one aspect of this embodiment, R7 is optionally substituted (C]-Cg)alkyl and R is optionally substituted (C3~C7)cycloalkyl. In another aspect of this embodiment, R is H and R is optionally substituted (C3-C7)cycloalkyl. In another aspect of this embodiment, R is H and R is cyclopropyl. In one aspect of this embodiment, one of R or R is halogen and the other of R7 or R8 is optionally substituted (Ci-Cg)alkyl. In one aspect of this embodiment, one of R7 or R8 is OR11 and the other of R7 or R8 is optionally substituted (Ci-Cg)alkyl. In one aspect of this embodiment, R and R are each CH3. In one aspect of this embodiment, one of g 7 8 7
R or R is H and the other of R or R is CH3. In one aspect of this embodiment, one of R or R8 is halogen and the other of R7 or R8 is CH3. In one aspect of this embodiment, one of R7 or R8 is OR11 and the other of R7 or R8 is CH3.
In another embodiment, provided is a compound of Formula I or Formula II represented by Formula VII or Formula VIII:
Formula VII
Formula VIII
In another embodiment, provided is a compound of Formula I or Formula II represented by Formula Vila or Formula Villa:
Formula Vila
Formula Villa
In another embodiment, provided is a compound of Formula I or Formula II represented by Formula VHb or Formula VIHb:
Formula VHb
Formula VIHb
In another embodiment, provided is a compound of Formula I or Formula II represented by Formula Vile or Formula VIIIc:
Formula VIIc
Formula VIIIc
In another embodiment, provided is a compound of Formula IX:
Ar
Formula IX or a pharmaceutically acceptable salt or ester, thereof;
wherein:
A is -(C(R4)2)n- wherein any one C(R4)2 of said -(C(R4)2)n- may be optionally replaced with -0-, -S-, S(O)P-, NH or NRa;
n is 3, 4, 5 or 6;
each p is 1 or 2;
Ar is a C2-C2o heterocyclyl group or a C6-C20 aryl group, wherein the C2-C2Q heterocyclyl group or the C6-C20 aryl group is optionally substituted with 1 to 5 R6X is -(CR13R14)-, -N(CH2R14J- or X is absent;
Y is N or CR7;
each R1, R2, R3, R4, R5, R6, R7 or R8 is independently H, oxo, OR11, NRnR12, NR^CCOjR11, NRllC(O)ORn, NR11C(O)NRilR12, N3, CN, NO2, SR11, S(O)pRa, NRnS(O)pRa, C(=O)Rn, -C(==O)ORn, -C(=O)NR1!R12, -C(:‘O)SR, -S(O)p(ORn), -SO2NRnR12, NR^SCOjptOR15), —NR11SOpNR11R12, NR11 C(=NR1,)NRllR12, halogen, (Ci-Cg)alkyl, (C2-Cg)alkenyl, (Ci-Csjalkynyl, aryl(Ci-Cg)alkyl, C6~C2o aryl, C2-C2q heterocyclyl, (C3C7)cycloalkyl or (C^Cgjcarbocyclylalkyl;
two R4 on adjacent carbon atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)P-, NH- or-NRa-;
four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Cô aryl ring;
two R4 on the same carbon atom, when taken together, may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)P-, -NH-or-NRa-;
two R6 on adjacent carbon atoms, when taken together, may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)P-, -NH- or-NRa-;
any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R3, may form a bond or a -(C(R5)2)m- group wherein m is 1 or 2;
any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R2, may form a bond;
each Rais independently (Ci-C8)alkyl, (Ci-Cg)haloalkyl, (C2-C8)alkenyl, (C2-Cg)alkynyl, aryl(Ci-Cj)alkyl, Cs-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-Cg)carbocyclylalkyl wherein any (Ci-Cg)alkyl, (Ci-C8)haloalkyl, (C2-C8)alkenyl or (C2Cs)alkynyl of Ra is optionally substituted with one or more OH, NH2, CO2H, C2-C2q heterocyclyl, and wherein any aryl(Ci-C8)alkyl, C6-C2o aryl, C2-C20 heterocyclyl, (C3C7)cycloalkyl or (C4-C8)carbocyclylalkyl of Ra is optionally substituted with one or more OH, NH2, CO2H, C2“C2o heterocyclyl or (Ci-Cg)alkyl;
each R11 or Rt2 is independently H, (Ci-C8)alkyl, (C2-Cs)alkenyl, (C2-C8)alkynyl, aryl(Ci-Cg) alkyl, C6-C2o aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl, (C4-C8)carbocyclyl alkyl, -C(=O)Ra, -S(O)pRa, or aryl(Ci-C8)alkyl; or R11 and R12 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(O)P-, -NH-, -NRa- or
-C(O)-;
R13 is H or (Ci-Cs)alkyl;
R14 is H, (Ci-C8)alkyl, NRnR12, NR11C(O)R11, NRllC(O)OR11, NR11C(O)NR11R12, NRl’S(O)pRa, -NR1!S(O)p(ORH) or NRHSOPNRL1R12; and wherein each (Ci-C8)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(Ci-C8)alkyl, C6-C20 aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl of each R1, R2, R3, R4, R5, R6, R7, R8, R11 or R12 is, independently, optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-C8)alkyl, (Cr C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2 , -C(=O)NHRa, -C(=O)NH2, NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa,
NRaC(O)NHR\ NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O)pNH2, NHS(O)pNHRa, NHS(O) pN(Ra)2, NHS(O) pNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra;
provided the compound is not:
* (2-fluorophenyI)(2-(5-methyl-7-(tri fluorometh yl)pyrazolo[ 1,5-a]pyrimidin-2-yl)piperidin-l 30 yl)methanone;
2-(7-hydroxy-5-methyIpyrazolo[ 1,5-a]pyrimidin-2-yl)piperidin-l -yl)(3,4,5trimethoxyphenyl)methanone;
4-fluoro-3-(2-(7-hydroxy-5-meth yip yrazolo[l,5-a]pyrimidin-2-yl)piperi dine- l-carbonyl)-Nmethylbenzen esulfonamide;
N-(2-(2-(7-hydroxy-5-methylpyrazolo[l,5-a]pyrimidin-2-yl)piperidine-lcarbonyl)phenyl)methanesuifonamide;
(2-(5-ethyl-7-hydroxypyrazolo[ 1,5-a]pyrimidin-2-yl)pi peri din-1 -yl)(3,4,5trimethoxyphenyl)methanone;
N-(2-(2-(5-ethyl-7-hydroxypyrazolo[l,5-a]pyrimidin-2-yl)piperidine-lcarbonyl)phenyl)methanesulfonamide;
(2-(7-hydroxy-5,6-dimethylpyrazolo[l,5-a]pyrimidin-2-yl)piperidm-l-yl)(3,4,5trim ethoxyphenyl)rn ethanone;
N-(2-(2-(7-hydroxy-5,6-dimethyIpyrazolo[l,5-a]pyrimidin-2-yl)piperidine-lcarbonyl)phenyl)methanesulfbnamide; or (2-(6-fluoro-7-hydroxy-5-methylpyrazolo[ 1,5-a]pyrimidin-2-yl)piperidin-1-yl)(3,4,5trimethoxyphenyl)methanone.
Specific values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents. The specific values listed below are specific values for compounds of Formulas I-IX. It is to be understood that reference to a general Formula includes all of the subformulas for that Formula. Therefore, reference to Formula VII includes Formulas Vila, VHb and Vile unless otherwise stated and reference to Formulas I-IX includes Formulas I, la, II, Ila, III, IV, V, VI, VII, Vila, VÏIb, VIIc, VIII, Villa, VIHb, VIIIc and IX unless otherwise stated.
In one embodiment the invention includes compounds of Formula I.
In another embodiment the invention includes compounds of Formula VII.
A specific value for R is H.
A specific value for R isH.
A specific value for Y is CR7
A specific value for R7 is H, halogen or (C|--C8)alkyl.
Another specific value for R7 is H, fluoro, methyl or ethyl.
Another specific value for R7 is methyl.
A specific value for n is 3 or 4.
A specific group of compounds are compounds wherein R4 is H or optionally substituted (Cj-Cg)alkyl, or four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Ce aryl ring.
A specific group of compounds are compounds wherein one R4 group is H, CH3 or CF3 and the remaining R4 groups are H.
Another specific value for R4 is H.
A specific value for A is <CH2)3-, -(CH2)4-, -CH2-O-CH2-, -CH2-CH(CH3)-CH2-, -CH2-CH(CF3)-CH2-, -CH2-CH2-CH(CH3)- or the structure:
Another specific value for A is -(CH2)3-.
A specific value for X is -CRl3(NRlIC(O)ORI')-, -CRI3(NRI!Ri2)-, -CR13(NRllS(O)pRa)- or Xis absent.
Another specific value for X is -CH(NHC(O)OC(CH3)3)-, -CH(NHC(O)OCH3)-, -CH(NH2)-, -CH(NHS(O)2CH3)-, or X is absent.
A specific group of compounds are compounds wherein X is absent.
A specific value for R1 is H, OR11, NRnR12, NR^OjR11, NR^OjOR11, NRHC(O)NRHR12, N3, CN, NO2, SR11, S(O)pRa, NR’^COpR’, -C(=OjR11, -C(=O)OR11, C(=O)NRnR12, -C(=O)SRn, S(O)p(OR11), -SO2NRHR12, -NR’^OyOR11), -NR11SOpNR11R12, NR11C(=NR1I)NR11R12, halogen, (Q-Cgjalkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(Ci-Cg)alkyl, C6-C20 aryl, C2-C20 heterocyclyl, (C3-C7)cyclo alkyl or (C4-C8)carbocyclylalkyl, wherein any (Cj-Cg)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(CiC8)alkyl, Cs-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl of R1 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (CrC8)alkyl, (CrC8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2 , -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, -NORa, NRaS(O)pNHRa, NRaS(O) „N(Ra)2, NR‘S(O) pNH2, NHS(O) PNHR·, NHS(O) pN(R'h, NHS(O) PNH2, -OC(=O)R,
-OP(O)(OH)2 or Ra, provided R1 is not OH or CF3 when R8 is methyl or ethyl.
Another specific value for R1 is H, OR1', NR1!R12, NRllC(O)R“, NRÎ1C(O)OR11, NRilC(O)NR11R12, N3, CN, NO2, SR11, S(O)pRa, NRnS(O)pRa, -C(=O)Rn, -C(=O)ORn, C(=O)NRnR12, -C(=O)SRn, -S(O)p(ORu), -SO2NRllR12, -NRnS(O)p(OR11), 10 -NRllSOpNRnR12, NR11C(=NR11)NR1,R12,halogen, (Ci-C8)alkyl, (C2-C8)alkenyl, (C2-Cg)alkynyl, aryl(Ci-Cg)alkyl, C6-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl, wherein any (Ci-C8)alkyl, (C2-Cg)alkenyl, (C2-C8)alkynyl, aryl(CiC8)alkyl, C6-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-Cs)carbocyclylalkyl of R1 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, 15 SH, SRa, S(O)pRa, ORa, (Ci-C8)alkyl, (Cj-C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2 , -C(=O)NHRa , -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) PNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, 20 -OP(O)(OH)2 or Ra, provided R1 is not OH or CF3.
Another specific value for R1 is H, OR11, NRUR12, CN, (Ci C8)alkyl, Cs-C2o aryl, C2-C20 heterocyclyl, or (C3-C7)cycloalkyl, wherein any (Ci~C8)alkyl, Cô~C2o aryl, C2-C2o heterocyclyl or (C3-C7)cycloalkyl of R1 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (CrC8)alkyl, (Ci-C8)haloalkyl, 25 -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2, -C(=O)NHRa, -C(=O)NH2, NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O)pNH2, NHS(O)pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra.
Another specific value for R1 is H or C2-C20 heterocyclyl, wherein any C2-C2o heterocyclyl of R1 is optionally substituted with or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-C8)alkyl, (CrCgjhaloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2, -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa,
NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) PNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2,
NHS(O) pNH2, -0C(=O)Ra, -OP(O)(OH)2 or Ra.
Another specific value for R1 is H or C2-C2q heterocyclyl.
Another specific value for R1 is:
H I
Λ/W
OH I
Me I
JWV
NHMe I ^VW
NMe? I
ΛΛΛ/
N I
OH
Û
N !
</UW o
N
I iATW \
N—
OH
I
I
ΛΛΛ/ s
I
7WV
Y
JWV
O h-A !
»/wv
Q
I
Λνν
JWV
F
/WV °Υ^ν'η
I
JVW
ΛΛ/V \
JVW
I ’
JWV
Η Η Η
Another specific value for R1 is:
L
H I OH I Me I
1 ww I WW 1 1 ww
NHMe I /VW 1
H
ww
JWV
jwv
WW
WW
H H
ΆΛΛ/ Λ/vV
H
WW
I >
WW
F
JUW JVW ΛΛΛ/
ΛΛ/V
I •/wv
JWV
ô. 0 0- H î ^OH û N
1 JUW £ 1 ,αλλ/ 1 ,/vw N » 1 iJVW
J H Me
0 0 0 U ΟΓ
N
Another specific value for Rl is H, methyl or:
i
Another specific value for R1 is H, methyl, morpholinyl, piperazînyl or N10 methylpiperazinyl.
Another specific value for R1 is H or:
J™
Another specific value for R* is H or morpholinyl.
A specific value for Ar is a C6-C20 aryl group, wherein the C6-C2o aryl group is optionally substituted with 1 to 5 R6.
Another specific value for Ar is phenyl optionally substituted with 1 to 5 R6.
A specific value for R6 is OR11, NR^R12, NRllC(O)R11, NR11C(O)OR11, CN,
NRnS(O)pRa, -C(=O)NRnR12, -NR[1SOpNRllR12, halogen, (Ci-C8)alkyl, (C2-Cg)alkynyl,
C6-C20 aryl, C2-C2o heterocyclyl or (C3-C7)cycloalkyl, wherein any Ci-Cg) alkyl, (C2-Cg)alkynyl, C6-C2o aryl, C2-C20 heterocyclyl and (C3-C7)cycloalkyl of R6 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (CrCg)alkyl, (Ci-C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2 , -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) pNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -OP(0)(OH)2 or
Another specific value for R6 is NR^SfCOpR3, NR11C(O)OR1I,NR11C(0)R31, (Ci-C8)alkyl or halogen.
Another specific value for R6 is NRl1S(O)pRa, NR11C(O)OR11 or halogen.
A specific value for Ar is:
N c
ww
ΛΑλα
F
A/W1
aaaj
ΛΛΑΓ
λλλγ
ΛΛλα
VI
λλλ/
C
/VW
•jvw
jwv
ww
nh2
TJi/W' ^JW
nW
λ/W
»/WV
ΑΑΛΓ
uwv
ΛΛΛΓ
AtoV
c
JVW
OMe
//
Another specific value for Ar is:
Another specific value for Ar is:
A specific value for R8 is H, OR, NRhR!2, NRC(O)R, NRllC(O)OR11, NRC(O)NRR12, N3, CN, NO2, SRu, S(O)pRa, NRnS(O)pRa, -C(=O)Rn, -C(=O)ORn, C(-O)NRHR!2, -C(=O)SR1], -S(O)p(ORn), -SO2NRhR12, -NRllS(O)p(OR), -NRllSOpNRnR12, NR1,C(=NR11)NR11R12, halogen, (C1-C8)alkyl, (C2-C8) alkenyl, (C2-C8)alkynyl, aryI(Ci-C8)alkyl, C6-C20 aryl, C2-C20 heterocyclyl, (C3-C7)cyc Io alkyl or (C4-C8)carbocyclylalkyl, wherein any (Ci-C8)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(CiC8)alkyl, Cg-Qo aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl of R8 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Cj-CgJalkyl, (CrC8)haloaIkyl, -C(O)Ra, -C(O)H, -C(=O)ORa,
-C(=O)OH, -C(=O)N(Ra)2 , -C(=O)NHRa , -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra,
NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O)pNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra; provided R8 is not methyl or ethyl when R1 is OH or CF3.
Another specific value for R8is H, OR11, NRnR12, NRC(O)R, N^C^OR11,
NR1IC(O)NRI1R12, N3, CN, NO2, SR11, S(O)pRa, NRnS(O)pRa, -C(=O)RU, -C(=O)ORn, C(=O)NRR12, -C(=O)SRn, -S(O)p(OR), -SO2NRR12, -NRllS(O)p(ORn), -NR11SOpNRnR12, NR11C(-NR11)NR11R12, halogen, (Ci-C8)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(Ci-C8)alkyl, C6-C2o aryl, C2-C2q heterocyclyl, (C3-C7) cycloalkyl or »
(C4-C8)carbocyclylalkyl, wherein any (Ci~C8)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, arylfCiC8)alkyl, C6-C20 aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4~C8)carbocyclylalkyl of R8 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-C8)alkyl, (CrC8)haIoalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2 , -C(=O)NHRa , -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra,
NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2,
NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O)pNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -OP(0)(OH)2 or Ra; provided R8 is not methyl or ethyl.
Another specific value for R8 is H, ORn, NRnR32, NRnC(O)Ru, NR^CtOjOR11, NR31C(O)NR13R12, N3, CN, NO2, SR11, S(O)pRa, NR3IS(O)pRa, -C(=O)RU, -C(=O)ORn, 10 C(=O)NRnR12, -C(=O)SR31, -S(O)p(OR1]), -SC^NR1^12, -NRUS(O)P(OR11), -NR13SOPNR31R12, NR11C(=NR11)NR1(R12, halogen, (C3-Cs)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(Ci~C8)alkyl, Q-Ca aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4-Cg)carbocyclylalkyl, wherein any (C3-C8)alkyl, (C2-C8)alkenyl, (C2-Cg)alkynyl, arylfCjC8)alkyl, Cs-C2o aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl of R8 15 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Cj-C8)alkyl, (Ci-C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(~O)N(Ra)2, ~C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) 20 pN(Ra)2, NRaS(O) PNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra,
-OP(O)(OH)2 orRa.
Another specific value for R8 is H, NRnR12, NR11C(=NR11)NR1IR12, halogen, (Q-Cgjalkyl, (C2-C8)alkynyl, C^-Ca aryl, C2-C20 heterocyclyl or (C3-C7)cycloalkyl, wherein any (Ci-C8)alkyl, (C2-C8)alkynyl, C6-C2o aryl, C2-C2o heterocyclyl, or (C3-C7)cycloalkyl of R8 25 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (CrC8)aIkyl, (Ci-C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)0Ra, -C(=O)OH, -C(=O)N(Ra)2, -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) 30 pN(Ra)2, NRaS(O) PNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra.
Λ
Another specific value for R is C2~C2o heterocyclyl, wherein C2-C20 heterocyclyl is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-C8)alkyl, (Ci-C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH,
-C(=O)N(Ra)2 , -C(=O)NHR , -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NR C(O)R , NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) PNH2, NHS(O) PNHR\ NHS(O) pN(Ra)2, NHS(O) PNH2; -OC(=O)Ra, -OP(O)(OH)2 or Ra.
Another specific value for R8 is C2-C2o heterocyclyl, wherein C2-C2c heterocyclyl is optionally substituted with one or more hydroxy, NH2, CN or -OP(O)(OH)2.
Another specific value for R8 is pyrrolidinyl or azetidinyl, wherein pyrrolidînyl or azetidinyl is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-C8)alkyl, (CrCg)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2, -C(=0)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(0)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) pNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) pNH2, -OC(=O)Ra,-OP(O)(OH)2 or Ra.
Another specific value for R8 is pyrrolidinyl or azetidinyl, wherein pyrrolidinyl or azetidinyl is optionally substituted with one or more hydroxy, NH2, CN or -OP(O)(OH)2.
o
Another specific value for R is :
or
H ο
Another specific value for R is :
// \
c
XH XH
Ί Ό I Ϊ
1 H
O 'OH nh2
Ο
Another specific value for R is:
Another specific value for R8 is:
Q B
Another specific value for R is:
*
In one embodiment the compounds of Formulas I-IX do not include: (2-fluorophenyI)(2-(5~methyl-7-(trifluoromethyl)pyrazolo[ 1 35-a]pyrimidin~2-yl)piperidin-l yl)methanone;
2-(7-hydroxy-5-methylpyrazolo[l ;5-a]pyrimidiii-2-yl)piperidin-l -yl)(3,4,5trimethoxyph.enyl)m ethanone;
4-fluoro-3-(2-(7-hydroxy-5-methylpyrazolo[ 1,5-a]pyrimidin-2-yl)piperidine-l -carbonyl)-Nmethylbenzenesulfonamide;
N-(2- (2-(7 -hydro xy-5-methylp yrazolo[ 1,5-a]pyrimidin--2-yl)piperidine-1 carboiiyl)phenyl)methan esulfonamide;
(2-(5-ethyl-7-hydroxypyrazoio[ 1,5-a]pyrimidin-2-yl)piperidin-l -yl)(3,4,5trimethoxyphenyl)methanone;
N-(2-(2-(5-ethyl-7-hydroxypyrazolo[ 1,5-a]pyrimidin-2-yl)piperidine-1carbonyl)phenyl)methanesulfonamide;
(2-(7-hydroxy-5)6-dimethylpyrazolo[l15-a]pyrimidin-2-yl)piperidin-l-yl)(3,4,5trimethoxyphenyl)methanone;
N-(2-(2-(7-hydroxy-5,6-dimethylpyrazoIo[ 1,5-a]pyrirnidin-2-yl)piperidine-1 carbonyl)phenyl)methanesulfonamide; or (2-(6-fluoro-7-hydroxy~5-methylpyrazolo[l35-a]pyrimidin-2-yl)piperidin-l-yl)(334,5trimethoxyphenyl)m ethanone.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof by administering a therapeutically effective amount of a compound of Formula IX:
Formula IX or a pharmaceutically acceptable salt or ester thereof:
wherein:
A is -(C(R4)2)n- wherein any one C(R4)2 of said -(C(R4)2)n- may be optionally replaced with -0-, -S-, S(O)p-> NH orNRa;
n is 3,4, 5 or 6;
each p is 1 or 2;
Ar is a C2-C2o heterocyclyl group or a C5-C20 aryl group, wherein the C2-C2o heterocyclyl group or the C6-C2o aryl group is optionally substituted with 1 to 5 Rs ;
X is -(CR13R14)-, -N(CH2R14)- or X is absent;
YisNorCR7;
each R1, R2, R3, R4, R5, R6, R7 or R8 is independently H, oxo, OR1 *, NR1TR12, NRllC(0)R11, NRnC(O)ORn, NRnC(O)NRnR12, N3, CN, NO2, SR11, S(O)pRa, NRnS(O)pRa, C(=O)Rn, -C(=O)ORn, -C(=O)NR”R12, -C(=O)SRU, -S(O)p(ORH), -SO2NRnR12, NR1IS(O)p(ORn), -NRnSOpNRnR12, NR1 !C(=NR”)NRnR12, halogen, (Ci-C8)alkyl, (C2-C8)alkenyl, (C2-Cs)alkynyl, aryI(Ci-C8) alkyl, C6-C2o aryl, C2-C20 heterocyclyl, (C3C7)cycloalkyl or (Ch-Cgjcarbocyclyl alkyl;
two R4 on adjacent carbon, atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)P-, NH- or-NRa-;
four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Cg aryl ring;
two R4 on the same carbon atom, when taken together, may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)P-,-NH-or-NRa-;
two R6 on adjacent carbon atoms, when taken together, may form a (C3-C7) cyclo alkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)P-, -NH- or-NRa-;
ή 3 any R adjacent to the obligate carbonyl group of said Ar, when taken together with R , may form a bond or a -(C(R5)2)m- group wherein m is 1 or 2;
any R adjacent to the obligate carbonyl group of said Ar, when taken together with R , may form a bond;
each Ra is independently (Cj-Cg) alkyl, (Ci-C8)haloalkyl, (C2-Cg)alkenyl, (C^-Cgjalkynyl, aryl(Ci-C8)alkyl, C6-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl wherein any (Ci-C8)alkyl, (Ci-Cg)haloalkyl, (C2-C8)alkenyl or (C2C8)alkynyl of Ra is optionally substituted with one or more OH, NH2, CO2H, C2-C2o heterocyclyl, and wherein any aryl(C]-C8)alkyl, C6-C2o aryl, C2-C20 heterocyclyl, (C3C7)cycloalkyl or (C^Cgjcarbocyclylaikyl of Ra is optionally substituted with one or more OH, NH2, CO2H, C2-C2o heterocyclyl or (Ci-C8)alkyl;
each R11 or R12 is independently H, (Cj-Cgjalkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, aryl(Ci-C8)alkyl, C6-C20 aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl, (C^Cgjcarbocyclylalkyl, -C(=O)Ra, -S(O)pRa, or aryl(Ci-C8)alkyI; or R11 and R12 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(O)P-, -NH-, -NRa- or -C(O)-;
R13 is H or (Ci-Cg)alkyl;
R14 is H, (Ci-C8)alkyl, NRllRi2, NRnC(O)Rn, NR11C(O)OR11, NR^COjNR^R12, NRnS(O)pRa, -NRnS(O)p(ORn) orNR1ISOpNR11R12; and wherein each (Ci-Cg)alkyl, (C2-Cg) alkenyl, (C2-Cg)alkynyl, aryl(Ci-C8)alkyl, C6-C20 aryl, C2-C2û heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl of each R1, R2, R3, R4, R5, R6, R7, R8, R11 or R12 is, independently, optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-Cg)alkyl, (C2-
Cgjhaloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2, -C(=O)NHRa, -C(=O)NH2, NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, -NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) PNH2, NHS(O) pNHRa, NHS(O)pN(Ra)2, NHS(O)pNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof by administering a therapeutically effective amount of a racemate, enantiomer, diastereomer, tautomer, polymorph, pseudopolymorph, amorphous form, hydrate or solvate of a compound of Formula IX (compound of Formula IX as described above for the method of treating a Pneumovirinae infection), or a pharmaceutically acceptable salt or ester thereof.
In another embodiment, provided is a method treating a respiratory syncytial virus infection in a mammal in need thereof by administering a therapeutically effective amount of a compound of Formula IX (compound of Formula IX as described above for the method of treating a Pneumovirinae infection), or a pharmaceutically acceptable salt or ester thereof.
In another embodiment, provided is a method of treating a respiratory syncytial virus infection in a mammal in need thereof by administering a therapeutically effective amount of a racemate, enantiomer, diastereomer, tautomer, polymorph, pseudopolymorph, amorphous form, hydrate or solvate of a compound of a compound of Formula IX (compound of Formula IX as described above for the method of treating a Pneumovirinae infection), or a pharmaceutically acceptable salt or ester thereof.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof by administering a therapeutically effective amount of a compound of Formula IX (compound of Formula IX as described above for the method of treating a Pneumovirinae infection), or a pharmaceutically acceptable salt or ester thereof, in combination with a pharmaceutically acceptable diluent or carrier.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof by administering a therapeutically effective amount of a compound of Formula IX (compound of Formula IX as described above for the method of treating a Pneumovirinae infection), or a pharmaceutically acceptable salt or ester thereof in combination with at least one additional therapeutic agent.
In another embodiment, provided is a method of treating a Pneumovirinae infection in a mammal in need thereof, by administering a therapeutically effective amount of a combination pharmaceutical agent comprising:
a) a first pharmaceutical composition comprising a compound of Formula IX (compound of Formula IX as described above for the method of treating a Pneumovirinae infection); or a pharmaceutically acceptable salt or ester thereof; and
b) a second pharmaceutical composition comprising at least one additional therapeutic agent active against infectious Pneumovirinae viruses.
In another embodiment, provided is a method of treating a respiratory syncytial virus infection in a mammal in need thereof, by administering a therapeutically effective amount of a combination pharmaceutical agent comprising:
a) a first pharmaceutical composition comprising a compound of Formula IX (compound of Formula IX as described above for the method of treating a Pneumovirinae infection); or a pharmaceutically acceptable salt or ester thereof; and
b) a second pharmaceutical composition comprising at least one additional therapeutic agent active against infectious respiratory syncytial viruses.
In another embodiment, provided is the use of a compound of Formula EX (compound of Formula IX as described above for the method of treating a Pneumovirinae infection), or a pharmaceutically acceptable salt and/or ester thereof to treat a viral infection caused by a Pneumovirinae virus or a respiratory syncytial virus.
Some embodiments of the compounds of Formula I-IX specify that two R4 on adjacent carbon atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (Cj-Cyjcycloalkyl ring wherein one carbon atom of said (C3C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)P-, -NH- or -NRa-. Nonlimiting examples of these embodiments are:
Some embodiments of the compounds of Formula I-IX specify that four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Q aryl ring. Nonlimiting examples of these embodiments are:
Some embodiments of the compounds of Formula I-IX specify that two R4 on the same carbon atom, when taken together, may form a (Cs-Chjcycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)P-, -NH- or-NRa-. Non-limiting examples of these embodiments are:
c
Some embodiments of the compounds of Formula I-II specify that two R6 on adjacent carbon atoms, when taken together, may form a (Ca-Cyjcycloalkyl ring wherein one carbon atom of said (Cî-Cvjcycloalkyl ring may be optionally replaced by -O-, -S-, -S(0)p-, -NH- or -NRa-.
Non-limiting examples of these embodiments are:
Some embodiments of the compounds of Formula Ι-Π specify that any R6 adjacent to the obligate carbonyl group of Ar, when taken together with R3, may form a bond or a -(C(R5)2)ragroup wherein m is 1 or 2. Non-limiting examples of these embodiments are:
C
Some embodiments of the compounds of Formula HI specify that any R6 adjacent to the obligate carbonyl group Ar, when taken together with R2, may form a bond. Non-limiting examples of these embodiments are:
Γη another embodiment, the compounds of Formula I are selected from the group consisting of:
C
a a
c
c
OH
C
Ο
Cl
•Ο
Cl
N
Ο
Ο
Cl
C
N
C
I
ΞΕΖ
C
101
N
and pharmaceutically acceptable salts and esters thereof.
In another embodiment, the compounds of Formula I-IX are selected from the group consisting of:
104
and pharmaceutically acceptable salts and esters thereof.
In another embodiment, the compounds of Formula I-IX are selected from the group consisting of:
105
c
106
In another embodiment the compounds of Formula I-IX are selected from the compounds described in any one of Examples 258-412, and salts thereof.
In another embodiment, the compounds of Formula I-IX are selected from the group consisting of:
108
and pharmaceutically acceptable salts and esters thereof.
DEFINITIONS
Unless stated otherwise, the following terms and phrases as used herein are intended to have the following meanings:
When trade names are used herein, applicants intend to independently include the tradename product and the active pharmaceutical ingredient(s) of the tradename product.
As used herein, a compound of the invention or a compound of Formula I means a compound of Formula I or a pharmaceutically acceptable salt, thereof. Similarly, with respect to isolatable intermediates, the phrase a compound of Formula (number) means a compound of that formula and pharmaceutically acceptable salts, thereof.
“Alkyl” is hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms.
109
For example, an alky] group can have 1 to 20 carbon atoms (i.e, C]-C20 alkyl), 1 to 8 carbon atoms (i.e., Ci-Cg alkyl), or 1 to 6 carbon atoms (i.e., Cj-C6 alkyl). Examples of suitable alkyl groups include, but are not limited to, methyl (Me, -CH3), ethyl (Et, -CH2CH3), 1-propyl (n-Pr, n-propyl, -CH2CH2CH3), 2-propyl (i-Pr, i-propyl, -CH(CH3)2), 1-butyl (n-Bu, n-butyl, CH2CH2CH2CH3), 2-methyl-l-propyl (i-Bu, i-butyl, -CH2CH(CH3)2), 2-butyl (s-Bu, s-butyl, -CH(CH3)CH2CH3), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH3)3), 1-pentyl (n-pentyl, -CH2CH2CH2CH2CH3), 2-pentyl (-CH(CH3)CH2CH2CH3), 3-pentyl (-CH(CH2CH3)2), 2-methyl2-butyl (-C(CH3)2CH2CH3), 3-methyl-2-butyl (-CH(CH3)CH(CH3)2), 3-methyl-1-butyl (-CH2CH2CH(CH3)2), 2-methyl-l-butyl (-CH2CH(CH3)CH2CH3), 1-hexyl (-CH2CH2CH2CH2CH2CH3), 2-hexyl (-CH(CH3)CH2CH2CH2CH3), 3-hexyl (CH(CH2CH3)(CH2CH2CH3)), 2-methyl-2-pentyl (-C(CH3)2CH2CH2CH3), 3-methyl-2-pentyl (-CH(CH3)CH(CH3)CH2CH3), 4-methyl-2-pentyl (-CH(CH3)CH2CH(CH3)2), 3-methyl-3-pentyl (-C(CH3)(CH2CH3)2), 2-methyl-3-pentyl (-CH(CH2CH3)CH(CH3)2), 2,3-dimethyl-2-butyl (-C(CH3)2CH(CH3)2), 3,3-dimethyl-2-butyl (-CH(CH3)C(CH3)3, and octyl (-(CH2)7CH3).
“Alkoxy” means a group having the formula -O-alkyl, in which an alkyl group, as defined above, is attached to the parent molecule via an oxygen atom. The alkyl portion of an alkoxy group can have 1 to 20 carbon atoms (i.e., Ci-C2q alkoxy), 1 to 12 carbon atoms(i.e., CiC[2 alkoxy), or 1 to 6 carbon atoms(i.e., CT-(.7, alkoxy). Examples of suitable alkoxy groups include, but are not limited to, methoxy (-O-CH3 or-OMe), ethoxy (-OCH2CH3 or -OEt), tbutoxy (-O-C(CH3)3 or - OtBu) and the like.
“Haloalkyl” is an alkyl group, as defined above, in which one or more hydrogen atoms of the alkyl group is replaced with a halogen atom. The alkyl portion of a haloalkyl group can have 1 to 20 carbon atoms (i.e., C1-C20 haloalkyl), 1 to 12 carbon atoms(i.e., C1-C12 haloalkyl), or 1 to 6 carbon atoms(i.e., Ci-Cé alkyl). Examples of suitable haloalkyl groups include, but are not limited to, -CF3, -CHF2, -CFH2, -CH2CF3, and the like.
“Alkenyl” is a hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp2 double bond. For example, an alkenyl group can have 2 to 20 carbon atoms (i.e., C2-C2o alkenyl), 2 to 8 carbon atoms (i.e., C2C8 alkenyl), or 2 to 6 carbon atoms (i.e., C2-C6 alkenyl). Examples of suitable alkenyl groups include, but are not limited to, ethylene or vinyl (-CH-CH2), allyl (-CH2CH-CH2), cyclopentenyl (-C5H7), and 5-hexenyl (-CH2CH2CH2CH2CH=CH2).
HO “Alkynyl” is a hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp triple bond. For example, an alkynyl group can have 2 to 20 carbon atoms (i.e., C2-C20 alkynyl), 2 to 8 carbon atoms (i.e., C2C8 alkyne,), or 2 to 6 carbon atoms (i.e., C2-C6 alkynyl). Examples of suitable alkynyl groups include, but are not limited to, acetylenic (-OCH), propargyl (-CH2C=CH), and the like.
“Alkylene” refers to a saturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane. For example, an alkylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms. Typical alkylene radicals include, but are not limited to, methylene (-CH2-), 1,1-ethyl (-CH(CH3)-), 1,2-ethyl (-CEt2CH2~), 1,1-propyl (-CH(CH2CH3)-), 1,2-propyl (-CH2CH(CH3)-), 1,3-propyl (-CH2CH2CH2-), 1,4-butyI (-CH2CH2CH2CH2-), and the like.
“Alkenylene” refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene. For example, and alkenylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms. Typical alkenylene radicals include, but are not limited to, 1,2-ethylene (-CH-CH-).
“Alkynylene” refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne. For example, an alkynylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms. Typical alkynylene radicals include, but are not limited to, acetylene (-CL-C-), propargyl (-CH2C=C-), and 4-pentynyl (-CH2CH2CH2OC-).
“Amino” refers generally to a nitrogen radical which can be considered a derivative of ammonia, having the formula -N(X)2, where each “X” is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted carbocyclyl, substituted or unsubstituted heterocyclyl, etc. The hybridization of the nitrogen is approximately sp3. Nonlimiting types of amino include -NH2, -N(alkyl)2, -NH(alkyl), -N(carbocyclyl)2, -NH(carbocyclyl), N(heterocyclyl)2, -NH(heterocyclyl), -N(aryl)2, -NH(aryl), -N(alkyl)(aryl), -N(alkyl)(heterocyclyl), -N(carbocyclyl)(heterocyclyl), -N(aryl)(heteroaryl), -N(alkyl)(heteroaryl), etc. The term “alkylamino” refers to an amino group substituted with at least one alkyl group. Nonlimiting
111 examples of amino groups include -NH2, -NH(CH3), -N(CH3)2, -NH(CH2CH3), - N(CH2CH3)2, NH (phenyl), -N(phenyl)2, -NH(benzyl), -N(benzyl)2, etc. Substituted alkylamino refers generally to alkylamino groups, as defined above, in which at least one substituted alkyl, as defined herein, is attached to the amino nitrogen atom. Non-limiting examples of substituted alkylamino includes NH (alkylene-C(O)-OH), -NH(alkylene-C(O)-O-alkyl), -N(alkylene-C(O)-OH)2, -N(alkylene-C(O)O-alkyl)2, etc.
“Aryl” means an aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. For example, an aryl group can have 6 to 20 carbon atoms, 6 to 14 carbon atoms, or 6 to 10 carbon atoms. Typical aryl groups include, but are not limited to, radicals derived from benzene (e.g., phenyl), substituted benzene, naphthalene, anthracene, biphenyl, and the like.
“Arylalkyl” refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl radical. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-l-yl, naphthylmethyl, 2-naphthylethan-l-yl, naphthobenzyl, 2-naphthophenylethan-l-yl and the like. The arylalkyl group can comprise 7 to 20 carbon atoms, e.g., the alkyl moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms.
“Arylalkenyl” refers to an acyclic alkenyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp carbon atom, but also an sp carbon atom, is replaced with an aryl radical. The aryl portion of the arylalkenyl can include, for example, any of the aryl groups disclosed herein, and the alkenyl portion of the arylalkenyl can include, for example, any of the alkenyl groups disclosed herein. The arylalkenyl group can comprise 8 to 20 carbon atoms, e.g., the alkenyl moiety is 2 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms.
“Arylalkynyl” refers to an acyclic alkynyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, but also an sp carbon atom, is replaced with an aryl radical. The aryl portion of the arylalkynyl can include, for example, any of the aryl groups disclosed herein, and the alkynyl portion of the arylalkynyl can include, for example, any of the alkynyl groups disclosed herein. The arylalkynyl group can comprise 8 to 20 carbon atoms, e.g., the alkynyl moiety is 2 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms.
112
The term “substituted” in reference to alkyl, alkylene, aryl, arylalkyl, alkoxy, heterocyclyl, heteroaryl, carbocyclyl, etc., for example, “substituted alkyl”, “substituted alkylene”, “substituted aryl”, “substituted arylalkyl”, “substituted heterocyclyl”, and “substituted carbocyclyl”, unless otherwise indicated, means alkyl, alkylene, aryl, arylalkyl, heterocyclyl, carbocyclyl, respectively, in which one or more hydrogen atoms are each independently replaced with a non-hydrogen substituent. Typical substituents include, but are not limited to, -X, -Rb, -O', =0, -ORb, -SRb, -S', -NRb2, -N+Rb3, =NRb, -CX3, -CN, -OCN, -SCN, -N=C=O, -NCS, -NO, -NO2, =N2, -N3, -NHC(=O)Rb. -OC(=O)Rb, -NHC(=O)NRb2, -S(=O)2-, -S(=O)2OH, -S(=O)2Rb, -OS(=O)2ORb, -S(=O)2NRb2, -S(=O)Rb, -OP(=O)(ORb)2, -P(=O)(ORb)2, -P(=O)(O-)2, -P(=O)(OH)2, -P(O)(ORb)(O'), -C(-O)Rb, -C(=O)X, -C(S)Rb, -C(O)ORb, -0(0)0', ~C(S)ORb, -C(O)SRb, -C(S)SRb, -C(O)NRb2, -C(S)NRb2, -C(=NRb)NRb2, where each X is independently a halogen: F, Cl, Br, or I; and each Rb is independently H, alkyl, aryl, arylalkyl, a heterocycle, or a protecting group or prodrug moiety. Alkylene, alkenylene, and alkynylene groups may also be similarly substituted. Unless otherwise indicated, when the term substituted is used in conjunction with groups such as arylalkyl, which have two or more moieties capable of substitution, the substituents can be attached to the aryl moiety, the alkyl moiety, or both.
The term “prodrug” as used herein refers to any compound that when administered to a biological system generates the drug substance, i.e., active ingredient, as a result of spontaneous chemical reaction(s), enzyme catalyzed chemical reaction(s), photolysis, and/or metabolic chemical reaction(s). A prodrug is thus a covalently modified analog or latent form of a therapeutically active compound.
One skilled in the art will recognize that substituents and other moieties of the compounds of Formula I-IX should be selected in order to provide a compound which is sufficiently stable to provide a pharmaceutically useful compound which can be formulated into an acceptably stable pharmaceutical composition. Compounds of Formula I-VI which have such stability are contemplated as falling within the scope of the present invention.
“Heteroalkyl” refers to an alkyl group where one or more carbon atoms have been replaced with a heteroatom, such as, Ο, N, or S. For example, if the carbon atom of the alkyl group which is attached to the parent molecule is replaced with a heteroatom (e.g., Ο, N, or S) the resulting heteroalkyl groups are, respectively, an alkoxy group (e.g., -OCH3, etc.), an amine (e.g., -NHCH3, -N(CH3)2, etc.), or a thioalkyl group (e.g., -SCH3). If a non-terminal carbon atom of the alkyl group
113 which is not attached to the parent molecule is replaced with a heteroatom (e.g., Ο, N, or S) the resulting heteroalkyl groups are, respectively, an alkyl ether (e.g., -CH2CH2-O-CH3, etc.), an alkyl amine (e.g., -CH2NHCH3, -CH2N(CH3)2, etc.), or a thioalkyl ether (e.g.,-CH2-S-CH3). If a terminal carbon atom of the alkyl group is replaced with a heteroatom (e.g., Ο, N, or S), the resulting heteroalkyl groups are, respectively, a hydroxyalkyl group (e.g., -CH2CH2-OH), an aminoalkyl group (e.g., -CH2NH2), or an alkyl thiol group (e.g., -CH2CH2-SH). A heteroalkyl group can have, for example, 1 to 20 carbon atoms, I to 10 carbon atoms, or 1 to 6 carbon atoms. A Cj-Cé heteroalkyl group means a heteroalkyl group having 1 to 6 carbon atoms.
“Heterocycle” or “heterocyclyl” as used herein includes by way of example and not limitation those heterocycles described in Paquette, Leo A.; Principles of Modem Heterocyclic Chemistry (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; The Chemistry of Heterocyclic Compounds, A Series of Monographs” (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and J. Am. Chem. Soc. (1960) 82:5566. In one specific embodiment of the invention “heterocycle” includes a “carbocycle” as defined herein, wherein one or more (e.g. 1,2,3, or 4) carbon atoms have been replaced with a heteroatom (e.g. Ο, N, or S). The terms “heterocycle” or “heterocyclyl” includes saturated rings, partially unsaturated rings, and aromatic rings (i.e., heteroaromatic rings). Substituted heterocyclyls include, for example, heterocyclic rings substituted with any of the substituents disclosed herein including carbonyl groups. A non-limiting example of a carbonyl substituted heterocyclyl is:
N. AH
O
Examples of heterocycles include by way of example and not limitation pyridyl, dihydroypyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, 6H-l,2,5-thiadiazinyl, 2H,6H-l,5,2-dithiazinyl, thienyl, thianthrenyl,
114 pyranyl, isobenzofiiranyl, chromenyl, xanthenyl, phenoxathinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, lH-indazoly, purinyl, 4Hquinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazoIyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, isatinoyl, and bis-tetrahydrofuranyl:
By way of example and not limitation, carbon bonded heterocycles are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3,4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3,4, 5, 6, 7, or S of a quinoline or position 1, 3,4, 5, 6, 7, or 8 of an isoquinoline. Still more typically, carbon bonded heterocycles include 2-pyridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazoIyl, 4-thiazolyl, or 5thiazolyl.
By way of example and not limitation, nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3-pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazoline, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, lH-indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or β-carboline. Still more typically, nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1pyrazolyl, and 1-piperidinyl.
“Heterocyclylalkyl” refers to an acyclic alkyl radical in which one of the hydrogen atoms
115 bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkylene- moiety). Typical heterocyclyl alkyl groups include, but are not limited to heterocyclyI-CH2-, 2-(heterocyclyl)ethan-l-yl, and the like, wherein the “heterocyclyl” portion includes any of the heterocyclyl groups described above, including those described in Principles of Modem Heterocyclic Chemistry. One skilled in the art will also understand that the heterocyclyl group can be attached to the alkyl portion of the heterocyclyl alkyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclyl alkyl group comprises 3 to 20 carbon atoms, e.g., the alkyl portion of the arylalkyl group is 1 to 6 carbon atoms and the heterocyclyl moiety is 2 to 14 carbon atoms. Examples of heterocyclylalkyls include by way of example and not limitation 5-membered sulfur, oxygen, and/or nitrogen containing heterocycles such as thiazolylmethyl, 2-thiazolylethan-l-yl, imidazolylmethyl, oxazolylmethyl, thiadiazolyhnethyl, etc., 6-membered sulfur, oxygen, and/or nitrogen containing heterocycles such as piperidinylmethyl, piperazinylmethyl, morpholinylmethyl, pyridinylm ethyl, pyridizylmethyl, pyrimidylmethyl, pyrazinylmethyl, etc.
“Heterocyclylalkenyl” refers to an acyclic alkenyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, but also a sp2 carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkenylene- moiety). The heterocyclyl portion of the heterocyclyl alkenyl group includes any of the heterocyclyl groups described herein, including those described in Principles of Modem Heterocyclic Chemistry, and the alkenyl portion of the heterocyclyl alkenyl group includes any of the alkenyl groups disclosed herein. One skilled in the art will also understand that the heterocyclyl group can be attached to the alkenyl portion of the heterocyclyl alkenyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclyl alkenyl group comprises 4 to 20 carbon atoms, e.g., the alkenyl portion of the heterocyclyl alkenyl group is 2 to 6 carbon atoms and the heterocyclyl moiety is 2 to 14 carbon atoms.
“Heterocyclylalkynyl” refers to an acyclic alkynyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp carbon atom, but also an sp carbon atom, is replaced with a heterocyclyl radical (z.e., a heterocyclyl-alkynylene- moiety). The heterocyclyl portion of the heterocyclyl alkynyl group includes any of the heterocyclyl groups
116 described herein, including those described in Principles of Modem Heterocyclic Chemistry, and the alkynyl portion of the heterocyclyl alkynyl group includes any of the alkynyl groups disclosed herein. One skilled in the art will also understand that the heterocyclyl group can be attached to the alkynyl portion of the heterocyclyl alkynyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclyl alkynyl group comprises 4 to 20 carbon atoms, e.g., the alkynyl portion of the heterocyclyl alkynyl group is 2 to 6 carbon atoms and the heterocyclyl moiety is 2 to 14 carbon atoms.
“Heteroaryl” refers to an aromatic heterocyclyl having at least one heteroatom in the ring. Non-limiting examples of suitable heteroatoms which can be included in the aromatic ring include oxygen, sulfur, and nitrogen. Non-limiting examples of heteroaryl rings include all of those aromatic rings listed in the definition of “heterocyclyl”, including pyridinyl, pyrrolyl, oxazolyl, indolyl, isoindolyl, purinyl, furanyl, thienyl, benzofuranyl, benzothiophenyl, carbazolyl, imidazolyl, thiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, quinolyl, isoquinolyl, pyridazyl, pyrimidyl, pyrazyl, etc.
“Carbocycle” or “carbocyclyl” refers to a saturated (i.e., cycloalkyl), partially unsaturated (e.g., cycloakenyl, cycloalkadienyl, etc.) or aromatic ring having 3 to 7 carbon atoms as a monocycle, 7 to 12 carbon atoms as a bicycle, and up to about 20 carbon atoms as a polycycle. Monocyclic carbocycles have 3 to 7 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic carbocycles have 7 to 12 ring atoms, e.g., arranged as a bicyclo [4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged as a bicyclo [5,6] or [6,6] system, or spirofused rings. Non-limiting examples of monocyclic carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1 -cyclopent- 1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1cyclohex-l-enyl, l-cyclohex-2-enyI, l-cyclohex-3-enyl, and phenyl. Non-limiting examples of bicyclo carbocycles includes naphthyl, tetrahydronapthalene, and decaline.
“Cycloalkyl” refers to a saturated or partially unsaturated ring having 3 to 7 carbon atoms as a monocycle, 7 to 12 carbon atoms as a bicycle, and up to about 20 carbon atoms as a polycycle. Monocyclic cycloalkyl groups have 3 to 7 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic cycloalkyl groups have 7 to 12 ring atoms, e.g., arranged as a bicyclo (4,5), (5,5), (5,6) or (6,6) system, or 9 or 10 ring atoms arranged as a bi cyclo (5,6) or (6,6) system. Cycloalkyl groups include hydrocarbon mono-, bi-, and poly-cyclic rings, whether fused,
117 bridged, or spiro. Non-limiting examples of monocyclic carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-l-enyl, l-cyclopent-2-enyl, l-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, l-cyclohex-3-enyl, bicyclo[3.1.0]hex-6-yl and the like, “Carbocyclylalkyl” refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom is replaced with a carbocyclyl radical as described herein. Typical, but non-limiting, examples of carbocyclylalkyl groups include cyclopropylmethyl, cyclopropyl ethyl, cyclobutylmethyl, cyclopentylmethyl and cyclohexylmethyl.
“Arylheteroalkyl” refers to a heteroalkyl as defined herein, in which a hydrogen atom (which may be attached either to a carbon atom or a heteroatom) has been replaced with an aryl group as defined herein. The aryl groups may be bonded to a carbon atom of the heteroalkyl group, or to a heteroatom of the heteroalkyl group, provided that the resulting arylheteroalkyl group provides a chemically stable moiety. For example, an arylheteroalkyl group can have the general formulae -alkylene-O-aryl, -alkyl ene-O-alkyl en e-aryl, -alkyl en e-NH-aryl, -alkylene-NH-alkylene-aryl, -alkylene-S-aryl, - alkyl ene-S-alkyl en e-aryl, etc. In addition, any of the alkylene moieties in the general formulae above can be further substituted with any of the substituents defined or exemplified herein.
“Heteroarylalkyl” refers to an alkyl group, as defined herein, in which a hydrogen atom has been replaced with a heteroaryl group as defined herein. Non-limiting examples of heteroaryl alkyl include -C! pyndinyl, -CH2-pyrrolyl, -CH2-oxazolyl, -CH2-indolyl, -CH2-isoindolyl, -CH2-purinyl, -CH2-furanyl, -CH2-thienyl, -CH2-benzofuranyl, -CH2-benzothiophenyl, -CH2-carbazoIyl, -CH2-imidazolyl, -CH2-thiazolyl, -CH2-isoxazolyl, -CH2-pyrazolyl, -CH2-isothiazoIyl, -CH2-quinolyl, -CH2-isoquinolyl, -CH2-pyridazyl, -CH2-pyrimidyl, -CH2-pyrazyl, -CH(CH3)-pyridinyl, -CH(CH3)-pyrrolyl, -CH(CH3)-oxazolyl, -CH(CH3)-indolyl, -CH(CH3)-isoindolyl, -CH(CH3)-purinyl, -CH(CH3)-furanyl, -CH(CH3)-thienyl, -CH(CH3)-benzofuranyl, -CH(CH3)-benzothiophenyl, -CH(CH3)-carbazolyl, -CH(CH3)-imidazolyl, -CH(CH3)-thiazolyl, -CH(CH3)-isoxazolyi, -CHtCHjj-pyrazolyl, -CH(CH3)-isothiazolyl, -CH(CH3)-quinolyl, -CH(CH3)-isoquinolyl, -CH(CH3)-pyridazyl, -CH(CH3)-pyrimidyl, -CH(CH3)-pyrazyl, etc.
The term “optionally substituted” in reference to a particular moiety of the compound of Formula I-IX (e.g., an optionally substituted aryl group) refers to a moiety wherein all
118 substitutents are hydrogen or wherein one or more of the hydrogens of the moiety may be replaced by substituents such as those listed under the definition of “substituted” or as otherwise indicated.
The term “optionally replaced” in reference to a particular moiety of the compound of Formula I-IX (e.g., the carbon atoms of said (Ci-C8)alkyl may be optionally replaced by -0-, -S, or -NRa-) means that one or more of the methylene groups of the (C[-C8)alkyl may be replaced by 0, 1, 2, or more of the groups specified (e.g., -O-, -S-, or -NRa-).
Selected substituents comprising the compounds of Formula I-IX may be present to a recursive degree. In this context, “recursive substituent” means that a substituent may recite another instance of itself. The multiple recitations may be direct or indirect through a sequence of other substituents. Because of the recursive nature of such substituents, theoretically, a large number of compounds may be present in any given embodiment. One of ordinary skill in the art of medicinal chemistry understands that the total number of such substituents is reasonably limited by the desired properties of the compound intended. Such properties include, by way of example and not limitation, physical properties such as molecular weight, solubility or log P, application properties such as activity against the intended target, and practical properties such as ease of synthesis. Recursive substituents may be an intended aspect of the invention. One of ordinary skill in the art of medicinal chemistry understands the versatility of such substituents. To the degree that recursive substituents are present in an embodiment of the invention, they may recite another instance of themselves, 0, 1,2, 3, or 4 times.
The term “non-terminal carbon atom(s)” in reference to an alkyl, alkenyl, alkynyl, alkylene, alkenylene, or alkynylene moiety refers to the carbon atoms in the moiety that intervene between the first carbon atom of the moiety and the last carbon atom in the moiety. Therefore, by way of example and not limitation, in the alkyl moiety -CH2(C*)H2(C )H2CH3 or alkylene moiety -CH2(C*)H2(C*)H2CH2- the C* atoms would be considered to be the nonterminal carbon atoms.
Unless otherwise specified, the carbon atoms of the compounds of Formula I-IX are intended to have a valence of four. In some chemical structure representations where carbon atoms do not have a sufficient number of variables attached to produce a valence of four, the remaining carbon substituents needed to provide a valence of four should be assumed to be
119
“Protecting group” refers to a moiety of a compound that masks or alters the properties of a functional group or the properties of the compound as a whole. The chemical substructure of a protecting group varies widely. One function of a protecting group is to serve as an intermediate in the synthesis of the parental drug substance. Chemical protecting groups and strategies for protection/deprotection are well known in the art. See: Protective Groups in Organic Chemistry, Theodora W. Greene (John Wiley & Sons, Inc., New York, 1991. Protecting groups are often utilized to mask the reactivity of certain functional groups, to assist in the efficiency of desired chemical reactions, e.g. making and breaking chemical bonds in an ordered and planned fashion. Protection of functional groups of a compound alters other physical properties besides the reactivity of the protected functional group, such as the polarity, lipophilicity (hydrophobicity), and other properties which can be measured by common analytical tools. Chemically protected intermediates may themselves be biologically active or inactive.
Protected compounds may also exhibit altered, and in some cases, optimized properties in vitro and in vivo, such as passage through cellular membranes and resistance to enzymatic
120 degradation or sequestration. In this role, protected compounds with intended therapeutic effects may be referred to as prodrugs. Another function of a protecting group is to convert the parental drug into a prodrug, whereby the parental drug is released upon conversion of the prodrug in vivo. Because active prodrugs may be absorbed more effectively than the parental drug, prodrugs may possess greater potency in vivo than the parental drug. Protecting groups are removed either in vitro, in the instance of chemical intermediates, or in vivo, in the case of prodrugs. With chemical intermediates, it is not particularly important that the resulting products after deprotection, e.g. alcohols, be physiologically acceptable, although in general it is more desirable if the products are pharmacologically innocuous.
“Prodrug moiety” means a labile functional group which separates from the active inhibitory compound during metabolism, systemically, inside a cell, by hydrolysis, enzymatic cleavage, or by some other process (Bundgaard, Hans, “Design and Application of Prodrugs” in Textbook of Drug Design and Development (1991), P. Krogsgaard-Larsen and H. Bundgaard, Eds. Harwood Academic Publishers, pp. 113-191). Enzymes which are capable of an enzymatic activation mechanism with, for example any phosphate or phosphonate prodrug compounds of the invention, include but are not limited to, amidases, esterases, microbial enzymes, phospholipases, cholinesterases, and phosphases. Prodrug moieties can serve to enhance solubility, absorption and lipophilicity to optimize drug delivery, bioavailability and efficacy. A prodrug moiety may include an active metabolite or drug itself.
It is to be noted that all enantiomers, diastereomers, and racemic mixtures, tautomers, atropisomers, polymorphs, pseudopolymorphs of compounds within the scope of Formula I-IX and pharmaceutically acceptable salts thereof are embraced by the present invention. All mixtures of such enantiomers and diastereomers are within the scope of the present invention.
A compound of Formula I-IX and its pharmaceutically acceptable salts may exist as different polymorphs or pseudopolymorphs. As used herein, crystalline polymorphism means the ability of a crystalline compound to exist in different crystal structures. The crystalline polymorphism may result from differences in crystal packing (packing polymorphism) or differences in packing between different conformers of the same molecule (conformational polymorphism). As used herein, crystalline pseudopolymorphism means the ability of a hydrate or solvate of a compound to exist in different crystal structures. The pseudopolymorphs of the instant invention may exist due to differences in crystal packing (packing pseudopolymorphism)
I2l or due to differences in packing between different conformers of the same molecule (conformational pseudopolymorphism). The instant invention comprises all polymorphs and pseudopolymorphs of the compounds of Formula I-IX and their pharmaceutically acceptable salts.
A compound of Formula I-IX and its pharmaceutically acceptable salts may also exist as an amorphous solid. As used herein, an amorphous solid is a solid in which there is no longrange order of the positions of the atoms in the solid. This definition applies as well when the crystal size is two nanometers or less. Additives, including solvents, maybe used to create the amorphous forms of the instant invention. The instant invention comprises all amorphous forms of the compounds of Formula I-IX and their pharmaceutically acceptable salts.
The modifier about used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the degree of error associated with measurement of the particular quantity).
The term “treating”, as used herein, unless otherwise indicated, means reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition. The term “treatment”, as used herein, refers to the act of treating, as “treating” is defined immediately above.
The term “therapeutically effective amount”, as used herein, is the amount of compound of Formula I-IX present in a composition described herein that is needed to provide a desired level of drug in the secretions and tissues of the airways and lungs, or alternatively, in the bloodstream of a subject to be treated to give an anticipated physiological response or desired biological effect when such a composition is administered by the chosen route of administration. The precise amount will depend upon numerous factors, for example the particular compound of Formula I-IX, the specific activity of the composition, the delivery device employed, the physical characteristics of the composition, its intended use, as well as patient considerations such as severity of the disease state, patient cooperation, etc., and can readily be determined by one skilled in the art and in reference to the information provided herein.
The term “normal saline” means a water solution containing 0.9% (w/v) NaCl.
The term “hypertonic saline” means a water solution containing greater than 0.9% (w/v) NaCl. For example, 3% hypertonic saline would contain 3% (w/v) NaCl.
Any reference to the compounds of the invention described herein also includes a
122 reference to a physiologically acceptable salt thereof. Examples of physiologically acceptable salts of the compounds of the invention include salts derived from an appropriate base, such as an alkali metal or an alkaline earth (for example, Na+, Li+, K+> Ca+2 and Mg+^); ammonium and NR/ (wherein R is defined herein). Physiologically acceptable salts of a nitrogen atom or an amino group include (a) acid addition salts formed with inorganic acids, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, sulfamic acids, phosphoric acid, nitric acid and the like; (b) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, isethionic acid, lactobionic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, naphthalenedi sulfonic acid, polygalacturonic acid, malonic acid, sulfosalicylic acid, glycolic acid, 2-hydroxy-3-naphthoate, pamoate, salicylic acid, stearic acid, phthalic acid, mandelic acid, lactic acid, ethanesulfonic acid, lysine, arginine, glutamic acid, glycine, serine, threonine, alanine, isoleucine, leucine and the like; and (c) salts formed from elemental anions for example, chlorine, bromine, and iodine. Physiologically acceptable salts of a compound of a hydroxy group include the anion of said compound in combination with a suitable cation such as Na+ and NR/.
For therapeutic use, salts of active ingredients of the compounds of the invention will be physiologically acceptable, i.e. they will be salts derived from a physiologically acceptable acid or base. However, salts of acids or bases which are not physiologically acceptable may also find 25 use, for example, in the preparation or purification of a physiologically acceptable compound. All salts, whether or not derived from a physiologically acceptable acid or base, are within the scope of the present invention.
It is to be understood that the compositions herein comprise compounds of the invention in their un-ionized, as well as zwitterionic form, and combinations with stoichiometric amounts 30 of water as in hydrates.
The compounds of the invention, exemplified by Formula I-IX may have chiral centers, e.g. chiral carbon or phosphorus atoms. The compounds of the invention thus include racemic mixtures of all stereoisomers, including enantiomers, diastereomers, and atropisomers. In addition, the compounds of the invention include enriched or resolved optical isomers at any or 35 all asymmetric, chiral atoms. In other words, the chiral centers apparent from the depictions are
C
123 provided as the chiral isomers or racemic mixtures. Both racemic and diastereomeric mixtures, as well as the individual optical isomers isolated or synthesized, substantially free of their enantiomeric or diastereomeric partners, are all within the scope of the invention. The racemic mixtures are separated into their individual, substantially optically pure isomers through wellknown techniques such as, for example, the separation of diastereomeric salts formed with optically active adjuncts, e.g., acids or bases followed by conversion back to the optically active substances. In most instances, the desired optical isomer is synthesized by means of stereospecific reactions, beginning with the appropriate stereoisomer of the desired starting material.
The term chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term achiral refers to molecules which are superimposable on their mirror image partner.
The term stereoisomers refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
Diastereomer refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
Enantiomers refer to two stereoisomers of a compound which are non-superimposable mirror images of one another. Non-limiting examples of enantiomers of the instant invention are represented in Formula I-VI shown below wherein one position of chirality is marked with an asterisk.
R1 R1
Formula I
Formula II
124
Formula VI
c 125
R1 R1
ZA<L/'n' zA<j^// N'n^<R7
R2 X 1 R8 R2 X O
Ar 1 Ar
5 Formula VII Formula VIII
The chirality at the asterisk position is a feature of the invention of Formulas I- VIII. In one embodiment, the compounds of the invention of Formula I-VIII are at least 60% a single 10 enantiomer at the asterisk position. Preferably, the compounds of the invention of Formulas IVIII are at least 70% a single enantiomer at the asterisk position, more preferably at least 80% a single enantiomer, more preferably at least 90% a single enantiomer and most preferably at least 95% a single enantiomer. In one embodiment the preferred stereochemistry at the carbon marked with an asterisk as shown above for Formula I-VIII is the (S) stereochemistry. In 15 another embodiment the stereochemistry at the carbon marked with an asterisk as shown above for Formula I-VIII is the (R) stereochemistry.
Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms ¢1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley & 20 Sons, Inc., New York. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L or R and S are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes d and 1, D and L, or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with S, (-), or 1 meaning 25 that the compound is levorotatory while a compound prefixed with R, (+), or d is dextrorotatory.
For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has
c
126 been no stereoselection or stereospecificity in a chemical reaction or process. The terms racemic mixture and racemate refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
The compounds of Formula I-IX also include molecules that incorporate isotopes of the atoms specified in the particular molecules. Non-limiting examples of these isotopes include D, 10 T, 14C, 13C and l5N.
Whenever a compound described herein is substituted with more than one of the same designated group, e.g., R or R1 , then it will be understood that the groups may be the same or different, î.e., each group is independently selected. Wavy lines, , indicate the site of covalent bond attachments to the adjoining substructures, groups, moieties, or atoms.
The compounds of the invention can also exist as tautomeric isomers in certain cases.
Although only one delocalized resonance structure may be depicted, all such forms are contemplated within the scope of the invention. For example, ene-amine tautomers can exist for purine, pyrimidine, imidazole, guanidine, amidine, and tetrazole systems and all their possible tautomeric forms are within the scope of the invention. A non-limiting example of tautomerism in the compounds of Formula I-IX is shown below as tautomer A and tautomer B.
Pharmaceutical Formulations
The compounds of this invention are formulated with conventional carriers and excipients, which will be selected in accord with ordinary practice. Tablets will contain excipients, glidants, fillers, binders and the like. Aqueous formulations are prepared in sterile form, and when intended for delivery by other than oral administration generally will be isotonic. All formulations will optionally contain excipients such as those set forth in the
127
Handbook of Pharmaceutical Excipients (1986). Excipients include ascorbic acid and other antioxidants, chelating agents such as EDTA, carbohydrates such as dextran, hydroxyalkylcellulose, hydroxyalkylmethylcellulose, stearic acid and the like. The pH of the formulations ranges from about 3 to about 11, but is ordinarily about 7 to 10.
While it is possible for the active ingredients to be administered alone it may be preferable to present them as pharmaceutical formulations. The formulations, both for veterinary and for human use, of the invention comprise at least one active ingredient, as above defined, together with one or more acceptable carriers and optionally other therapeutic ingredients, particularly those additional therapeutic ingredients as discussed herein. The carrier(s) must be acceptable in the sense of being compatible with the other ingredients of the formulation and physiologically innocuous to the recipient thereof.
The formulations include those suitable for the foregoing administration routes. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Techniques and formulations generally are found in Remington's Pharmaceutical Sciences (Mack Publishing Co., Easton, PA). Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be administered as a bolus, electuary or paste.
A tablet is made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent. The tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient
128 therefrom.
For infections of the eye or other external tissues e.g. mouth and skin, the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w (including active ingredient(s) in a range between 0.1% and 20% in increments of 0.1% w/w such as 0.6% w/w, 0.7% w/w, etc.), preferably 0.2 to 15% w/w and most preferably 0.5 to 10% w/w. When formulated in an ointment, the active ingredients maybe employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with an oil-in-water cream base.
If desired, the aqueous phase of the cream base may include, for example, at least 30% w/w of a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof. The topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulphoxide and related analogs.
The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.
Emulgents and emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties. The cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene
129 glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils are used.
Pharmaceutical formulations according to the present invention comprise a combination according to the invention together with one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents. Pharmaceutical formulations containing the active ingredient may be in any form suitable for the intended method of administration. When used for oral use for example, tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs may be prepared. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation. Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable. These excipients may be, for example, inert diluents, such as calcium or sodium carbonate, lactose, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, or alginic acid; binding agents, such as starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets may be un coated or may be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed.
Formulations for oral use may be also presented as hard gelatin capsules where the active ingredient is mixed with an inert solid diluent, for example calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, such as peanut oil, liquid paraffin or olive oil.
Aqueous suspensions of the invention contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients include a suspending agent, such as sodium carboxymethylcellulose, methyl cellulose, hydroxypropyl
130 methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally-occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate). The aqueous suspension may also contain one or more preservatives such as ethyl or n-propyl phydroxy-benzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin.
Oil suspensions may be formulated by suspending the active ingredient in a vegetable oil, such as arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oral suspensions may contain a thickening agent, such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents, such as those set forth above, and flavoring agents maybe added to provide a palatable oral preparation. These compositions may be preserved by the addition of an antioxidant such as ascorbic acid.
Dispersible powders and granules of the invention suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent, and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those disclosed above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
The pharmaceutical compositions of the invention may also be in the form of oil-inwater emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, a mineral oil, such as liquid paraffin, or a mixture of these. Suitable emulsifying agents include naturally-occurring gums, such as gum acacia and gum tragacanth, naturally-occurring phosphatides, such as soybean lecithin, esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan monooleate, and condensation products of these partial esters with ethylene oxide, such as polyoxyethylene sorbitan monooleate. The emulsion may also contain sweetening and flavoring agents. Syrups and elixirs maybe formulated with sweetening agents, such as glycerol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, a flavoring or a coloring agent.
I3l
The pharmaceutical compositions of the invention may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butane-diol or prepared as a lyophilized powder. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile fixed oils may conventionally be employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid may likewise be used in the preparation of injectables.
The amount of active ingredient that may be combined with the carrier material to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weight: weight). The pharmaceutical composition can be prepared to provide easily measurable amounts for administration. For example, an aqueous solution intended for intravenous infusion may contain from about 3 to 500 pg of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.
Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient. The active ingredient is preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10%, and particularly about 1.5% w/w.
Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
c
132
Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.
Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 microns, such as 0.5, 1, 30, 35 etc., which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs. Suitable formulations include aqueous or oily solutions of the active ingredient. Formulations suitable for aerosol or dry powder administration may be prepared according to conventional methods and may be delivered with other therapeutic agents such as compounds heretofore used in the treatment or prophylaxis of Pneumovirinae infections as described below.
In another aspect, the invention is a novel, efficacious, safe, nonirritating and physiologically compatible inhalable composition comprising a compound of Formula I-IX, or a pharmaceutically acceptable salt thereof, suitable for treating Pneumovirinae infections and potentially associated bronchiolitis. Preferred pharmaceutically acceptable salts are inorganic acid salts including hydrochloride, hydrobromide, sulfate or phosphate salts as they may cause less pulmonary irritation. Preferably, the inhalable formulation is delivered to the endobronchial 20 space in an aerosol comprising particles with a mass median aerodynamic diameter (MMAD) between about 1 and about 5 pm. Preferably, the compound of Formula I-IX is formulated for aerosol delivery using a nebulizer, pressurized metered dose inhaler (pMDI), or dry powder inhaler (DPI).
Non-limiting examples of nebulizers include atomizing, jet, ultrasonic, pressurized, vibrating porous plate, or equivalent nebulizers including those nebulizers utilizing adaptive aerosol delivery technology (Denyer, J. Aerosol medicine Pulmonary Drug Delivery 2010, 23 Supp 1, S1-S10). A jet nebulizer utilizes air pressure to break a liquid solution into aerosol droplets. An ultrasonic nebulizer works by a piezoelectric crystal that shears a liquid into small aerosol droplets. A pressurized nebulization system forces solution under pressure through small pores to generate aerosol droplets. A vibrating porous plate device utilizes rapid vibration to shear a stream of liquid into appropriate droplet sizes.
In a preferred embodiment, the formulation for nebulization is delivered to the endobronchial space in an aerosol comprising particles with a MMAD predominantly between about 1 pm and about 5 pm using a nebulizer able to aerosolize the formulation of the compound of Formula I-IX into particles of the required MMAD. To be optimally
133 therapeutically effective and to avoid upper respiratory and systemic side effects, the majority of aerosolized particles should not have a MMAD greater than about 5 pm. If an aerosol contains a large number of particles with a MMAD larger than 5 μηι, the particles are deposited in the upper airways decreasing the amount of drug delivered to the site of inflammation and bronchoconstriction in the lower respiratory tract. If the MMAD of the aerosol is smaller than about I pm , then the particles have a tendency to remain suspended in the inhaled air and are subsequently exhaled during expiration.
When formulated and delivered according to the method of the invention, the aerosol formulation for nebulization delivers a therapeutically efficacious dose of the compound of Formula I-IX to the site of Pneumovirinae infection sufficient to treat the Pneumovirinae infection. The amount of drug administered must be adjusted to reflect the efficiency of the delivery of a therapeutically efficacious dose of the compound of Formula I-IX. In a preferred embodiment, a combination of the aqueous aerosol formulation with the atomizing, jet, pressurized, vibrating porous plate, or ultrasonic nebulizer permits, depending on the nebulizer, about, at least, 20, to about 90%, typically about 70% delivery of the administered dose of the compound of Formula I-IX into the airways. In a preferred embodiment, at least about 30 to about 50% of the active compound is delivered. More preferably, about 70 to about 90% of the active compound is delivered.
In another embodiment of the instant invention, a compound of Formula I-IX or a pharmaceutically acceptable salt thereof, is delivered as a dry inhalable powder. The compounds of the invention are administered endobronchially as a dry powder formulation to efficacious deliver fine particles of compound into the endobronchial space using dry powder or metered dose inhalers. For delivery by DPI, the compound of Formula I-IX is processed into particles with, predominantly, MMAD between about 1 pm and about 5 pm by milling spray drying, critical fluid processing, or precipitation from solution. Media milling, jet milling and spray-drying devices and procedures capable of producing the particle sizes with a MMAD between about 1 pm and about 5 pm are well known in the art. In one embodiment, excipients are added to the compound of Formula I-IX before processing into particles of the required sizes. In another embodiment, excipients are blended with the particles of the required size to aid in dispersion of the drug particles, for example by using lactose as an excipient.
134
Particle size determinations are made using devices well known in the art. For example a multi-stage Anderson cascade impactor or other suitable method such as those specifically cited within the US Pharmacopoeia Chapter 601 as characterizing devices for aerosols within metered-dose and dry powder inhalers.
In another preferred embodiment, a compound of Formula I-IX is delivered as a dry powder using a device such as a dry powder inhaler or other dry powder dispersion devices. Non-limiting examples of dry powder inhalers and devices include those disclosed in
US5,3 88,572. There are two major designs of dry powder inhalers. One design is a metering device in which a reservoir for the drug is place within the device and the patient adds a dose of the drug into the inhalation chamber. The second design is a factory-metered device in which each individual dose has been manufactured in a separate container. Both systems depend on the formulation of the drug into small particles of MMAD from 1 pm and about 5 pm, and often involve co-formulation with larger excipient particles such as, but not limited to, lactose. Drug powder is placed in the inhalation chamber (either by device metering or by breakage of a factory-metered dosage) and the inspiratory flow of the patient accelerates the powder out of the device and into the oral cavity. Non-laminar flow characteristics of the powder path cause the excipient-drug aggregates to decompose, and the mass of the large excipient particles causes their impaction at the back of the throat, while the smaller drug particles are deposited deep in the lungs. In preferred embodiments, a compound of Formula I-IX, or a pharmaceutically acceptable salt thereof, is delivered as a dry powder using either type of dry powder inhaler as described herein, wherein the MMAD of the dry powder, exclusive of any excipients, is predominantly in the range of 1 pm to about 5 pm.
In another preferred embodiment, a compound of Formula I-IX is delivered as a dry powder using a metered dose inhaler. Non-limiting examples of metered dose inhalers and devices include those disclosed in US5,261,538; US5,544,647; US5,622,163; US4,955,371; US3,565,070; US3,361306 and US6,116,234. In preferred embodiments, a compound of Formula I-IX, or a pharmaceutically acceptable salt thereof, is delivered as a dry powder using a metered dose inhaler wherein the MMAD of the dry powder, exclusive of any excipients, is predominantly in the range of about 1-5 pm.
135
Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
The formulations are presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use. Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described. Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
The invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier therefor.
Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered orally, parenterally or by any other desired route.
Compounds of the invention are used to provide controlled release pharmaceutical formulations containing as active ingredient one or more compounds of the invention (controlled release formulations) in which the release of the active ingredient are controlled and regulated to allow less frequency dosing or to improve the pharmacokinetic or toxicity profile of a given active ingredient.
Effective dose of active ingredient depends at least on the nature of the condition being treated, toxicity, whether the compound is being used prophylactically (lower doses) or against
136 an active viral infection, the method of delivery, and the pharmaceutical formulation, and will be determined by the clinician using conventional dose escalation studies. It can be expected to be from about 0.0001 to about 100 mg/kg body weight per day; typically, from about 0.01 to about 10 mg/kg body weight per day; more typically, from about .01 to about 5 mg/kg body weight per day; most typically, from about .05 to about 0.5 mg/kg body weight per day. For example, the daily candidate dose for an adult human of approximately 70 kg body weight will range from 1 mg to 1000 mg, preferably between 5 mg and 500 mg, and may take the form of single or multiple doses.
Routes of Administration
One or more compounds of the invention (herein referred to as the active ingredients) are administered by any route appropriate to the condition to be treated. Suitable routes include oral, rectal, nasal, pulmonary, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural), and the like. It will be appreciated that the preferred route may vary with for example the condition of the recipient. An advantage of the compounds of this invention is that they are orally bioavailable and can be dosed orally.
Combination Therapy
Compositions of the invention are also used in combination with other active ingredients. For the treatment of Pneumovirinae virus infections, preferably, the other active therapeutic agent is active against Pneumovirinae virus infections, particularly respiratory syncytial virus infections. Non-limiting examples of these other active therapeutic agents are ribavirin, palivizumab, motavizumab, RSV-IGIV (RespiGam®), MEDI-557, A-60444 (also known as RSV604), MDT-637, BMS-433771, ALN-RSV0, ALX-0171 and mixtures thereof.
Many of the infections of the Pneumovirinae viruses are respiratory infections. Therefore, additional active therapeutics used to treat respiratory symptoms and sequelae of infection may be used in combination with the compounds of Formula I-IX. The additional agents are preferably administered orally or by direct inhalation. For example, other preferred additional therapeutic agents in combination with the compounds of Formula I-IX for the treatment of viral respiratory infections include, but are not limited to, bronchodilators and corticosteroids.
137
Glucocorticoids, which were first introduced as an asthma therapy in 1950 (Carryer, Journal of Allergy, 21, 282-287, 1950), remain the most potent and consistently effective therapy for this disease, although their mechanism of action is not yet fully understood (Morris, J, Allergy Clin. Immunol., 75 (1 Pt) 1-13, 1985). Unfortunately, oral glucocorticoid therapies are associated with profound undesirable side effects such as truncal obesity, hypertension, glaucoma, glucose intolerance, acceleration of cataract formation, bone mineral loss, and psychological effects, all of which limit their use as long-term therapeutic agents (Goodman and Gilman, 10th edition, 2001). A solution to systemic side effects is to deliver steroid drugs directly to the site of inflammation. Inhaled corticosteroids (ICS) have been developed to mitigate the severe adverse effects of oral steroids. Non-limiting examples of corticosteroids that may be used in combinations with the compounds of Formula I-IX are dexamethasone, dexamethasone sodium phosphate, fluoromethoIone, fluoromethoIone acetate, loteprednol, loteprednol etabonate, hydrocortisone, prednisolone, fludrocortisones, triamcinolone, triamcinolone acetonide, betamethasone, beclomethasone diproprionate, methylprednisolone, fluocinolone, fluocinolone acetonide, flunisolide, fluocortin-21-butylate, flumethasone, flumetasone pivalate, budesonide, halobetasol propionate, mometasone furoate, fluticasone propionate, ciclesonide; or a pharmaceutically acceptable salts thereof.
Other anti-inflamatory agents working through anti-inflamatory cascade mechanisms are also useful as additional therapeutic agents in combination with the compounds of Formula I-IX for the treatment of viral respiratory infections. Applying “anti-inflammatory signal transduction modulators” (referred to in this text as AISTM), like phosphodiesterase inhibitors (e.g. PDE-4, PDE-5, or PDE-7 specific), transcription factor inhibitors (e.g. blocking NFkB through IKK inhibition), or kinase inhibitors (e.g. blocking P38 MAP, JNK, PI3K, EGFR or Syk) is a logical approach to switching off inflammation as these small molecules target a limited number of common intracellular pathways - those signal transduction pathways that are critical points for the anti-inflammatory therapeutic intervention (see review by P.J. Barnes, 2006). These nonlimiting additional therapeutic agents include: 5-(2,4-Difluoro-phenoxy)-l-isobutyl-lHindazole-6-carboxylic acid (2-dimethylamino-ethyl)-amide (P38 Map kinase inhibitor ARRY797); 3-Cyclopropylmethoxy-N-(3,5-dichloro-pyridin-4-yl)-4-difluorormethoxy-benzamide (PDE-4 inhibitor Roflumilast); 4-[2-(3-cyclopentyloxy-4-methoxyphenyl)-2-phenyl-ethyljpyridine (PDE-4 inhibitor CDP-840); N-(3,5-di chi oro-4-pyridiny!)-4-( di fluoromethoxy)-816278
138 ((methylsulfonyl)aminoj-l-dibenzofiirancarboxamide (PDE-4 inhibitor Oglemilast); N-(3,5Dichloro-pyridin-4-yI)-2-[l-(4-fluorobenzyl)-5-hydroxy-lH-indol-3-yl]-2-oxo-acetamide (PDE4 inhibitor AWD 12-281); 8-Methoxy-2-trifluoromethyl-quinoline-5-carboxylic acid (3,5dichloro-l-oxy-pyridin-4-yl)-amide (PDE-4 inhibitor Sch 351591); 4-[5-(4-Fluorophenyl)-2-(4methanesulfinyl-phenyl)-! H-imidazol-4-yl]-pyridine (P38 inhibitor SB-203850); 4-(4-(410 Fluoro-phenyl)-! -(3-phenyl-propyl)-5-pyridin-4-yl-lH-imidazoI-2-yl]-but-3-yn-l-ol (P38 inhibitor RWJ-67657); 4-Cyano-4-(3-cyclopentyloxy-4-methoxy-phenyl)cyclohexanecarboxylic acid 2-diethylamino-ethyl ester (2-diethyl-ethyl ester prodrug of Cilomilast, PDE-4 inhibitor); (3-Chloro-4-fluorophenyl)-[7-methoxy-6-(3-morpholin-4-ylpropoxy)-quinazoIin-4-yl]-amine (Gefitinib, EGFR inhibitor); and 4-(4-Methyl-piperazin-115 ylmethyl)-N-[4-rnethyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide (Imatinib, EGFR inhibitor).
Combinations comprising inhaled p2-adrenoreceptor agonist bronchodilators such as formoterol, albuterol or salmeterol with the compounds of Formula I-IX are also suitable, but non-limiting, combinations useful for the treatment of respiratory viral infections.
Combinations of inhaled p2-adrenoreceptor agonist bronchodilators such as formoterol or salmeterol with ICS’s are also used to treat both the bronchoconstriction and the inflammation (Symbicort® and Advair®, respectively). The combinations comprising these ICS and p2-adrenoreceptor agonist combinations along with the compounds of Formula I-IX are also suitable, but non-limiting, combinations useful for the treatment of respiratory viral infections.
For the treatment or prophylaxis of pulmonary broncho-constriction, anticholinergics are of potential use and, therefore, useful as an additional therapeutic agents in combination with the compounds of Formula I-IX for the treatment of viral respiratory infections. These anticholinergics include, but are not limited to, antagonists of the muscarinic receptor (particularly of the M3 subtype) which have shown therapeutic efficacy in man for the control of cholinergic tone in COPD (Witek, 1999); l-(4-Hydroxy-l-[3,3,3-tris-(4-fluoro-phenyl)propionyl]-pyrrolidine-2-carbonyI] -pyrrolidine-2-carboxylic acid (1-methyl-piperidin-4ylmethyl)-amide; 3-(3-(2-Diethyl amino-acetoxy)-2-phenyl-propionyloxy]-8-isopropyl-8-methyl8-azonia-bicyclo[3.2.1]octane (Ipratropium-N,N-diethylglycinate); 1 -Cyclohexyl-3,4-dihydro35 lH-isoquinoline-2-carboxylic acid l-aza-bicyclo[2.2.2]oct-3-yl ester (Solifenacin); 216278
139
Hydroxymethyl-4-methanesulfinyl-2-phenyl-butyric acid l-aza-bieyclo[2.2.2]oct-3-yl ester (Revatropate); 2-{1-(2-(2,3-Dihydro-benzofuran-5-yl)-ethyl]-pyrrolidin-3-yl}-2,2-diphenylacetamide (Darifenacin); 4-Azepan-l-yl-2,2-diphenyl-butyramide (Buzepide); 7-(3-(2Diethylamino-acetoxy)-2-phenyl-propionyloxy]-9-ethyl-9-methyl-3-oxa-9-azoniatricyclo[3.3.1.02,4]nonane (Oxitropium-N,N-diethylglycinate); 7-[2-(2-Diethylamino-acetoxy)2,2-di-thiophen-2-yl-acetoxy]-9,9-dimethyl-3-oxa-9-azonia-tricyclo[3.3.l.02,4]nonane (Tiotropium-N,N-diethylglycinate); Dimethylamino-acetic acid 2-(3-diisopropylamino-lphenyl-propyl)-4-methyl-phenyl ester (Tolterodine-N,N-dimethylglycinate); 3-(4,4-Bis-(4fluoro-phenyl)-2-oxo-imidazoIidin-l-yl]-l-methyl-l-(2-oxo-2-pyridin-2-yl-ethyl)-pyrrolidinium; l-[l-(3-Fluoro-benzyl)-piperidin-4-yl]-4,4-bis-(4-fluoro-phenyl)-imidazolidin-2-one; 1Cyclooctyl-3-(3-methoxy-l-aza-bicyclo[2.2.2]oct-3-yl)-l-phenyl-prop-2-yn-l-ol; 3-(2-(2Diethylamino-acetoxy)-2,2-di-thiophen-2-yl-acetoxy]-l-(3-phenoxy-propyl)-l-azoniabicyclo(2.2.2]octane (Aclidinium-N,N-diethyl glycinate); or (2-Diethylamino-acetoxy)-dithiophen-2-yl-acetic acid l-methyl-l-(2-phenoxy-ethyl)-piperidin-4-yl ester.
The compounds of Formula I-IX may also be combined with mucolytic agents to treat both the infection and symptoms of respiratory infections. A non-limiting example of a mucolytic agent is ambroxol. Similarly, the compounds of Formula I-IX maybe combined with expectorants to treat both the infection and symptoms of respiratory infections. A non-limiting example of an expectorant is guaifenesin.
Nebulized hypertonic saline is used to improve immediate and long-term clearance of small airways in patients with lung diseases (Kuzik, J. Pediatrics 2007, 266). The compounds of Formula I-IX may also be combined with nebulized hypertonic saline particularly when the Pneumovirinae virus infection is complicated with bronchiolitis. The combination of the compounds of Formula I-IX with hypertonic saline may also comprise any of the additional agents discussed above. In a preferred aspect, nebulized about 3% hypertonic saline is used.
It is also possible to combine any compound of the invention with one or more additional active therapeutic agents in a unitary dosage form for simultaneous or sequential administration to a patient. The combination therapy may be administered as a simultaneous or sequential regimen. When administered sequentially, the combination may be administered in two or more administrations.
140
Co-administration of a compound of the invention with one or more other active therapeutic agents generally refers to simultaneous or sequential administration of a compound of the invention and one or more other active therapeutic agents, such that therapeutically effective amounts of the compound of the invention and one or more other active therapeutic agents are both present in the body of the patient.
Co-administration includes administration of unit dosages of the compounds of the invention before or after administration of unit dosages of one or more other active therapeutic agents, for example, administration of the compounds of the invention within seconds, minutes, or hours of the administration of one or more other active therapeutic agents. For example, a unit dose of a compound of the invention can be administered first, followed within seconds or minutes by administration of a unit dose of one or more other active therapeutic agents. Alternatively, a unit dose of one or more other therapeutic agents can be administered first, followed by administration of a unit dose of a compound of the invention within seconds or minutes. In some cases, it may be desirable to administer a unit dose of a compound of the invention first, followed, after a period of hours (e.g., l-l 2 hours), by administration of a unit dose of one or more other active therapeutic agents. In other cases, it may be desirable to administer a unit dose of one or more other active therapeutic agents first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of a compound of the invention.
The combination therapy may provide “synergy” and “synergistic”, i.e. the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately. A synergistic effect may be attained when the active ingredients are: (I) co-formulated and administered or delivered simultaneously in a combined formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen. When delivered in alternation therapy, a synergistic effect may be attained when the compounds are administered or delivered sequentially, e.g. in separate tablets, pills or capsules, or by different injections in separate syringes. In general, during alternation therapy, an effective dosage of each active ingredient is administered sequentially, i.e. serially, whereas in combination therapy, effective dosages of two or more active ingredients are administered together. A synergistic anti-viral effect denotes an antiviral effect which is greater than the predicted purely additive effects of the individual compounds of the combination.
I41
In still yet another embodiment, the present application provides for methods of treating Pneumovirinae virus infection in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I-IX, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
In still yet another embodiment, the present application provides for methods of treating Pneumovirinae virus infection in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I-IX, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and at least one additional active therapeutic agent.
In still yet another embodiment, the present application provides for methods of treating Human respiratory syncytial virus infection in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I-IX, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and at least one additional active therapeutic agent.
Metabolites of the Compounds of the Invention
Also falling within the scope of this invention are the in vivo metabolic products of the compounds described herein, to the extent such products are novel and unobvious over the prior art. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes novel and unobvious compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products typically are identified by preparing a radiolabelled (e.g. or ^H) compound of the invention, administering it parenterally in a detectable dose (e.g. greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples. These products are easily isolated since they are labeled (others are isolated by the use of antibodies capable of binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, e.g. by MS or NMR analysis. In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well-known to those skilled in the art. The conversion products, so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the
142 compounds of the invention even if they possess no HS V antiviral activity of their own.
Recipes and methods for determining stability of compounds in surrogate gastrointestinal secretions are known. Compounds are defined herein as stable in the gastrointestinal tract where less than about 50 mole percent of the protected groups are deprotected in surrogate intestinal or gastric juice upon incubation for I hour at 37°C. Simply because the compounds are stable to IO the gastrointestinal tract does not mean that they cannot be hydrolyzed in vivo. The prodrugs of the invention typically will be stable in the digestive system but may be substantially hydrolyzed to the parental drug in the digestive lumen, liver, lung or other metabolic organ, or within cells in general.
Tissue Distribution
It has also been discovered that certain compounds of the invention show high lung to plasma ratios which may be beneficial for therapy. One particular group of compounds of the invention that demonstrate this property are compounds that include an amine functional group.
General schemes 1-4 describe methods that were used to prepare compounds of the invention. The general methods described in these schemes can also be used to prepare additional compounds of the invention.
C
143
General scheme 1
(NaHMDS 3 or nBuLi) cyano ketone
n=1,2 or more
X= Me, CF3, etc
PG = protecting group e.g. BOC, CBZ
LV=OMe, OEt LV=NMe-OMe
NH2-NH2
AcOH
amino pyrrazole
1. POCI3, heat
2. Deprotect
0 X Ar OH 8 EDCI HOBT or HATU TEA
or
0
aAc, , TEA
Nucleophile 1 e.g.
HNR11R12 optional base e.g. TEA
11a
Nucleophile 2 e.g.
HNR11R12 optional base e.g. TEA
144
The general scheme shown describes the methods under which the claimed compounds can be prepared. The starting material is a protected (PG) cycloaminoalkyl ring that can be 6-, 7- or larger size ring and also contain substituents around the ring. For example piperidine or azepane rings. Importantly, there is a carboxyl group on the carbon atom adjacent to the ring 10 nitrogen that preferably has the (S) stereochemistry e.g. (S)-piperidine-2-carboxylic acid.
Protecting groups on the cycloaminoalkyl ring nitrogen are preferably BOC or CBZ and can be introduced or removed during the synthesis using methods described in; Green and Wutts, Protecting groups in Organic Synthesis 3rd Edition. In the forward scheme, the carboxylic acid group on the N-protected cyclicaminoheterocycle 1 is first activated with a leaving group (e.g.
2). Typical leaving groups are alkyl ester (e.g. methyl or ethyl ester) and these are generated by treatment of the carboxylic acid with the appropriate alcohol under non- or low-aqueous acidic conditions (e.g. methanol and concentrated sulfuric acid) or by treatment with methyl iodide in the presence of a base e.g. Cesium carbonate. Alternatively the acid can be activated as the Weinreb amide using standard peptide coupling procedures e.g. EDCI/HOBT, HATU, DCC, etc.
Once the acid is activated as the ester or Weinreb amide, the addition of an acetonitrile anion is performed. The anion is generated from acetonitrile and a strong base e.g. sodium hexamethyl disilazide (NaHMDS) or alkyl lithium bases e.g. nBuLi, and when reacted with the ester or Weinreb amide generates the cyano ketone 3. Reaction of the cyano ketone with hydrazine acetate salt then generates the aminopyrrazole intermediate 4. This is a key intermediate in the formation of the bicyclic heterocycles 6 with different sidechains through different condensation reactions. In General Scheme 1 the condensation with a malonate 5 is described, the other general schemes 2-6 highlight other condensation reactions that generate alternative substitutions. Condensation of amino pyrrazole 4 with malonate 5 generates the bicyclic analog 6. Treatment of 6 with neat POC13 under elevated temperature (in some cases hindered bases like lutidine can improve the reaction) then affords the dichloride 7. Under the POCI3 conditions acidic labile protecting groups e.g. BOC are typically removed but if this is partial further treatment with acid e.g. 4N HC1 in dioxane can be used to remove remaining BOC protected material. If other protecting groups are utilized then procedures described in Green and Wutts, Protecting groups in Organic Synthesis 3rd Edition can be used to remove the protecting group. The unprotected NH in the cycloaminoalkyl ring on 7 is acylated to provide 10 using c
145 standard procedures of either peptide coupling of acids (8) using HATU/triethylamine or generation of the acid chloride (9) using thionyl or oxalyl chloride and then addition to compound 7 in the presence of a base e.g. tri ethyl amine or diisopropylamine. Displacement of the chloride adjacent to the bridgehead nitrogen on 10 can be effected with nucleophiles, typically at room temperature to provide 11a. A typical nucleophile would be an amine that can be reacted in the absence or presence of a base such as triethylamine. The second and less reactive chloride is then displaced typically at elevated temperatures above 50 °C. The result of these nucleophilic amine displacements are compounds of structure 11.
General Scheme 2
amino pyrrazole
O O
R7
Deprotect
O
A
Ar OH
HATU or EDCI HOBT or
O
X
Ar CI base
C
146
An alternative condensation of the aminopyrrazole using beta-keto esters 12 (e.g. 2-m ethyl aceto acetate) in the presence of acid (acetic acid) at elevated temperature leads to the pyrrazopyrimidinone scaffold 13. Deprotection of the protecting group using conditions as described in Green and Wutts, Protecting groups in Organic Synthesis 3rd Edition then allows the free amine 14 to be acylated by a variety of acids 8 or acid chlorides 9 as described in general scheme 1 to produces the final compounds (structure 15).
General Scheme 3
amino pyrrazole
Heat
Nucleophile e g. HNR11R12 and optional base e.g. TEA
c
147
A further alternative cyclization on amino pyrrazole 4 involves treatment with an acrylate e.g. 16 in the presence of base e.g. cesium carbonate, and heat to generate 17. Further treatment of 17 to active that OH as a leaving group can include conversion to chloride 18 using POC13 and heat.
Acidic protecting groups e.g. BOC can be removed under the POC13 conditions, or if not, following procedures outlined in Green and Wutts, Protecting groups in Organic Synthesis 3rd 10 Edition, any protecting groups can be removed. The free NH compound 18 is then acylated as previously described in General scheme 1 to give 19. Finally the chloride can be displaced by nucleophiles to generate the compounds (e.g. 20) as described in General Scheme 1.
General Scheme 4
X
PG amino pyrrazole
Base (Cs2CO3)
148
A further alternative cyclization on amino pyrrazole 4 involves treatment with an acrylate e.g. 16 in the presence of base e.g. cesium carbonate and heat to generate 22. Further treatment of 22 to active that OH as a leaving group can include conversion to chloride 18 using POC13 and heat; or an alternative leaving groups can be the Inflate 23, generated by treatment with triflic anhydride in the presence of base. Triflate 23 is then reacted with the nucleophile to generate the product 24. The protecting group is then removed following procedures outlined in Green and Wutts, Protecting groups in Organic Synthesis 3rd Edition to provide 25.. The free NH compound 25 is then acylated as previously described in general scheme 1 to give 26.
In all the schemes cited the nucleophilic displacement of the reactive chloride or triflate on the bicyclic ring can be performed with alternative reagents to amines, to generate products that are not nitrogen linked. For example treatment of the chloride with KCN and base introduces cyano group. Carbon nucleophiles can be introduced using cross coupling reactions e.g. Stille reaction of alkyl stannanes in the presence of palladium catalysts at elevated temperatures. Aryl and heteroaryl boronic acids can be introduced in Suzuki couplings with Pd(PPh3)4 to introduce an aryl or heteroaryl rings. Grignard additions to the chloride in the presence of Fe(AcAc)3 can introduce small alkyl groups and alkyl rings e.g. cyclobutane onto the bicyclic scaffold.
The HNR1!R12 moieties of the schemes can also be a C2-C2o heterocyclyl with a reactive nucleophile in the heterocyclyl (e.g. a nitrogen). Thus, the resulting compounds can have a C2-C20 heterocyclyl at the positions indicated by the -NR R fragment.
Examples
Certain abbreviations and acronyms are used in describing the experimental details.
Although most of these would be understood by one skilled in the art, Table 1 contains a list of many of these abbreviations and acronyms.
Table 1. List of abbreviations and acronyms.
Abbreviation Meaning
Ac2O acetic anhydride
149
AIBN 2,2 ’ -azobis(2-methyl propionitrile)
Bn benzyl
BnBr benzylbromide
BSA bis(trim ethylsilyl) acetamide
BzCl benzoyl chloride
CDI carbonyl diimidazole
DABCO 1,4-diazabicyclo[2.2.2]octane
DBN 1,5-diazabicyclo[4.3.0]non-5-ene
DDQ 2,3-dichloro-5,6-dicyano-l,4-benzoquinone
DBU l,5-diazabicyclo[5.4.0]undec-5-ene
DCA dichloroacetamide
DCC dicyclohexylcarbodiimide
DCM dichloromethane
DMAP 4-dimethylaminopyridine
DME 1,2-dimethoxyethane
DMTCI dimethoxytrityl chloride
DMSO dimethylsulfoxide
DMTr 4,4’-dimethoxytrityl
DMF dim ethylform amide
EtOAc ethyl acetate
ESI eiectrospray ionization
HMDS hexamethyldisilazane
HPLC High pressure liquid chromatography
LDA lithium diisopropylamide
LRMS low resolution mass spectrum
MCPBA meta-chloroperbenzoic acid
MeCN acetonitrile
MeOH methanol
MMTC mono methoxytrityl chloride
m/z or m/e mass to charge ratio
150
MH+ mass plus 1
MH’ mass minus 1
MsOH methanesulfonic acid
MS or ms mass spectrum
NBS N-bromosuccinimide
Ph phenyl
rt or r.t. room temperature
TBAF tetrabutylammonium fluoride
TMSC1 chlorotrimethylsilane
TMSBr bromotrimethylsilane
TMSI iodotrimethylsilane
TMSOTf (trimethylsilyl)tri fluoromethylsulfonate
TEA triethylamine
TBA tributylamine
TBAP tributyl ammonium pyrophosphate
TBSC1 t-butyldimethylsilyl chloride
TEAB triethylammonium bicarbonate
TFA trifluoroacetic acid
TLC or tic thin layer chromatography
Tr triphenylmethyl
Tol 4-methylbenzoyl
Turbo Grignard 1:1 mixture of isopropylmagnesium chloride and lithium chloride
δ parts per million down field from tetramethylsilane
The invention will now be illustrated by the preparation of the following non-limiting compounds of the invention. It is to be understood that certain intermediates described herein may also be compounds of the invention.
Preparation of Compounds
151
Intermediate 1 :
K2CO3, BnBr L ),, JDBn
¥ tr Boc O THF r Boc O
N-Boc-(R)-piperidine~2-carboxylic acid (4.5g, 20 mmol) was dissolved in anhydrous THF (100 mL) and stirred in an ice bath. Potassium carbonate (4.1g, 30 mmol) was added in one portion. Benzyl bromide (2.6 mL, 22 mmol) was added dropwise over 10 minutes. Cooling was removed and the reaction stirred for 16 hours. DMF (lOmL) was added and the reaction was stirred for 72 h. Diluted reaction with ethyl acetate and then washed with saturated aqueous sodium bicarbonate solution and then saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure to give intermediate 1 as a colorless light oil (5.9g, 86%).
*H NMR (CDClj, 300MHz): d 7.35 (m, 5H), 5.20 (m, 2H), 4.95-4.46 (m, 1H), 4.01-3.94 (m, 1H), 2.93 (m, 1H), 2.24 (m, 1H), 1.68-1.64 (m, 4H), 1.45-1.38 (m, 9H), 1.27-1.18 (m, 1H).
Intermediate 2 :
Boc O
?V-Boc-(iS)-piperidine-2-carboxylic acid (5.0 g, 22 mmol) in DMF (100 mL) was treated with CS2CO3 (3.5 g, 10.9 mmol) and Mel (1.5 mL, 24 mmol). The mixture was stirred for 4 hours and diluted with MTBE (250 mL). The mixture was washed with water (2 x 100 mL) and saturated sodium chloride solution (1 x 100 mL). The solution was dried over anhydrous sodium sulfate and concentrated to afford the ester intermediate 2 (5.1 g crude, 96%) as an oil which was used without further purification *H NMR (CDCI3, 300MHz): d 4.80 (m, 1H), 3.97 (m, 1H), 3.73 (s, 3H), 2.93 (m, 1H), 2,18 (app d, J= 13.2 Hz, 1H), 1.67 (m, 2H), 1.45 (br s, 10H), 1.20 (app t, J= 13.5 Hz, 1H).
R/= 0.90 (30% EtOAc-hexanes);
Intermediate 3 :
C
152
(5j-l-Boc-piperidine-2-carboxylic acid (25 g, 109 mmol, Sigma-Aldrich) in DMF (500 mL) was treated sequentially with MeNHOMe’HCl (11,2 g, 115 mmol), N-methylmorpholine (36 mL, 327 mmol), HOBt (16.2 g, 120 mmol), and EDCI (23 g, 120 mmol) and stirred for 18 h.
The solution was diluted with EtOAc (1000 mL) and washed with H2O (2 x 500 mL) and saturated NaCl solution (500 mL). The solution was dried over MgSO4, filtered and concentrated. The residue was subjected to a 330 g SiO2 Combiflash High Performance Gold column (0-100% EtOAc-hexanes gradient) to afford the Weinreb amide intermediate 3 (18.4 g,
61%) as a clear oil:
*H NMR (CDC13, 300MHz): d 5.06 (br m, 1H), 3.93 (br m, 1H), 3.77 (br s, 3H), 3.18 (s, 3H), 2.01 (app d, J= 13.5 Hz, 1H), 1.71 (m, 4H), 1.45 (s, 9H);
LCMS (ESI) m!z 273 [M + H]+, tR = 2.31 min ;
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 4.423 min.
Rf= 0.60 (50% EtOAc-hexanes);
Intermediate 4 :
Boc
X.
To a solution of acetonitrile (5 ml, 93.8 mmol) in dry THF (50 ml) at -78 °C was added 10 drop wise NaN(TMS)2 (34 ml, 68 mmol, 2M in hexanes). The solution was warmed up to -40 °C and stirred for 20 min. The solution was then cooled down to -78 °C and a solution of the ester (Intermediate 2) (7.6 g, 31.1 mmol) in THF (20 ml) was added dropwise. The solution was wanned up to -40 °C and stirred for 2 h. The solution was then cooled down to -78 °C and a solution of acetic acid (4.8 ml, 80 mmol) in THF (20 ml) added dropwise. The solution was then 15 wanned to RT and volatiles were removed under reduced pressure at 40 °C. The resulting residue was dissolved in EtOAc (300 mL) and the organic phase was washed 2x each with brine. Volatiles were removed under reduced pressure at 40 °C.
]H NMR (DMSO, 300 MHz) d 4.63 (br s, 1H), 4.18-4.13 (m, 1H), 3.82-3.78 (m, 1H), 3.65 (s, 2H), 2.85-2.63 (m, 1H), 1.65-1.52 (m, 9H), 1.38 (s, 9H).
LCMS m/z : 153 [Μ-Boc group+H], tR= 2.50 min.
The residue was dissolved in EtOH (150 ml) and hydrazine acetate (4.5 g, 47 mmol) was added. The solution was stirred for 16 h at RT. Volatiles were removed under reduced pressure at 40 °C, EtOAc added (200 ml) and the organic phase washed with aqueous dilute NaHCO3, 25 then H2O followed by brine. Volatiles were removed under reduced pressure at 40 °C, the resulting residue was purified by silica gel column (DCM/ MeOH, gradient from 0% to 20%) to afford the product intermediate 4 (7.5 g, 90%) as a oil.
LCMS m/z [M+H]+ C13H22N4O2 requires: 266.34. Found 266.84
HPLC (min, purity) tR = 2.13, 100%
154 ’H NMR (DMSO, 300 MHz) 11.20 (br s, 1 H), 5.09 (m, 1H), 5.07 (s, 1H), 4.67 (br s, 2H), 3.81 (app d, J= 12.0 Hz, 1H), 2.72 (app br t, 12.0 Hz, 1H), 2.08 (app d, J= 12.9 Hz, 1H), 1.57 (m, 4H), 1.39 (s, 9H); MS (ESI) m!z 267 [M + H]+, tR= 1.97 min. (3.5min method).; HPLC (Chiral: Chiralpak AD-H, isocratic n-heptane-isopropanol 70:30). tR (desired) = 22.42 min, tR (enantiomer of desired isomer) = 25.67 min; %ee = 93.
Intermediate 4 via Weinreb amide
Boc
MeCN (3.20 mL, 60.7 mmol) in THF (50 mL) was cooled to -78 °C under Ar. NaHMDS solution (1.0 M in THF, 36.8 mL, 36.8 mmol) was added dropwise over 5 min, during which time an off-white suspension had formed. The suspension was warmed to -20°C and stirred for 20 min. The suspension was cooled to ~78 °C and transferred via cannula to the Weinreb amide intermediate 3 (5.02 g, 18.4 mmol) in THF (50 mL) at -78 °C over 5 min. The suspension is warmed to -45 °C and stirred for 3 h, during which time the suspension became a yellow solution. The solution was cooled to -78 °C and AcOH (4.2 mL in 10 mL THF, 73.6 mmol) was added drop wise. The solution was warmed to room temperature and diluted with EtOAc (100 mL). The solution was washed with H2O (50 mL) and saturated NaCl solution (50 mL). The solution was dried over MgSCb and concentrated to afford the cyano ketone as a yellow oil which was used without further purification.
The crude a-cyano ketone was used in the next reaction with hydrazine acetate to synthesize desired amino pyrazole intermediate 4 as described above.
MS (ESI) m!z 267 [M + H]+, tR = 1.81 min.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 3.212 min (>95% purity @ 254 nM).
HPLC (Chiral: Chiralpak AD-H 250 * 4.6 mm, 5 micron; isocratic n-heptane-isopropanol 70:30) tR (a isomer, desired) = 22.35 min, tR (b isomer) = 25.78 min; a = 1.15; %ee = >90%,
155
Intermediate 5:
Boc
To a solution of the pyrazole intermediate 4 (7.2 g, 27.1 mmol) in acetic acid (100 ml) was added 2-methyl acetoacetate (3.9 ml, 27.1 nM) and the solution stirred at 100 °C for 45 min. Volatiles were removed under reduced pressure at 40 °C, and the resulting residue was purified by silica gel column (DCM/ MeOH, gradient from 0% to 20%) to afford the product intermediate 5 (7.23 g, 77%) as an oil.
'H-NMR (DMSO, 400 MHz): 7.26 (s, 1H),5.79 (s, 1H), 5.42 (s, lH),3.99(m, 1H), 2.81 (m, 1H), 2.56 (m, 1H), 2.36 (m, 3H), 2.08 (m, 3H), 1.76 (m, 3H), 1.53-1.28 (m, 14H).
LCMS m/z [M+H]+ C18H26N4O3 requires: 346.42. Found 347.07
HPLC Tr (min), purity %: 1.45, 100%.
Intermediate 6 :
A 4N solution of hydrogen chloride in dioxane (20 mL, 80 mmol) was added to a mixture of N-Boc piperdine intermediate 5 (1.12 g, 3.26 mmol) in anhydrous dioxane (20 mL), forming a white precipitate after 5-10 minutes. Reaction mixture was stirred 65 hours and concentrated under reduced pressure to yield unprotected intermediate 6 as a white solid (1.14 g, 99%).
“H-NMR (DMSO, 300 MHz): ÔQ 12.67 (s, 1H),9.43 (m, lH),9.30(m, 1H),6.27 (s, 1H), 4.70 (brs, 1H), 4.39 (t,/=10.2 Hz, 1H),3.28 (d, J = 14.1 Hz, ÏH), 3.02 (m, 1H), 2.32 (s, 3H), 2.15 (d, J= 10.8 Hz, 1H), 1.96 (s, 3H), 1.84-1.55 (m, 5H)
LCMS m/z [M+H]+ C13H18N4O requires: 247.15. Found 247.07
156
Intermediate 7:
(TMS)2NNa, CH3CN
THF, -40°C
Dissolved anhydrous acetonitrile (13IuL, 2.5mmol) in anhydrous THF (2mL) and stirred under argon in a dry ice/acetonitrile bath at (-40°C). Added IN sodium bisftrim ethylsilyl) amide in THF (2mL, 2mmol) dropwise. Resulting reaction mixture was stirred for 45 minutes at -40 C. Dissolved N-Boc-(R)-piperidine-2-carboxylic acid benzyl ester intermediate 1 (319mg, lmmol) in anhydrous THF (5mL) and stirred under argon in a dry ice/acetonitrile bath (-40°C). Above reaction mixture was then added to the anion solution dropwise. Reaction was then stirred for 90 minutes at -40°C. Added acetic acid (229uL, 4mmol) and stirred for 30 minutes. Diluted with ethyl acetate (amount approx) and washed with saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Combiflash (linear gradient from 0-40% EtOAc in hexanes) to afford the cyano ketone (68mg, 26%).
'H NMR (CDCh, 300MHz): d 4.66 (m, 1H), 3.82 (m, 1H), 3.57 (s, 2H), 2.98 (m, 1H), 2.15 (m, 1H), 1.69-1.64 (m,4H), 1.48 (s, 9H), 1.42 (m, 1H).
Dissolved the cyano ketone (68mg, 0.26mmol) in ethanol (4mL). Added HOAc (15uL, 0.26mmol) and then hydrazine hydrate (13uL, 0.26mmol). Stirred at room temperature for 18 hours. Concentrated under reduced pressure. Purified residue by Combiflash (linear gradient from 0-10% MeOH in EtOAc) to afford intermediate 7 (42mg, 71%).
]H NMR (CDCI3, 300MHz): d 5.41 (s, 1H), 5.31 (m, 1H), 4.86 (bs, 2H), 4.00 (m, 1H), 2.87 (m, 1H), 2.18 (m, 1H), 1.78-1.53 (m, 4H), 1.47 (s, 9H), 1.40 (m, 1H) LCMS m/z [M+H]+ 266.9
Intermediate 8
Dissolved amino-pyrazole intermediate 7 (42mg, 0.185 mmol) in EtOH (5mL). Added HOAc (32uL, 0.555mmol) and keto ester (24uL, O.185mmol). Stirred at reflux for 2hrs. Added additional HOAc (21uL, 2eq) and keto ester (4.8uL, 0.2eq). Stirred at reflux for 3hrs. Concentrated under reduced pressure. Purified with Combiflash (linear gradient from 0-10% MeOH in EtOAc) to afford intermediate 8 (41 mg, 64%).
LCMS m/z [M+H]+ 346.9
To a mixture of 2-amino-5-methoxybenzoic acid (350 mg, 2.10 mmol) in 3.5 mL of water, Na2CO3 (344 mg, 3.25 mmol) was added, slowly forming a solution. Methane sulfonyl chloride (0.18 mL, 2.28 mmol) was added slowly and reaction mixture stirred at room temperature for 24 hours. Reaction mixture was then quenched with 3.5 mL of IN HC1 (aq), forming a precipitate, and filtered, washing with IN HC1 (aq). Drying in-vacuo for 2 hours yielded intermediate 9 (453 mg, 88%) as a pink-purple solid.
'H-NMR (DMSO, 300 MHz): ÔÜ 10.12 (s, 1H), 7.51-7.45 (m, 2H), 7.25-7.22 (m, 1H), 3.77 (s, 3H), 3.05 (s, 3H)
LCMS m/z [M+H]+ C9H11NO5S requires: 246.05. Found 246.12
Intermediate 10.
L
158
A solution of2-amino-3-fluorobenzoic acid (559 mg, 3.62 mmol) and 1.7 mL of concentrated H2SO4in 11 mL of anhydrous methanol was heated for 66 hours. After cooling to room temperature, methanol was concentrated under reduced pressure. Residue was taken up in 10 30 mL of water and added to a separatory funnel. Solid sodium carbonate was added slowly until gas evolution ceased (pH 9-10). Aqueous layer was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 100 mL sat. NaHCO3(aq) and 100 mL of Brine, separated, dried (MgSCb), filtered, and concentrated under reduced pressure. Column chromatography (5% Ethyl Acetate in Hexanes) yielded intermediate 10 (491 mg, 80%) as a 15 white solid.
'H-NMR (CDC13, 300 MHz): 50 7.66-7.63(m, 1H), 7.15-7.08 (m, 1H), 6.60-6.55 (m, 1H), 5.40 (br s, 2H), 3.89 (s, 3H),
LCMS m/z [M+H]+ CgHgFNC^ requires: 170.05. Found 170.10
Intermediate 11.
To a mixture of methyl 2-amino-3-fluorobenzoate (intermediate 10) (334 mg, 1.97 mmol) and pyridine (0.41 mL, 4.95 mmol) in 5.5 mL of dichloromethane at 0 °C, was added slowly methanesulfonyl chloride (0.40 mL, 4.95 mmol). Mixture was warmed to room temperature and stirred overnight. HPLC indicated -48% conversion to desired product. Pyridine (0.55 mL) and 0.50 mL of methanesulfonyl chloride (approximately 6.8 mmol each) was then added at room temperature. After a total of 40 hours, reaction mixture was quenched
with IO mL of IN HC1. After 5 minutes of stirring, mixture was poured into 20 mL of water. Aqueous layer was extracted with ethyl acetate (3x30 mL). The combined organic layers were washed with 100 mL of IN HC1 (aq}and 100 mL Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure. Column chromatography (15-50% Ethyl Acetate in Hexanes) yielded intermediate 11 (360 mg, 74%) as a white solid.
'H-NMR. (CDCh, 300 MHz): δα 9.79 (s, 1H), 7.83 (d,J=7.8 Hz, 1H), 7.35 (m, 1H), 7.19-7.17 (m, 1H), 3.96 (s, 3Η), 7.21 3.35 (s, 3H)
LCMS m/z [M+H]+ C9Hi0FNO4S requires: 248.03. Found 248.08
Intermediate 12
A solution of NaOH in water (2.85 M, 3 mL, 8.55 mmol) was added to a solution of methyl 3-fluoro-2-(methylsulfonamido)benzoate (intermediate 11) in 8.5 mL of THF with strong stirring. Reaction mixture was stirred at room temperature over night. Mixture was then acidified with 15 mL of IN HC1 and extracted with ethyl acetate (3 x 30 mL). The combined organic layers were washed 80 mL of Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 12 as a white solid (284 mg, 91%). *H-NMR (DMSO, 300 MHz): ÔD 9.77 (s, 1H), 7.70-7.68 (m, 1H), 7.57-7.50 (m, 1H), 7.38-7.33 (m, lH),3.15(s, 3H)
LCMS m/z [M+H]+ C9HI0FNO4S requires: 234.02. Found 234.09
Intermediate 13.
160
Intermediate 4 (330 mg, 1.2 mmol) in EtOH (12 mL) was treated with methyl 2-methyl3-oxopropanoate (433 mg, 3.7 mmol) and HOAc (710 pL, 12.4 mmol) and the mixture was stirred overnight at 100 °C. The mixture was concentrated and purified via SiO2 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% EtOAc/hexanes gradient) to afford crude intermediate compound as a crude white solid. The crude intermediate compound was treated with 4 N HCl/dioxanes (5 mL) and stirred 16 h. The mixture was concentrated to afford intermediate 13 (395 mg, >100%) as a crude off-white solid.
Intermediate 14.
The intermediate 5 (0.3g, 0.867 mmol), and DMAP (0.117 g, 0.958 mmol) were dissolved in anhydrous pyridine (15 mL) and placed under nitrogen with stirring. POC13 (0.567ml, 6.07 mmol) was added neat and the reaction was heated to 100°C for 2 hours. The reaction was monitored by LC/MS. When it was complete in about 2 hours the reaction was cooled to room temperature and solvents were removed by rotary evaporation. The residue was redissolved in 200 ml DCM and washed with 200 ml water. The organic layer was collected dried over MgSCLfanh), filtered and then evaporated. The product was purified by column chromatography using ethyl acetate (25%) in hexanes to elute intermediate 14 (0.234g, 0.643 mmol, 74 %) 'H-NMR (CD3CN, 300ΜΗζ):δϋΠ1.45 (m, UH), 1.64 (m, 2H), 1.87 (m 1H),2.39 (m4H), 2.55 (s, 3H), 2.95 (t, 1H), 4.04 (d, 1H), 5.57 (d, 1H), 6.39 (s, 1H).
Intermediate 15.
16l
The starting intermediate 14 (0.06g, 0.165 mmol), along with sodium acetate (0.027 g, 0.330 mmol) were dissolved in absolute ethanol (10 mL). Solid Pd/C (5% by wt) (0.030g) was added and the reaction was placed under a balloon of hydrogen for 20 minutes. Catalyst was filtered off using a 40 micron syringe filter. The solvent was removed by rotary evaporation. The residue was taken up in DCM and loaded onto a silica gel column. The intermediate 15 was eluted with a 0 to 50% EtOAc in hexanes gradient. (Yield- 40 mg, 0.121 mmol, 73 %). ‘H-NMR (CDsCN, 300 MHz): fiD □ 1.45 (m, 11 H), 1.64 (m, 2H), 1.87 (m, 1H), 2.25 (s, 3H), 2.38 (d, 1H), 2.51 (s, 3H), 2.95 (t, 1H), 4.02 (d, ÏH), 5.55 (d, 1H), 6.25 (s, 1H), 8.41 (s, 1H).
Dissolved S-Morpholine-3,4-dicarboxylic acid 4-tert-butyl ester (463mg, 2mmol) in anhydrous DMF (5mL) and stirred at room temperature. Added sodium carbonate (318mg, 3mmol) in one portion. Added iodomethane (137uL, 2.2mmol). Stirred for 3 hours. Diluted reaction with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and then saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure to give intermediate 16 as a colorless light oil (474mg, 96% crude) 'H NMR (CDC13, 300MHz): d 4.60-4.25 (m, 2H), 3.95-3.60 (m, 5H), 3.60-3.20 (m, 2H), 1.491.45 (m,9H).
Intermediate 17 :
162
Added anhydrous acetonitrile (254uL, 4.82mmol) to anhydrous THF (2mL) and stirred under Argon in a dry ice/acetonitrile bath (-40°C). Added IN sodium bis(trim ethylsilyl) amide in THF (3.86mL, 3.86mmol) dropwise. Resulting reaction mixture was stirred for 60 minutes. Dissolved intermediate 16 (474mg, 1.93mmol) in anhydrous THF (5mL) and stirred under Argon in a dry ice/acetonitrile bath (-40°C). Above reaction mixture was then added to the solution dropwise. Reaction was then stirred for 5hrs under the same conditions. Added acetic acid (442uL, 7.72mmol) and stirred for 15 minutes. Diluted with ethyl acetate and washed with 5% aqueous citric acid solution, saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Combiflash silica gel column (linear gradient from 0-40% EtOAc in hexanes) to provide intermediate 17 (200mg, 40%) 'HNMR (CDC13, 300MHz): d4.58 (m, 1H),4.35 (m, 1H), 3.95-3.66 (m, 3H), 3.61 (s, 2H), 3.50 (m, 1H), 3.45 (m, 1H), 1.47 (s, 9H).
Intermediate 18 :
Dissolved intermediate 17 (200mg, 0.78mmol) in ethanol (lOmL). Added HOAc (134uL, 2.36mmol) and then hydrazine hydrate (I75uL, 2.36mmol). Stirred at room temperature for 4 hrs. Concentrated under reduced pressure. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Combiflash silica gel column (linear gradient from 0-10% MeOH in EtOAc) to provide intermediate 18 (128mg, 62%).
C
163 ‘HNMR (CDCls, 300MHz): d5.66(s, IH), 5.l2(s, lH),4.35(m, lH), 3.95-3.75 (m, 3H), 3.57 (m, IH), 3.20 (m, 1H), 1.48 (s, 9H).
LCMS m/z [M+H]+ 268.9
Intermediate 19 :
Dissolved intermediate 18 (128mg, 0.48mmol) in EtOH (lOmL). Added HOAc (274uL, 4.8mmol) and ethyl-2-methyi acetoacetate (230uL, I.43mmol). Stirred at reflux for 4hrs.
Concentrated under reduced pressure. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Combiflash silica gel column (linear gradient from 0-10% MeOH in DCM) to afford intermediate 19 (156mg, 93%) 'H NMR (CDCh, 300MHz): d 5.26 (s, 1H), 4.40 (m, 1H), 3.90-3.80 (m, 4H), 3.58 (m, 1H), 3.16 (τη, 1H), 2.54 (s, 3H), 2.10 (s, 3H), 1.46 (s, 9H).
LCMS m/z [M+H]+ 348.9
(+/-) cis
Dissolved (+,-) cis Boc-4-methyl pipecolinic acid (468mg, 2mmol) in anhydrous DMF (5mL) and stirred at room temperature. Added sodium carbonate (318mg, 3mmol) in one portion. Added iodomethane (137uL, 2.2mmol). Stirred for 16 hours. Diluted reaction with ethyl
164 acetate and washed with saturated aqueous sodium bicarbonate solution and then saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure to give the mixture of cis isomers, intermediate 20 as a colorless light oil (443mg, 86%). Material was used without further purification.
’H NMR (CDClj, 300MHz): d 4.34 (m, 1H), 3.73 (s, 3H), 3.60-3.35 (m, 2H), 1.97-1.74 (m, 4H), 1.44 (s, 9H)> 1.34 (m, 2H), 0.95 (d, J= 6.6Hz, 3H).
Intermediate 21 :
(+/-) cis and trans
(+/-) cis
Dissolved anhydrous acetonitrile (226uL, 4.3mmol) in anhydrous THF (4mL) and stirred under Argon in a dry ice/acetonitrile bath (-40°C). Added IN sodium bis(trimethylsilyl)amide in THF (3.44mL, 3.44mmol) dropwise. Resulting reaction mixture was stirred for 2 hrs.
Dissolved intermediate 20 (443mg, 1.72mmol) in anhydrous THF (lOmL) and stirred under Argon in a dry ice/acetonitrile bath (-40°C). Above reaction mixture was then added to the solution dropwise. Reaction was then stirred for 3hrs under the same conditions. Added acetic acid (394uL, 6.88mmol) and stirred for 60 minutes. Diluted with ethyl acetate and washed with 5% aqueous citric acid solution, saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Combiflash silica gel column (linear gradient from 0-40% EtOAc in hexanes) to afford intermediate 21 as a mixture of (+/-) cis and (+/-) trans isomers (340mg, 74%).
'H NMR (CDCh, 300MHz): d 3.90-3.71 (m, 2H), 3.37(m, 1H), 2.97 (m, JH), 1.97-1.56 (m, 4H), 1.46 (s, 9H), 1.25 (m, 2H), 1.01-0.94 (m, 3H).
Intermediate 22 :
165
Dissolved intermediate 21 isomer mixture (340mg, 1.27mmol) in ethanol (20mL). Added HOAc (219uL, 3.83mmol) and then hydrazine hydrate (286uL, 3.83mmol). Stirred at room temperature for 16 hrs. Concentrated under reduced pressure. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Combiflash silica gel column (linear gradient from 0-10% MeOH in MeOH) to afford intermediate 22 as a mixture of all stereoisomers (179mg, 50%). *H NMR (CDC13, 300MHz): d 5.48 (m, 1H), 5.08 (m, 1H), 3.85 (m, 1H), 3.22(m, 1H), 2.10 (m, 1H), 1.88 (m, 2H), 1.48-1.27 (m, I1H), 1.00-0.92 (m, 3H).
LCMS m/z [M+H]+ 280.9
Intermediate 23 and 24 :
(+/-) cis (+/-) trans
Dissolved intermediate 22 (179mg, 0.638mmol) in EtOH (lOmL). Added HOAc (365uL, 6.38mmol) and ethyl-2-methyl acetoacetate (3O7uL, 1.95mmol). Stirred at reflux for 4hrs. Concentrated under reduced pressure. Purified with Cjg Prep HPLC to give (+,-) cis intermediate 23 as the major product and (+,-) trans intermediate 24 products (23 cis-89mg, 24 trans-47mg, 59% total).
Intermediate 23 (+,-)cis : 'HNMRiCDCh, 300MHz): Ô 6.02 (s, 1H),4.97 (m, 1H), 3.66-3.44 (m, 2H), 2.70 (m, 2H), 2.38 (m, 3H), 2.26-1.8 (m, 5H), 1.46 (s, 9H), 1.31 (m, 1H), 0.94 (m, 3H).
166
Intermediate 24 (+/-) trans : !H NMR (CDCI3, 300MHz): Ô 5.82 (s, 1H), 5.48 (bs, 1H), 4.07 (m, 1H), 2.90 (m, 1H), 2.51 (m, 1H), 2.37 (s, 3H), 2.07 (s, 3H), 1.60-1.25 (m, 12H), 1.09 (m, 1H), 0.93 (d, /=6.0 Hz, 3H).
LCMS m/z [M+H]+ 360.9
Intermediate 25 :
Boc
To a solution of the pyrazole intermediate 4 (0.5 g, 2.2 mM) in acetic acid (5 ml) was added 3-methylpentane-2,4-dione (0.25 g, 2.2 mM) and the solution stirred at 90 °C for 30 min. Volatiles were removed under reduced pressure at 40 °C, and the resulting residue was purified by silica gel column (DCM/ MeOH, gradient from 0% to 10%) to afford the product intermediate 25 (0.353 g, 47%) as a viscous oil.
*H-NMR (DMSO, 400 MHz): ÔÜ 6.31 (s 1H), 5.58 (s 1H), 4.06 (d, /= 12.8, 1H), 2.92 (m 1H), 2.79 (m 3H), 2.58 (s, 3H), 2.52 (m 1H), 2.30 (s 3H), 1.91 (m 1H), 1.57-1.40 (m, 12H).
LCMS m/z [M+H]+ C19H28N4O2 requires: 344.45. Found 345.20
HPLC Tr (min), purity %; 5.96, 95%.
Intermediate 26 :
Intermediate 5 (0.3g, 0.867 mmol), and DMAP (0.117 g, 0.958 mmol) were dissolved in anhydrous pyridine (15 mL) and placed under nitrogen with stirring. POCI3 (0.567ml, 6.07 mmol) was added neat and the reaction was heated to 100°C for 2 hours. The reaction was
C
167 monitored by LC/MS. When it was complete in about 2 hours the reaction was cooled to room temperature and solvents were removed by rotary evaporation. The residue was redissolved in 200 ml DCM and washed with 200 ml water. The organic layer was collected dried over MgSO4(anh), filtered and then evaporated. The product was purified by column chromatography using ethyl acetate (25%) in hexanes to elute intermediate 26 (0.234g, 0.643 mmol, 74 %).
IO ]H-NMR(CD3CN, 300MHz): δ DÜ1.45 (m, UH) l.64(m,2H), 1.87 (m, 1H), 2.39 (m, 4H), 2.55 (s, 3H), 2.95 (t, 1H), 4.04 (d, 1H), 5.57 (d, 1H), 6.39 (s, 1H).
Intermediate 27.
The intermediate 26 (0.110g, 0.301 mmol), was dissolved in 1,4-dioxane 5ml. Methyl amine (40% in water) (2 mL) was added and the reaction was stirred for 2 hr. Solvents were removed by rotary evaporation. The residue was taken up in DCM and loaded onto a silica gel 20 column. The product, intermediate 27, was eluted with a 0 to 80% EtOAc in hexanes gradient (98 mg, 0.272 mmol, 90 %).
’H-NMR (CD3CN, 300MHz): Ô □ DI.45 (m, 11H), 1.60 (m, 2H), 1.82 (m, 1H),2.3O (s, 3H), 2.40 (m, 1H, 2.42 (s, 3H), 2.95 (t, 1H), 3.35 (d, 3H), 4.01 (d, 1H), 5.49 (m, 1H), 6.00 (s, 1H), 6.29 (bs, 1H).
Intermediate 28.
168
2.HCI
The intermediate 27 (0.10g, 0.28 mmol), was dissolved in anhydrous 1,4-dioxane (6 ml). With stirring under nitrogen 4N HC1 in dioxane (3 ml) was added via syringe. The reaction was stirred for 2 hours at room temperature while monitoring by LC/MS. When the reaction was complete solvent was removed by rotary evaporation. The product, intermediate 28 was taken forward without further purification after it was characterized by LC/MS (Yield- 73 mg, 0.28 mmol, 100 %).
LCMS m/z [M+H]+ 261
Intermediate 29.
Intermediate 4 (292 mg, 1.1 mmol) in EtOH (11 mL) was treated with methyl 2-ethyl-3oxobutanoate ¢471 pL, 3.3 mmol) and HOAc (629 pL, 11.0 mmol) and the mixture was stirred overnight at 100 °C. The mixture was concentrated and purified via SiO3 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% EtOAc/hexanes gradient) to afford intermediate pyrrazolo-pyrimidione as a white solid (328 mg, 82%). The intermediate was then treated with 4 N HCl/dioxanes (5 mL) and stirred 16 h. The mixture was concentrated to afford intermediate 29 (395 mg, >100%) as a crude off-white solid.
Intermediate 30.
169
Boc
To a solution of the pyrazole intermediate 4 (3.22 g, Î 2.08 mM) in acetic acid (25 ml) was added l-cyc!opropyl-l,3-butanedione (2.28 g, 18.13 mM) and the solution stirred at 120 °C for 30 min. Volatiles were removed under reduced pressure at 40 °C, and the resulting residue was purified by silica gel column (Hexane/EtOAc, gradient from 0% to 50%) to afford intermediate 30 (1.72 g, 26%).
*H-NMR (CDCl3,400 ΜΗζ):δΟ 6.44 (s 1H),6.28 (s 1H),5.58 (s, 1H), 4.13-4.04 (m, 1H), 2.962.92 (m, 1H), 2.67 (s, 3H), 2.46-2.42 (m, 1H), 2.14-1.85 (m, 4H), 1.47 (s, 9H), 1.13-1.02 (m, 6H).
LCMS m/z [M+H]+ C20H28N4O2 requires: 357.46. Found 357.13
Intermediate 31.
The intermediate 30 (0.60g, 1.68 mmoi), was dissolved in anhydrous 1,4-dioxane (6 ml). With stirring under nitrogen 4N HC1 in dioxane (3 ml) was added via syringe. The reaction was stirred for 2 hours at room temperature while monitoring by LC/MS. When the reaction was complete solvent was removed by rotary evaporation. The product, intermediate 31 was taken forward without further purification (Yield 0.55 g, 100 %).
’H-NMR (CH3OD, 400 MHz): δθ 6.95 (d, J= 1.2Hz, 1H),6.73 (s, 1H), 4.64 (d,J= 12Hz, 1H), H), 3.52-3.51 (m, 1H), 3.23-3.20 (m, 1H), 2.86 (s 3H), 2.40-2.02 (m, 2H), 2.26-1.81 (m, 5H), 1.41-1.30 (in, 4H).
LCMS m/z [M+H]+ Ct5H20N4 requires: 257.35. Found 257.15
HPLC Tr (min), purity %: 1.65, 98%.
170
1) HCi, dioxane
2) EDC, HOBt, TEA, DMF
Compound 1
Dissolved boo material intermediate 8 (41mg, 0.12mmol) in MeOH (ImL). Added 4N HCI in dioxane (2mL) and stirred for 1 hr. Concentrated under reduced pressure. Dried under high vacuum. Dissolved material in anhydrous DMF and took half of the volume (17mg, 0.059mmol) for next reaction. Added to a mixture of EDC (12.5uL, 0.07Immol), HOBt (9mg, 0.059mmol) and sulfonamide benzoic acid (13mg, 0.059mmol) in anhydrous DMF (500uL). Stirred for 15 mins. Added TEA (21uL, 0.148mmol) and stirred for 16hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Combiflash (linear gradient from 0-10% MeOH in DCM). Final purification with Prep HPLC to yield compound 1 (3.6mg, 14%).
’H NMR (CD3OD, 300MHz): d 7.52-7.30 (m, 4H), 6.09 (bs, 1H), 3.58-3.30 (m, 2H), 3.14 (s, 3H), 2.45 (m, 1H), 2.38 (s, 3H), 2.09 (s, 3H), 2.04 (m, 1H), 1.74-1.61 (m, 4H) LCMS m/z [M+H]+ 444.1
L
17l
Compound 2
Compound 2
To a solution of boc-2-aminobenzoic acid (75 mg, 0.32 mmol) in DMF (4 mL) was added HATU (137 mg, 0.36 mmol) the solution stirred under N2 at RT for 10 mins. To the above solution was added intermediate 6 (60mg, 0.24mmol) and Et3N (0.05 mL). The reaction mixture was stirred at RT for 5h. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 2 (91 mg, 80%) as a white powder after lyophilization. ’H-NMR (CD3CN, 300 MHz): ÔD 9.78 (s, 1H), 7.93 (d, J= 5.1 Hz, 1H), 7.40-7.38 (m, 2H), 7.12 (s, 1H), 5.93 (s, lH),3.10 (me, 3H), 2.31 (s, 3H), 2.00 (s, 3H), 1.72-1.51 (m, 6H), 1.44 (s, 9H).
LCMS m/z [M-H]+ C25H3iN5O4 requires: 464.54. Found 464.34
HPLC Tr (min), purity %: 1.83, 98%
Compound 3
172
Compound 3
To a solution of compound 2 (420 mg) in CH3CN (10 mL) was added 2N HC1 (5mL). The solution was stirred at RT overnight. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0¾ to 95%) to afford compound 3 (330 mg, 100%) as a white powder after lyophilization. *H-NMR (CD3CN, 300 MHz): ÔD 12.16 (s, 1H), 7.22 (t, J= 6.9 Hz, 1H), 7.06 (d, J= 8.4 Hz, 1H), 6.61 (me, 2H), 6.03 (s, 1H), 3.96 (me, 3H),2.31 (s, 3H), 1.98 (s, 3H), 1.75-1.48 (m, 6H), LCMS m/z [M+H]+ C2qH23N5O2 requires: 366.43. Found 366.54
HPLC Tr (min), purity %: 1.72, 98%
To a solution of compound 3 (25 mg, 0.068 mmol) in Pyridine (1.0 mL) was added Cyclopropane sulfonyl chloride (96mg, 0.68 mmol) at -10°C. The temperature was raised slowly to RT and stirred overnight. The volatile were removed under reduced pressure at 40°C and the
173 resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 4 (29 mg, 90%) as a white powder after lyophilization.
'H-NMR (CD3CN, 300 MHz): δα 12.07 (s, 1H), 9.07 (s, 1H), 7.44 (me, 3H), 6.00 (s, lH), 5.92 (s, lH), 3.70 (me, 5H), 2.87 (s, 1H), 2.29 (s, 3H), 1.95 (s, 3H), l.62-.50 (me, 4H), 0.92 (me, 4H) LCMS m/z [M+H]+ C20H23N5O2 requires: 470.56. Found 470.07
HPLC Tr (min), purity %: 2.29, 98%
Compound 5
O
Compound 5
To a solution of compound 3 (8 mg, 0.022 mmol) in Pyridine (1.0 mL) was added Methyl Chloroformate (0.1 mL) and the reaction mixture was stirred at RT for 10 mins. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 5 (9 mg, 97%) as a white powder after lyophilization.
‘H-NMR (CD3CN, 300 MHz): δα 9.92 (s, 1H), 8.27 (s, 1H), 7.88 (s, 1H), 7.40 (d, J= 9.0 Hz, 1H), 7.15 (s, 1H), 5.94 (s, 1H), 3.68 (S, 3H), 3.30 (me, 5H), 2.32 (s, 1H), 2.05 (s, 3H), 1.71-1.56 (m, 4H).
LCMS m/z [M+H]+ C22H25N5O4 requires: 424.47. Found 423.96
HPLC Tr (min), purity %: 2.03, 98%
Compound 6
174
To a solution of compound 3 (10 mg, 0.028 mmol) in Pyridine (1.0 mL) was added Acetyl Chloride (O.lmL) and the reaction mixture was stirred at RT for 10 mins. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 6(10 mg, 91%) as a white powder after lyophilization.
’H-NMR (CD3CN, 300 MHz): ÔD 9.68 (s, 1H),7.32 (t, 7=6.6 Hz, 1H),7.13 (d, 7=9.1 Hz, 1H), 6.56 (me, 2H), 5.83 (s, 1H), 3.30 (me, 3H),2.35 (s, 3H), 2.25 (s, 3H), 2.03 (s, 3H), 1.791.53 (m, 6H).
LCMS m/z [M+H]+ C22H25N5O4 requires: 408.47. Found 408.85
HPLC Tr (min), purity %: 1.92,98%
Compound 7
To a solution of 2-Methylaminobenzoic acid (34 mg, 0.23 mmol) in DMF (1.0 mL) was added HATU (92 mg, 0.24 mmol) the solution stirred under N2 at RT for 10 mins. To the above solution was added intennediate 6 (28mg, 0.11 mmol) and EtjN (0.03 mL). The reaction mixture
175 was stirred at RT overnight. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 7 (16 mg, 37%) as a white powder after lyophilization.
’H-NMR (DMSO, 300 MHz): ÔÜ 12.15 (s, 1H), 7.22 (t, J= 6.6 Hz, 1H), 7.05 (d, J= 7.5 Hz, 1H), 6.61 (s, 2H), 6.03 (s, 1H), 3.86 (me, 3H), 3.58 (s, 3H), 2.31 (s, 3H), 1.98 (s, 3H), 1.63-1.32 (m, 6H).
LCMS m/z [M-H]+ CjiH^NjCh requires: 380.46. Found 380.28
HPLC Tr (min), purity %: 1.92, 98%
Compound 8
HATU (237.1 mg, 0.624 mmol) was added to a solution of 4-fluoro-2(methylsulfonamido)benzoic acid (127.1 mg, 0.548 mmol) in 5 mL of anhydrous DMF at room temperature. After 15 min of stirring, intermediate 6 (133.2 mg, 0.418 mmol) was added followed immediately by triethylamine (0.22 mL, 1.58 mmol). Reaction mixture stirred at room temperature overnight under argon. Mixture was then poured into 50 mL of H2O and extracted three times with 50 mL of ethyl acetate. The combined organic layers were washed with 100 mL Brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by silica gel column chromatography (0-10% Methanol in Dichloromethane) and then prep HPLC (15-100% Acetonitrile (with 0.1% tri fluoro acetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 8 (143 mg, 60%) as a white solid, tri fluoro acetate salt, after lyophilization.
176 'H-NMR (CDC13, 300 MHz): ÔÜ 10.05 (s, 1H) 9.53 (s, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.30-7.25 (τη, 1H), 6.97-6.91 (m, 1H),5.99 (s, 1H), 5.67 (s, 1H), 5.07 (brs, 1H), 3.53 (m, 1H), 3.42 (s, 3H), 2.22 (m, 1H), 2.19 (s, 3H), 1.96 (s, 3H), 1.94 (m, 1H), 1.67 (m, 2H), 1.44 (m, 2H)
LCMS m/z [M+H]+ C21H24FN5O4S requires: 462.15. Found 462.10
Compound 9
To a mixture of intermediate 6 (128.1 mg, 0.401 mmol) in 4 mL of anhydrous CH2C12 under argon was added triethylamine (0.20 mL, 1.44 mmol) at room temperature. After 5 minutes of stirring, benzoyl chloride (0.050 mL, 0.442 mmol) was added slowly and solution was stirred overnight. Reaction mixture was quenched with 3 mL of water with stirring. After 10 min, reaction mixture was taken up in 35 mL of ethyl acetate, poured into 20 mL of water, and separated. The aqueous layer was then extracted with ethyl acetate (2x30 mL). The combined organic layers were washed with 30 mL of IN HCI (aq), 30 mL of saturated NaHCO3 (aqj, 30 mL of brine, dried (MgSC>4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by silica gel column chromatography (2-10% Methanol in Dichloromethane) and then prep HPLC (15-100% Acetonitrile (with 0.1% tri fluoroacetic acid) in water (with 0.1 % tri fluoroacetic acid)) to yield compound 9 (35 mg, 19%) as a white solid, tri fluoroacetate salt, after lyophilization.
’H-NMR (CDC13, 300 MHz): δα 12.01 (s, 1H), 7.41-7.31 (m, 5H), 6.09 (s, 1H), 5.87 (s, 1H), 3.61 (d, J = 12.6 Hz, 1H), 3.19 (m, 1H),2.97 (m, 1H), 2.55 (d, J=12.9Hz, 1H), 2.15 (s, 3H), 2.03 (s, 3H), 1.90-1.55 (m,4H)
LCMS m/z [M+H]+ C2qH22N4O2 requires: 351.17. Found 351.12
HPLC Tr (min), purity %: 17.3, 97%
c
177
Compound 10
Compound 10
HATU (230.1 mg, 0.605 mmol) was added to a solution of 5-methoxy-2(methylsulfonamido)benzoic acid (intermediate 9) (129.2 mg, 0.527 mmol) in 4 mL of anhydrous DMF at room temperature. After 15 min of stirring, intermediate 6 (128.4mg, 0.403 mmol) was added followed immediately by triethylamine (0.20 mL, 1.43 mmol). Reaction mixture stirred at room temperature for 18 hours under argon. Mixture was then poured into 40 mL of H2O and extracted three times with 40 mL of ethyl acetate. The combined organic layers were washed with 80 mL Brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by silica gel column chromatography (0-10% Methanol in Dichloromethane) and then prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% tri fluoroacetic acid)) to yield compound 10 (56 mg, 30%) as a white solid, trifluoroacetate salt, after lyophilization.
'H-NMR (CDCIj, 300 MHz): 8.62 (s, IH), 7.44 (d, J = 9.3 Hz, IH), 7.01-6.91 (m, 2H), 6.02 (s, IH), 5.77 (s, IH), 4.15 (br s, 2H), 3.85 (s, 3H), 3.49 (m, 2H), 3.32 (s, 3H), 2.27 (s, 3H), 2.20 (m, IH), 2.01 (s, 3H), 1.99 (m, IH), 1.70-L25 (m, 3H)
LCMS m/z [M+H]+ C22H27N5O5S requires: 474.17. Found 474.04
HPLC Tr (min), purity %: 17.3, 99%
Compound 11
178
Compound 11
HATU (105.8 mg, 0.278 mmol) was added to a solution of 5-fluoro-2(methylsulfonamido)benzoic acid (57.1 mg, 0.246 mmol) in 3 mL of anhydrous DMF at room temperature. After 15 min of stirring, intermediate 6 (44.8 mg, 0.182 mmol) was added followed immediately by triethylamine (0.040 mL, 0.288 mmol). Reaction mixture stirred at room temperature for 24 hours under argon. Mixture was then poured into a mixture of 40 mL of 1:1 water/brine and extracted three times with 40 mL of ethyl acetate. The combined organic layers were washed with 50 mL of 1:1 water/brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by silica gel column chromatography (0-10% Methanol in Dichloromethane) and then prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoro acetic acid)) to yield compound 11 (61 mg, 58%) as a white solid, trifluoroacetate salt, after lyophilization. *H-NMR (CDC13, 300 MHz): 50 8.89 (s, 1H), 7.49 (m, 1H), 7.18-7.10 (m, 2H), 6.01 (s, 1H), 5.81 (s, 1H), 3.67 (br s, 2H), 3.50 (m, 2H), 3.37 (s, 3H), 2.27 (s, 3H), 2.22 (m, 1H), 2.02 (s, 3H), 2.00 (m, 1H), 1.70-1.25 (m, 3H)
LCMS m/z [M+H]+ C2]H24FN5O4S requires: 462.15. Found 462.04
HPLC Tr (min), purity %: 18.0, 99.7%
Compound 12
179
Compound 12
HATU (114.9 mg, 0.302 mmol) was added to a solution of 2-(Nmethylmethylsulfonamido)benzoic acid (61.1 mg, 0.268 mmol) in 4 mL of anhydrous DMF at room temperature. After 15 min of stirring, intermediate 6 (49.5 mg, 0.201 mmol) was added followed immediately by triethylamine (0.042 mL, 0.300 mmol). Reaction mixture stirred at room temperature for 18 hours under argon. Mixture was then poured into 40 mL of H2O and extracted three times with 40 mL of ethyl acetate. The combined organic layers were washed with 80 mL 1:1 water/Brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by silica gel column chromatography (0-10% Methanol in Dichloromethane) and then prep HPLC (15-100% Acetonitrile (with 0.1% tri fluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 12 (34.2 mg, 30%) as a white solid, trifluoroacetate salt, after lyophilization.
’H-NMRiCDClj^OO MHz):5D 7.51-7.34 (m, 4H), 6.37 (s, IH), 6.10 (s, 1H),4.38 (brs, 1H), 3.53 (d,J= 12.9 Hz, lH),3.32(s, 3H), 3.07 (s,3H)3.06 (m, 1H), 2.59 (d, J = 14.1 Hz, 1H),2.35 (s, 3H), 2.06 (s,3H), 1.94 (m, 1H), 1.72-1.50 (m,4H)
LCMS m/z [M+H]+ C22H27N5O4S requires: 458.18. Found 458.03 HPLC Tr (min), purity %: 17.3, 96%
Compound 13
180
Compound 13
HATU (180 mg, 0.473 mmol) was added to a solution of 3-fluoro-2(methylsulfonamido)benzoic acid (Intermediate 12) (95.3 mg, 0.409 mmol) in 4.5 mL of anhydrous DMF at room temperature. After 20 min of stirring, intermediate 6 (99.9 mg, 0.313 mmol) was added followed immediately by triethylamine (0.15 mL, 1.09 mmol). Reaction mixture stirred at room temperature overnight under argon. Mixture was then poured into 40 mL of 3:1 H2O:brine and extracted three times with 40 mL of ethyl acetate. The combined organic layers were washed with 50 mL of water and 30 mL of Brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by silica gel column chromatography (0-10% Methanol in Dichloromethane) and then prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 13 (61 mg, 34%) as a white solid, trifluoroacetate salt, after lyophilization.
’H-NMR (CDCh, 300 MHz): ÔD 9.38 (s, 1H) 7.31-7.15 (m, 3H), 6.09 (s,lH), 5.97 (s, 1H), 4.33 (br s, 1H), 3.61 (s, 3H), 3.33 (m, 2H), 2.43 (m, 1H), 2.26 (m, 1H), 2.21 (s, 3H) 2.04 (s, 3H) 1.68 (m, 1H), 1.50 (m, 1H), 1.24 (m, 1H)
LCMS m/z [M+H]+ C2iH24FN5O4S requires: 462.15. Found 462.09
HPLC Tr (min), purity %: 5.08, 99%
Compound 14
I81
To a solution of compound 3 (6 mg, 0.016 mmol) in Pyridine (1.0 mL) was added Cyclopropanecarbonyl chloride (17mg, 0.16 mmol) at RT. The reaction was completed in 5 mins. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 14 (5 mg, 71%) as a white powder after lyophilization.
‘H-NMR (CD3CN, 300 MHz): ÔD 10.22 (s, 1H), 7.95-7.86 (m, 2H), 7.44 (s, 1H), 6.78-6.43 (m, 2H), 5.47 (s, 1H), 2.82 (me, 5H), 2.58 (s, 3H), 2.37-2.15 (m, 4H), 1.40 (s, 3H), 1.35-1.30 (me, 5H).
LCMS m/z [M+H]+ C24H27N5O3 requires: 434.50. Found 433.98
HPLC Tr (min), purity %: 2.19, 98%
Compound 15
To a solution of compound 3(13 mg, 0.036 mmol) in pyridine (1.0 mL) was added 4Morpholinesulfonyl chloride (67mg, 0.36 mmol) at RT, The reaction was heated at 70°
182 overnight. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 15 (12 mg, 67%) as a white powder after lyophilization.
‘H-NMR (CD3CN, 300 MHz): ÔD 9.84 (s, 1H), 7.64 (d, J= 9.3 Hz, IH), 7.46 (d, J= 8.1 Hz, 1H), 7.22 (s, IH), 5.98 (s, IH), 3.60 (t, J= 4.5 Hz, 1H), 3.22 (t, 7= 4.5 Hz, 1H), 2.32-2.30 (m, 10 4H), 2.05 (s, 3H), 1.96 (s, 3H), 1.75-1.64 (me, 5H).
LCMS m/z [M-Hf C2.}H?oN605S requires: 515.60. Found 515.04
HPLC Tr (min), purity %: 2.23, 98%
Compound 16
HO
Compound 16
To a solution of 2-Acetimido-5-fluorobenzoic acid (63 mg, 0.32 mmol) in DMF (4 mL) was added HATU (134 mg, 0.35 mmol) the solution stirred under N2 at RT for 10 mins. To the 20 above solution was added Intermediate 6 (40mg, 0.16mmol) and Et3N (0.05 mL). The reaction mixture was stirred at RT for 5h. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 16 (5 mg, 7%) as a white powder after lyophilization.
’H-NMR (CD3CN, 300 MHz): ÔC 12.21 (s, IH), 7.50 (s, ÎH), 7.26-7.24 (m, 2H), 6.87 (s, IH),
5.93 (s, IH), 3.32-3.30 (m, 4H), 2.29 (s, 3H), 2.06 (s, 3H), 1.74 (s, 3H), 1.60-1.43 (me, 5H).
LCMS m/z [M+H]+ C22H24FN5O3 requires: 426.46. Found 426.01
HPLC Tr (min), purity %: 2.14, 98%
183
Compound 17
HATU (707 mg, 0.186 mmol) was added to a solution of 5-fluoro-2(methylsulfonamido)benzoic acid (376 mg, 0.1.61 mmol) in DMF (5 mL) and stirred 15 min. Intermediate 13 (395 mg, 1.24 mmol) and triethylamine (865 pL, 6.20 mmol) were added and the mixture was stirred overnight. The mixture was poured into H?O (50 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with saturated sodium chloride solution (50 mL) and dried over MgSO4. Purification via SiO2 column chromatography (80 g SiO2 Combiflash HP Gold Column, 0-10% MeOH/CH2Cl2) followed by preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) afforded Compound 17 (23.6 mg, 4%) as a white solid (TFA salt).
*H NMR (CD3OD, 300 MHz) 7.49 (m, 1 H), 7.24 (m, 2H), 6.05 (br m, 1H), 3.44 (m, 1H), 3.31 (s, 3H), 2.43 (br m, IH), 2.12 (s, 3H), 1.45 (brm, 5H);
LCMS m/z [M+H]+ 448;
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) 0? = 3.854 min (>95% purity @ 254 nM).
Compound 18
184
Compound 18
The starting material intermediate 15 (0.04g, 0.121 mmol), was dissolved in anhydrous
1,4-dioxane (2 ml). With stirring under nitrogen 4N HC1 in dioxane (4 ml) was added via syringe. The reaction was stirred for 2 hours at room temperature while monitoring by LC/MS. When the reaction was complete solvent was removed by rotary evaporation to provide a residue that was then dissolved in DMF (3 mL). (Yield- 28 mg, 0.121 mmol, 100 %). MS: [232, M*1]. In a separate reaction vessel, Ο-Benzoic acid methanesulfamide(0.039g, 0.183 mmol), HATU(0.116g, 0.305 mmol), and pyridine(29ul, 0.366 mmol), were dissolved in anhydrous DMF (5 ml). The reaction mixture was stirred under nitrogen for 2 hours to activate the acid. When activation was approximately 80% complete by LC/MS (2 hr) the piperidine solution in DMF (0.028g, 0.121 mmol), along with DIPEA (86ul, 0.488mmol) were added. The reaction was stirred overnight while monitoring by LC/MS. Solvents were removed by rotary evaporation. The residue was taken up in DCM (100 ml)and washed with water (5 x 100 ml). The organic layer was collected, dried over MgSO4, filtered and evaporated. The residue was taken up in DCM and columned on silica gel using a gradient of 0 to 10% MeOH to provide compound 18 : DCM. (Yield- 32.45 mg, 0.076 mmol, 62 %).
’H-NMR (CD3CN, 300 MHz):D5 1.50 (m, 2H), 1.74 (m, 1H), 2.20 (bs, 1H), 2.31 (s, 3H), 2.43 (s, 1H), 2.99 (s, 3H), 3.10 (m, 1H), 3.35 (m, 1H), 6.22-6.46 (m, 1H), 7.25-7.70 (m, 4H), 8.809.00 (m, 1H).
Compound 19
NH
SO2CH3
Compound 19
185
The piperidine starting material was purchased from Asinex Ltd.. Using the general method above for compound 11,0.035 g (19%) colourless powder of compound 19 was obtained.
’H-NMR (CD3CN, 400 MHz): 50 7.34 (s 1H), 7.08 (d, 2H, J= 5.6 Hz), 5.88 (s 1H), 4.86 (m, 1
H), 4.33 (s, br. 1H), 4.33 (s, br. 1H), 3.28 (s, br. 1H), 3.26 (s, br. 1H), 3.06 (s, 3H), 2.4-1.4 (m, 4 H).
19F-NMR (CH3CN, 400 MHz): ÔÜ -75.97
LCMS m/z [M+H]+ C2qH2]F2N5O4S requires: 465.47. Found 466.03
HPLC Tr (min), purity %: 2.09, 100%.
Compound 20: N-{2-i3-i5.6-Dimethvl-7-oxo-4.7-dihYdro-pvrazolo|L5-alpvrimidin-2-yl)morpholine-4-carbonvi|-phenvH-mcthanesulfonamide
Compound 20
Dissolved intermediate 19 (77mg, 0.22mmol) in MeOH (0.5mL). Added 4N HC1 in dioxane (3mL) and stirred for 1 hr. Concentrated under reduced pressure. Dried under high vacuum. Mixed 2-m ethanesulfonyl amino-benzoic acid (72m g, 0.335mmol) with HATU ( 127mg, 0.335mmol) and dissolved in anhydrous DMF (2mL). Stirred for 30 minutes. Dissolved 5,6-Dimethyl-2-morpholin-3-yl-4H-pyrazolo[l,5-a]pyrimidin-7-one hydrochloride in anhydrous DMF (2mL) and added to the reaction. Added triethylamine (92uL, 0.66mmol) and stirred for 12hrs. Diluted with ethyl acetate and washed with 5% aqueous citric acid solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Combiflash silica gel column (linear gradient
186 from 0-10% MeOH in DCM). Final purification with Cig Prep HPLC to provide compound 20 (41 mg, 42%).
*H NMR (CD3OD, 300MHz): δ 7.48-7.28 (m, 4H), 6.15 (s, IH), 5.80 (bs, IH), 4.46 (m, IH), 4.02-3.68 (m, 5H), 3.14 (s, 3H), 2.38 (s, 3H), 2.08 (s, 3H).
LCMS m/z [M+H]+ 446.1
Compound 21 (cis):
(+/-) cis compound 21 (+/-) cis intermediate 23
Dissolved (+/-)-cis-intermediate 23 in MeOH (ImL). Added 4N HC1 in dioxane (3mL) and stirred for 2 hr. Concentrated under reduced pressure. Dried under high vacuum. Mixed 5Fluoro-2-methanesulfonylamino-benzoic acid (63mg, 0.272mmol) with HATU (113mg, 0.296mmol) and dissolved in anhydrous DMF (2mL) in a separate flask. Stirred for 30 minutes. Dissolved product from above, hydrochloride (89mg, 0.247mmol) in anhydrous DMF (2mL) and added to the benzoic acid mixture. Added triethylamine (103uL, 0.741mmol) and stirred for 16hrs. Concentrated under reduced pressure. Purified with Cjg Prep HPLC to provide compound 21 as a mixture of cis isomers (61mg, 52%).
'H NMR (CDjOD, 300MHz): (+,-)cis: δ 7.51 (m, IH), 7.21 (m, 2H), 6.09 (s, IH), 5.00 (bs, IH), 3.66 (m, 2H), 3.11 (s, 3H), 2.38 (m, 3H), 2.27 (m, IH), 2.09 (s, 3H), 2.04 (m, 3H), 1.37 (m, IH), 0.92 (d,J=6.3Hz, 3H).
LCMS m/z [M+H]+ 476.1
Compound 22 (trans):
Dissolved (+/-) trans intermediate 24 in MeOH (ImL). Added 4N HCl in dioxane (3mL) and stirred for 2 hr. Concentrated under reduced pressure. Dried under high vacuum. Mixed 5Fluoro-2-methanesulfonylamino-benzoic acid (33mg, 0.143mmol) with HATU (59mg, 0.156mmol) and dissolved in anhydrous DMF (2mL) in a separate flask. Stirred for 30 minutes. Dissolved product from above, hydrochloride (47mg, 0.13mmol) in anhydrous DMF (2mL) and added to the benzoic acid mixture. Added triethylamine (54uL, O.39mmol) and stirred for 16hrs. Concentrated under reduced pressure. Purified with Cig Prep HPLC. Yield the trans product compound 22 as a mixture of trans isomers (46mg, 74%).
*H NMR (CDjOD, 300MHz): (+,-)trans: δ 7.49 (m, 1H), 7.25 (m, 2H), 6.12 (m, 1H), 4.95-4.85 (m, 1H), 3.47 (m, 2H),3.11 (s, 3H),2.45 (m, 1H), 2.38 (m, 3H), 2.09 (s, 3H), 1.73-1.50 (m, 3H), 1.30 (m, 1H), 0.99 (d, J= 5.7Hz, 3H).
LCMS m/z [M+H]+ 476.1
Compound 23 and Compound 24. Isomerically pure enantiomers of Compound 22 racemic mixture
Trans mixture compound 22 (38mg) was resolved using Chiralpak AD-H column eluting with heptane/IPA (7:3) to provide the isomer A (first peak), Compound 23 (9.4 mg), followed by the isomer B (second peak), Compound 24 (10.4 mg)
Compound 25: 5,6-DimethyI-2-(S)-piperidin-2-yl-4H-pyrazok>[l,5-alpyrimidin-7-one
Intermediate 25 (0.35 g, 1.0 mM) was dissolved in HOAc (20 ml) and cone. aequ. HCI (2 ml) and stirred 2 h. The solution was concentrated under reduced pressure to yield the unprotected intermediate as an oil (0.45 g). The sulphonamide (0.2 g, 0.93 mM) was suspended in DMF (2 ml) and pyridine was added (0.3 ml) followed by HATU (0.26g, 0.93 mM). The clear solution was stirred for 2 h at RT. A solution of above intermediate in DMF and DIPEA (added dropwise to adjust pH > 8) was then added and stirred for 6 h. Preparative HPLC (0-95% MeCN in water) afforded compound 25 was a white powder (0.083g, 20%).
’H-NMR (DMSO, 300 MHz): δΠ 8.00 (s, 1H), 7.51 (m, 3H), 7.30 (m, 1H), 6.5 (s, 1H), 6.10 (br s, 3H), 2.98 (s, 3H), 2.83 (s, 3H), 2.59 (s, 3H), 2.33 (s, 3H), 1.99-1.95 (m, 1H), 1.74-1.60 (m, 4H).
LCMS m/z [M+H]+ C22H27N5O3S requires: 441.55. Found 442.13
HPLC Tr (min), purity %: 2.76, 95%.
Compound 26
189
Ο-Benzoic acid methanesulfonamide (0.060g, 0.28 mmol), HATU(0.213g, 0.56 mmol), and pyridine(68ul, 0.84 mmol), were dissolved in anhydrous DMF (8 ml). The reaction was stirred under nitrogen for 2 hours to activate the acid. When activation was approximately 80% complete by LC/MS (2 hr) the piperidine intermediate 28 (0.073g, 0.28 mmol), along with DIPEA (96ul, 0.56mmol) were added dissolved in DMF(4 ml). The reaction was stirred overnight while monitoring by LC/MS. Solvents were removed by rotary evaporation. The residue was taken up in DCM (100 ml)and washed with water (5 x 100 ml). The organic layer was collected, dried over MgSCfr, filtered and evaporated. The residue was taken up in DCM and columned on silica gel using a gradient of 0 to 10% MeOH : DCM to afford compound 26 (65 mg, 0.143 mmol, 51 %).
'H-NMR (CD3CN, 300 MHz); ÔD 1.58 (m, 2H), 1.75 (m, 2H), 2.22 (s, 1H), 2.40 (s, 3H), 2.42 (s, 1H), 2.44 (s, 3H), 3.01 (m, 4H), 3.39 (m, 3H), 6.20 (s, 1H), 6.37 (m, 1H), 7.25-7.60 (m, 4H), 8.36 (bs, 1H).
Compound 27
Compound 27
HATU ¢170 mg, 0.45 mmol) was added to a solution of salicylic acid (54 mg, 0.39 mmol) in DMF (5 mL) and stirred 15 min. Intermediate 6 (95 mg, 0.30 mmol) and triethylamine (124 pL, 0.89 mmol) were added and the mixture was stirred overnight. The mixture was poured into H2O (50 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with saturated sodium chloride solution (50 mL) and dried over MgSO4. The material in THF/MeOH/H2O (3:2:1, 5 mL) was treated with LiOH (250 mg) and stirred 2 h. The mixture was acidified with AcOH (pH ~2) and the mixture was poured into H2O (50 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with saturated sodium chloride solution (50 mL) and dried over MgSO4. Purification via SiO2 column
190 chromatography (40 g SiO2 Combiflash HP Gold Column, 0-10% MeOH/CH2Cl2) followed by preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) afforded Compound 27 (9.4 mg, 9%) as a white solid (TFA salt).
'H NMR (CD3OD, 300 MHz) 7.25 (m, 2H), 6.89 (m, 2H), 6.11 (br s, 1H), 2.62 (brm, 1H), 2.39 (s, 3H), 2.09 (s, 3H), 1.94 (m, 1H), 1.60 (brm, 5H);
LCMS m/z [M+H]+ 367;
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) = 4.430 min (>95% purity @ 254 nM).
Compound 28
HO
Compound 28
HATU (137 mg, 0.36 mmol) was added to a solution of 5-fluoro-2(methylsulfonamido)benzoic acid (73 mg, 0.31 mmol) in DMF (5 mL) and stirred 15 min. Intermediate 29 (87 mg original Boc material, 0.24 mmol) and triethylamine (100 pL, 0.72 mmol) were added and the mixture was stirred overnight. The mixture was poured into H2O (50 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with saturated sodium chloride solution (50 mL) and dried over MgSO4. Purification via SiO2 column chromatography (4 g SiO2 Combiflash HP Gold Column, 0-10% MeOH/CH2Cl2) followed by preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) afforded Compound 28 (5.3 mg, 5%) as a white solid (TFA salt).
LCMS m/z [M+H]+ 476;
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 3.867 min (>95% purity @ 254 nM).
I91
Compound 29
Compound 29
2- methanesulfonamido-5-methylbenzoic acid (1.0 g, 4.36 mmol), HATU (1.5 g, 5.2 mmol) were dissolved in anhydrous DMF (8 ml). After activation for 1 hour, to the above solution was added intermediate 31 (0.32 g, 1.25 mmol) and triethylamine (0.17 ml). The reaction was stirred under nitrogen for 5 hours. Solvents were removed by rotary evaporation. The residue purified with preparatory HPLC to provide compound 29, (Yield 0.56 g, 90 %). ’H-NMR (DMSO, 400 MHz):D d 7.40-7.31 (m, 3H), 6.72 (s, 1H), 6.27 (s 1H), 2.92 (s , 3H), 2.36 (s, 2H), 2.10-1.90 (m, 2H), 1.96 (s, 3H), 1.67-1.48 (m, 3H), 1.08-1.02 (m, 2H). LCMS m/z [M+H]+ C24H29N6O3S requires: 468.58. Found 468.20
HPLC Tr (min), purity %: 2.92, 98%.
Intermediate 32,
(+/-) cis
3-Methylpicolinic acid (10 g, 72.9 mmol) in EtOH (80 ml) and water (80 mL) was treated with PtO2 (4 g) and placed under a H2 atmosphere (60 psi). The mixture was shaken vigorously for 18 h, and then the PtO2 was degassed via vacuum for 30 min. The mixture was filtered through
192 a Celite pad, which was washed with EtOH (3 x 50 mL) and H2O (3 * 80 mL). The solution was concentrated to afford (+/-) cis-3-methylpiperidine-2-carboxylic acid, which was used without further purification.
(+/-)-Cis-3-methylpiperidine-2-carboxyIic acid (10.4 g, 72.9 mmol) in 1,4-dioxane (200 ml.) and 1 N NaOH (218 mL, 219 mmol) was treated with CBzCl (15.4 mL, 109 mmol) and stirred for 18 h. The mixture concentrated and the resulting solid was suspended in EtOAc (200 mL) and the mixture was filtered. The solids were washed with EtOAc (3 x 50 mL) and the solution was dried over MgSO4. The solution was concentrated to afford (+/-)-cis-l (benzyloxycarbonyl)-3-methylpiperidine-2-carboxylic acid, which was used without further purification.
(+/-) Cis-l-(benzyloxycarbonyl)-3-methylpiperidine-2-carboxylic acid (20.2 g, 72.9 mmol) in MeOH (300 mL) was cooled to 0 °C and treated with SOC12 (13.3 mL, 182 mmol). The mixture was warmed to ambient temperature and stirred for 18 h. The mixture concentrated. Crude material was purified with silica gel column (0-20% EtOAc in hexanes) to give intermediate 32. Yield: 2.6g, 8% *H NMR (400MHz, CD3OD): δ 7.34 (m, 5H), 5.18-5.03 (m, 2H), 4.74 (d, J=4.8Hz, 1H), 3.99 (m, 1H), 3.68 (m, 3H), 3.31 (m, 1H), 1.89 (m, 1H), 1.75 (m, 1H), 1.62-1.45 (m, 2H), 1.33 (m, 1H), 1.02 (m, 3H).
LC/MS (m/z): 291.9 [M+H]+
Intermediate 33.
N
Cbz O
Cbz O (+/-) cis (+/-) cis
193
Dissolved anhydrous acetonitrile (1.4mL, 26.6mmol) in anhydrous THF (lOmL) and stirred under Argon in a dry ice/acetonitrile bath (-40°C). Added IN sodium bis(trim ethylsilyl) amide in THF (17.7mL, 17.7mmol) dropwise over 20mins. Resulting reaction mixture was stirred for lhr. under same conditions.
Dissolved intermediate mixture of isomers 32 (2.6g, 8.8mmol) in anhydrous THF (lOmL) and stirred under Argon at -78°C which was then transferred to reaction mixture dropwise. Reaction was stirred for 6hrs. under Argon in at -40°C. Added acetic acid (2mL, 34.4mmol) and the reaction was slowly warmed to r.t. Diluted with ethyl acetate and washed with 5% aqueous citric acid solution, saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Crude residue was purified with silica gel column (linear gradient from 0-30% EtOAc in hexanes) to yield intermediate 33 as a mixture of isomers (1.2g, 45%).
3H NMR (400MHz, CD3OD): δ 7.36 (m, 5H), 5.15 (m, 2H), 4.78 (m, 1H), 3.96 (m, 1H), 3.052.90 (m, 1H), 1.88 (m, 1H), 1.72 (m, 1H), 1.60-1.49 (m, 3H), 1.08 (m, 3H).
LC/MS (m/z); 300.9 [M+H]+
Intermediate 34,
N2H4-HOAc
EtOH
Cbz O (+/-) cis (+/-) cis and (+/-) trans mixture
Dissolved intermediate isomer mixture 33 (1.2g, 4mmol) in ethanol (40mL). Added HOAc (1.8mL, 32mmol) and then hydrazine hydrate (1.2mL, 16mmol). Stirred at room temperature for 9hrs. Added more HOAc (ImL) and hydrazine hydrate (0.6mL) and stirred for 20hrs. Concentrated under reduced pressure. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (linear gradient from 0-5% MeOH in DCM) to give a mixture of both (+/-) cis and (+/-) trans products, intermediate 34 (0.9g, 72%).
194 'H NMR (400MHz, CD3OD): δ 7.31 (m, 5H), 5.70-5.50 (m, 1H), 5.15 (m, 3H), 4.04 (m, 1H), 3.05-2.90 (m, lH),2.39(m, 1H), 1.90-1.70 (m,3H), 1.58-1.38 (m, 3H), 1.11-0.79 (m, 3H). LC/MS (m/z): 315.1 [M+H]+
Intermediate 35,
Dissolved intermediate 34 isomer mixture (0.9g, 2.86mmol) in EtOH (50mL). Added HOAc (3.3mL, 57.2mmol) and ethyI-2-methyl acetoacetate (2.3mL, I4.3mmol). Stirred at reflux for 2hrs. Concentrated under reduced pressure. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Crude residue was purified with silica gel column (linear gradient from 0-10% MeOH in DCM) to yield intermediate 35 (diastereomeric mixture of cis and trans isomers, 1.1 g, 98%).
'H NMR (400MHz, CD3OD): δ 7.32 (m, 5H), 5.95-5.82 (m, 1H), 5.39-5.21 (m, 1H), 5.16-5.05 (m, 2H), 4.10 (m, 1H), 3.02-2.78 (m, 1H), 2.36 (m, 3H), 2.09 (m, 3H), 2.00-1.75 (m, 3H), 1.581.38 (m,2H), 1.16-0.85 (m, 3H).
LC/MS (m/z): 395.1 [M+H]+
Compound 30 and 31
195
Dissolved intermediate 43 isomer mixture (benzyl 2-(5,6-dimethyl-7-oxo-4,7dihydropyrazolo[l,5-a]pyrimidin-2-yl)-3-methylpiperidine-l-carboxylate) (50mg, O.l26mmol) in MeOH. Added Pd/'C and stirred under atmosphere hydrogen for 2hrs. Filtered reaction through Celite and washed with MeOH. Concentrated under reduced pressure and dried under high vacuum. Mixed 5-methyl-2-(methylsulfonamido)benzoic acid (32mg, 0.139mmol) with HATU (63mg, 0.167mmol) and dissolved in anhydrous DMF (500uL). Stirred for Ihr. Dissolved 5,6-dimethy[-2· (3-mcthylpipcndm-2-yl)pyrazolo| 1,5-a]pynmidin -7(4H)-one from hydrogenation in anhydrous DMF (500uL) and added to the reaction. Added triethylamine (384uL, 2.75mmol) and stirred for I6hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified crude material with Cjg Prep HPLC to give compound 30, (9 mg) as the first eluting product, and compound 31 (13 mg) as the second eluting material.
Compound 30, (first eluting peak) ‘H NMR (400MHz, CD3OD): δ 7.38-7.26 (m, 3H), 7.12 (m, 1H), 6.12-5.93 (m, 1H), 3.85-3.40 (m, 2H), 3.00 (s, 3H), 3.25-2.80 (m, 1H), 2.38-2.34 (m, 6H), 2.09 (m, 3H), 1.93-1.60 (m, 3H), 1.26 (m, 2H), 1.12 (m, 2H), 0.99-0.87 (m, 3H).
LC/MS (m/z): 472.2 [M.+H]+
Compound 31 (second eluting peak) ‘H NMR (400MHz, CD3OD): δ 7.37-7.24 (m, 3H), 6.07 (m, 1H), 3.09 (s, 3H), 2.78 (m, 1H), 2.38 (m, 6H), 2.08 (m, 3H), 1.86 (m, 2H), 1.53 (m, 2H), 1.40 (m, 1H), 1.30 (m, 3H).
196
LC/MS (m/z): 472.1 [M+H]+
Intermediate 36
Mixed 2-amino-6-methyI-benzoic acid (24mg, 0.157mmol) with HATU (60mg, 0.157mmol) and dissolved in anhydrous DMF (500uL). Stirred for Ihr. Dissolved intermediate 6 ((S)-5,6dimethyl-2-(piperidin-2-yl)pyrazolo[l,5-a]pyrimidin-7(4H)-one hydrochloride) (25mg, 0.078mmol) in anhydrous DMF (500uL) and added to the reaction. Added tri ethylamine (54uL.. 0.39mmol) and stirred for 16hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure to give crude intermediate 36 (19mg), which was used in the next step without purification.
Compound 32,
Dissolved (5)-2-(1-(2-amino-6-methylbenzoyl)piperidin-2-yl)-5,6-dimethylpyrazolo [1,5a]pyrimidin-7(4H)-one (intermediate 36) (19mg, O.OSmmol) in anhydrous pyridine (500uL) and added methanesulfonyl chloride (4.7uL, 0.06mmol) and stirred for 16hrs. Concentrated under
197 reduced pressure. Purified crude material with C]8 Prep HPLC to give compound 32. Yield:
6.9mg, 19% over 2 steps.
*H NMR (300MHz, CDCI3): δ 9.03 (m, 1H), 7.31 (m, 2H), 7.11 (m, 1H), 6.21 (m, 1H), 5.89 (m, 1H), 3.40-3.25 (m, 5H), 2.44-2.25 (m, 8H), 2.04-1.97 (m, 4H), 1.67-1.25 (m, 4H).
LC/MS (m/z): 458.1 [M+H]+
Intermediate 37,
Mel, DMF
Na2CO3
Used the procedure as described for the preparation of intermediate 16 but with (S)-2-(tertbutoxycarbonyl)-l,2,3,4-tetrahydroisoquinoline-3-carboxylic acid instead. Starting material acid (500mg, 1.8mmol) gave intermediate 37 (515mg, 98% yield).
*H NMR (300MHz, CDCI3): δ 7.12 (m, 4H), 5.14-4.77 (m, 1H), 4.72-4.45 (m, 2H), 3.65 (m, 3H), 3.23-3.15 (m, 2H), 1.53-1.46 (m, 9H).
Intermediate 38
(TMS)2NNa, CH3CN
THF, -40°C
Boc
Used the same procedure as described for the preparation of intermediate 17, using intermediate (515mg, I.77mmol) gave cyanoketoneintermediate 38 (419mg, 79% yield).
LC/MS (m/z): 299.0 [M-H]’
Intermediate 39,
N2H4-H2O, HOAc
EtOH
Used the same procedure as described for the preparation of intermediate 18. Starting material cyanoketone intermediate 38 (419mg, 1.4mmol) gave intermediate 39 (320mg, 73% yield). LC/MS (m/z): 314.9 [M+H]+
Intermediate 40,
Condensation with keto ester was done on intermediate 39 using the same procedure as described for the preparation of intermediate 19, the product was then deprotected following the procedure described for that of intermediate 6. Starting material aminopyrazole intermediate 39 (320mg, 1.02mmol) gave intermediate 40 (357mg, 97% yield).
LC/MS (m/z): 295.1 [M+Hf
Compound 33,
199
Mixed 5-methyl-2-(methylsulfonamido)benzoic acid (23mg, 0.1 mmol) with HATU (46mg, 0.12mmol) and dissolved in anhydrous DMF (500uL). Stirred for lhr. Added
Intermediate 40 (S)-5,6-dimethyl-2-(l,2,3,4-tetrahydroisoquinolin-3-yl)pyrazolo[l ,5a]pyrimidin-7(4H)-one hydrochloride (33mg, 0.1 mmol) and then TEA (70uL, 0.5mmol). Stirred for 2 hrs. Diluted reaction with acetonitrile (lmL) and purified with Prep HPLC to give title compound 33_(28.5mg, 46% yield).
'H NMR (400MHz, CD3OD): δ 7.41-6.89 (m, 7H), 6.10-5.95 (m, IH), 5.30-5.18 (m, IH), 4.614.54 (m, 2H), 3.52-3.40 (m, 2H), 3.06-2.99 (m, 3H), 2.36-2.24 (m, 6H), 2.00- 1.98 (m, 3H). LC/MS (m/z): 506.1 [M+H]+
Intermediate 41
1)Cbz-CI, TEA
2) POCI3, lutidine
Mixed intermediate 40 (S)-5,6-dimethyI-2-(l,2,3,4-tetrahydroisoquinolin-3-yl)pyrazolo[l,5
a]pyrimidin-7(4H)-one hydrochloride (271mg, 0.819mmol) with anhydrous DMF (3mL). Added triethylamine to give pH 9-10. Added Cbz-Cl (138uL, 0.983mmol) dropwise and then stirred for 2 hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0
10% MeOH in DCM) to give the CBZ protected pyrimidinone (277mg). LC/MS (m/z): 429.1 [M+H]+
Dissolved material in 2,6-Iutidine (5mL). Added POC13 (118uL, 1.29mmol) and stirred @120°C under Ar(g) for 30mins. Added more 2,6-lutidine (5mL) and POCI3 (xs) and stirred @120°C under Ar(g) for 60mins. Concentrated under reduced pressure and purified with silica gel column (0-50% EtOAc in hexanes) to give intermediate 41 (190mg, 52% yield).
>H NMR (400MHz, CDC13): δ 7.41-7.13 (m, 9H), 6.00-5.70 (m, IH), 5.30-5.18 (m, 2H), 5.104.60 (m, 2H), 3.55-3.25 (m, 2H), 2.60 (s, 3H), 2.36 (s, 3H).
LC/MS (m/z): 447.1 [M+H]+
200
Compound 34
3) HATU, DMF, TEA
1) ΗΝΜθ2, THF
2) Pd/C, H2
Dissolved intermediate 41 (S)-benzyl-3-(7-chk)ro-5,6~dirnethylpyra7.olo[l,5-a]pynmidin-2-yl)3,4-dîhydroisoquinoline-2(lH)-carboxylate (45mg, O.lmmol) in 2M dimethylamine in THF (5mL). Stirred for 8hrs. Concentrated under reduced pressure. Dissolved the resulting material in MeOH, added Pd/C and stirred under atm H2(g) for 16hrs. Filtered through Celite and concentrated under reduced pressure. Mixed 5-methyl-2-(methylsulfonamido) benzoic acid (25mg, 0.11 mmol) with HATU (46mg, 0.12mmol) and dissolved in anhydrous DMF (2mL). Stirred for lhr. Dissolved hydrogenation product in anhydrous DMF (1.5mL) and added to the reaction. Added TEA (42uL, 0.3mmol). Stirred for 2 hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Prep HPLC to give compound 34 (14.9mg, 23% yield).
'HNMR (400MHz, CD3OD): δ 7.39-6.89 (m, 7H), 6.49-6.11 (m, 1H), 6.30-5.44 (m, 1H),5.174.54 (m, 2H), 3.65-3.45 (m, 2H), 3.39 (s, 3H), 3.34 (s, 3H), 3.02-2.91 (m, 3H), 2.54-2.50 (m, 3H), 2.38-2.25 (m, 6H).
LC/MS (m/z): 533.2 [M+H]+
Compound 35
20l
Dissolved intermediate 41 (S)-benzyl-3-(7-chloro-5,6-dimethylpyrazolo[l,5-a]pyrimidin-2-yl)3,4-dihydroisoquinoline-2(lH)-carboxyIate (70mg, 0.15mmol) in THF/MeOH (2mL:2mL). Added TEA (44uL, 0.31mmol) and Pd/C and stirred under atm H2(g) for 4hrs. Filtered through Celite and concentrated under reduced pressure. Mixed 5-methyl-2-(methylsulfonamido)benzoic acid (39mg, 0.171mmol) with HATU (71 mg, 0.6mmol) and dissolved in anhydrous DMF (2mL). Stirred for lhr. Dissolved hydrogenation product in anhydrous DMF (2mL) and added to the reaction. Added TEA (130uL, 0.93mmol). Stirred for 16 hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Prep HPLC to give compound 35 (32.5mg, 36% yield).
'H NMR (400MHz, CD3OD): δ 8.81-8.58 (m, 1H), 7.60-6.83 (m, 7H), 6.39 (m, 1H), 5.34-5.17 (m, 1H), 4.41 (s, 1H), 3.50-3.34 (m, 2H), 3.03-2.94 (m, 3H), 2.47-2.45 (m, 3H), 2.38-2.34 (m, 3H), 2.24-2.23 (m, 3H).
LC/MS (m/z): 490.1 [M+H]+
Intermediate 42,
POCI3, lutidine
Dissolved benzyl 2-(5,6-dimethyl-7-oxo-4,7-dihydropyrazolo[l ,5-a]pyrimidin-2-yl)-3methylpiperidine-1 -carboxylate (intermediate 35) (200mg, O.Slmmol) in 2,6-lutidine (ImL). Added POC13 (93uL, l.Olmmol) and stirred @120°C under Ar(g) for 3hrs. Concentrated under
202 reduced pressure and purified with silica gel column (0-50% EtOAc in hexanes) to give intermediate 42 (mixture of (+/-) cis and (+/-) trans isomers, I58mg, 74% yield).
*H NMR (400MHz, CD3OD): δ 7.32-7.20 (m, 5H), 6.40 (s, 1H), 5.45-5.32 (m, 1H), 5.18 (s, 2H), 4.15-4.05 (m, 1H), 3.10-3.15 (m, 1H), 2.59 (s, 3H), 2.44 (s, 3H), 1.90-1.40 (m, 3H), 1.21 (m, 3H), 0.85 (m, 1H).
LC/MS (m/z); 413.2 [M+H]+
Compound 36
1)Pd/C, Hz
2) HATU, DMF, TEA
Compound 36
Dissolved intermediate 42 (benzyl-2-(7-chloro-5,6-dimethylpyrazolo[l,5-a]pyrimidin-2-yI)-3methyl-piperidine-l-carboxylate) (52mg, 0.126mmol) in MeOH (2mL). Added TEA (35uL, 0.278mmol) and Pd/C and stirred under atm H2(g) for Ihr. Filtered through Celite and concentrated under reduced pressure. Mixed 5-methyl-2-(methylsulfonamido)benzoic acid (32mg, 0.139mmol) with HATU (63mg, O.I67mmol) and dissolved in anhydrous DMF (ImL). Stirred for lhr. Dissolved hydrogenation product in anhydrous DMF (ImL) and added to the reaction. Added TEA (58uL, 0.417mmol). Stirred for 16 hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Prep HPLC to give title compound 36 ((+/-) mixture of one diastereoisomer, 25.2mg, 35% yield).
203 ’H NMR (400MHz, CD3OD): δ 8.95-8.70 (m, IH), 7.55-7.25 (m, 3H), 6.51 (m, lH), 5.94 (m,
1H), 3.16 (m, 1H), 2.91 (m, 3H), 2.72 (m, 1H), 2.54 (s, 3H), 2.38 (s, 3H), 2.31 (s, 3H), 1.90-1.50 (m, 3H), 1.32 (m, 4H).
LC/MS (m/z): 456.2 [M+H]+
Compound 37 and 38,
Compound 30 (6.7mg) was resolved using Chiralpak IC column using MeOH.EtOH (1:1) as mobile phase to give title compound 37 as the first eluting compound and 38 as the second eluting compound (2.5mg each).
Intermediate 43
O 0 xylene
Dissolved Intermediate 4 (266mg, I mmol) in xylene (5mL). Added ethyl acetoacetate (140uL, l.lmmol) and stirred @140°C for 1.5hr. Added more ethyl acetoacetate (50uL) and stirred @140°C for lhr. Concentrated under reduced pressure and purified with silica gel column (010% MeOH in EtOAc) to give intermediate 43 (145mg, 44% yield).
‘H NMR (400MHz, DMSO): δ 5.75 (s, IH), 5.53 (s, IH), 5.30 (bs, 1H), 3.90-3.86 (m, 1H), 2.75 (m, IH), 2.31 (m, IH), 2.25 (s, 3H), 1.68 (m, IH), 1.54 (m, 2H), 1.40-1.25 (m, 1 IH). LC/MS (m/z): 332.9 [M+H]+
204
Intermediate 44
POCI3, lutidine
Dissolved intermediate 43 (S)-tert-butyl-2-(5-methyl-7-oxo-4,7-dihydropyrazolo[ 1,5a]pyrimidin-2-yl) piperidine-1-carboxylate (145mg, 0.436mmol) in 2,6-lutidine (0.5mL). Added POCI3 (80uL, 0.872mmol) and stirred @120°C for lhr. Concentrated under reduced pressure and purified with silica gel column (0-50% EtOAc in hexanes) to give intermediate 44 (5mg, 3%yield).
*H NMR (400MHz, CD3OD); δ 7.10 (s, 1H), 6.42 (s, 1H), 5.57 (m, 1H), 4.05 (m, 1H), 2.96 (m, 1H), 2.56 (s, 3H), 2.48 (m, 1 Η), 1.89 (m, 1H), 1.64 (m, 2H), 1.52-1.47 (m, 11H).
LC/MS (m/z): 351.0 [M+H]+
Compound 39
Dissolved intermediate 44 (S)-tert-butyI-2-(7-chloro-5-methylpyrazolo[l,5-a]pyrimidin-2yl)piperidine-l-carboxyl ate (5mg, 0.014mmol) in 2M dimethyl ami ne in THF (5m L). Stirred for lhr. Concentrated under reduced pressure. Dissolved the resulting material in EtOAc and
205 washed with saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Dissolved in 4N HCI in dioxane (ImL) and stirred for Ihr. Concentrated under reduced pressure and dried under high vacuum. Mixed 5-methyI-2-(methylsuIfonamido)benzoic acid (4.3mg, 0.019mmol) with HATU (7.4mg, 0.0196mmol) and dissolved in anhydrous DMF (200uL). Stirred for lhr. Dissolved de-Boc product in anhydrous DMF (300uL) and added to the reaction. Added TEA (lOuL, 0.07mmol). Stirred for 2 hrs. Diluted with MeOH and purified with Prep HPLC to give compound 39 (6.2mg, 76% yield).
'H NMR (400MHz, CD3OD): δ 7.34-7.20 (m, 3H), 6.50-6.10 (m, 1H), 6.33 (s, 1H), 3.75 (bs, 6H), 3.55-3.20 (m, 1H), 3.00 (s, 3H), 2.54 (s, 3H), 2.50-2.05 (m, 2H), 2.39 (s, 3H), 1.80-1.60 (m, 4H).
LC/MS (m/z): 471.2 [M+H]+
Intermediate 45
Cs2CO3, DMF
EtO COOEt
Dissolved intermediate 4 (lOg, 37.5mmol) in anhydrous DMF (60mL). Added ethyl 3-ethoxy-2 butenoate (llg, 67.5mmol) and cesium carbonate (18g, 56.3mmol). Stirred @110°C for 48hrs. Cooled to room temperature. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0-80% EtOAc in hexanes) to give intermediate 45 (9.55g, 77% yield).
'H NMR (400MHz, CD3OD): δ 5.86 (s, 1H), 5.73 (s, 1H), 5.40 (m, 1H), 4.00 (m, 1H), 2.91 (m, 1H), 2.54 (s, 3H), 2.36 (m, 1H), 1.80 (m, 1H), 1.63 (m, 2H), 1.58-1.45 (m, 11H).
LC/MS (m/z): 333.1 [M+H]+
Intermediate 46
206
Dissolved intermediate 45 ((S)-tert-butyl-2-(7-methyl-5-oxo-4,5-dihydropyrazolo[l,5a]pyrimidin-2-yl) piperidine-1-carboxylate) (l.68g, 5mmol) in 4N HCl in dioxane (5mL) and stirred for lhr. Concentrated under reduced pressure and dried under high vacuum to give solid which was then mixed with THF (lOmL) and TEA (2.lmL, 15mmol). Added Cbz-Cl (739uL, 5.25mmol) dropwise. Stirred for lhr. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0-80% EtOAc in hexanes) to give intermediate 46 (929mg, 51% yield).
JH NMR (400MHz, CD3OD): 5 7.31 (m, 5H), 5.85 (s, 1H), 5.74 (s, 1H), 5.47 (m, 1H), 5.205.10 (m, 2H), 4.08 (m, 1H), 3.05 (m, 1H), 2.50 (s, 3H), 2.34 (m, 1H), 1.85 (m, 1H), 1.63-1.51 (m,4H).
LC/MS (m/z); 367.2 [M+H]+
Intermediate 47
POCI3, toluene
Mixed intermediate 46 ((S)-benzyl-2-(7-methyl-5-oxo-4,5-dihydropyrazolo[l,5-a]pyrimidin-2yl) piperidine-1-carboxylate) (848mg, 2.3mmol) with toluene (7mL). Added POCI3 (635uL, 6.94mmol) and stirred @ 110°C for 1.5hr. Concentrated under reduced pressure. Dissolved with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution twice and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0-30% EtOAc in hexanes) to give intermediate 47 (425mg, 48% yield).
207
Ή NMR (400MHz, CD3OD): δ 7.29 (m, 5H),6.88 (s, IH), 6.40 (s, IH), 5.64 (m, IH), 5.215.10 (m, 2H), 4.12 (m, IH), 3.08 (m, 1H), 2.68 (s, 3H), 2.41 (m, 1H), 1.94 (m, 1H), 1.67-1.49 (m, 4H).
LC/MS (m/z): 385.0 [M+Hf
Compound 40
HCÎ
1) DMF HN
2) Pd/C, H2
3) HATU, DMF, TEA
Dissolved intermediate 47 ((S)-benzyl-2-(5-chloro-7-methylpyrazolo[l ,5-a]pyrimidin-2yl)piperidine-l-carboxylate) (43mg, 0.109mmol) in DMF (500uL). Added 3-hydroxyazetidine hydrogen chloride (I20mg, 1.09mmol) and TEA (304uL, 2.18mmol). Stirred @ 70°C for 2hrs. Cooled to room temperature. Dissolved with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution twice and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Dissolved material in MeOH, added Pd/C and stirred under atm H2(g) for lhr. Filtered through Celite and concentrated under reduced pressure.
Mixed 5-chloro-2-(methylsulfonamido)benzoic acid (28mg, 0.109mmol) with HATU (42mg, 0.109mmol) and dissolved in anhydrous DMF (300uL). Stirred for lhr. Dissolved hydrogenation product in anhydrous DMF (300uL) and added to the reaction. Added TEA (30uL, 0.218mmol). Stirred for 12 hrs. Diluted with acetonitrile and purified with Prep HPLC to give compound 40 (22mg, 32% yield).
'H NMR (400MHz, CD3OD): δ 7.49 (m, 3H), 6.26 (m, IH), 6.08 (m, IH), 4.78 (m, IH), 4.57 (m, 2H), 4.14 (m, 2H), 3.47-3.34 (m, 2H), 3.01 (m, 4H), 2.76 (s, 3H), 2.40-2.05 (m, 2H), 1.731.50 (m, 4H).
208
LC/MS (m/z): 519.2 [M+H]+
Compound 41
Used the procedure as described for the preparation of compound 40 (4.6mg) and intermediate 47, except substituting dimethylamine for the hydroxyl azetidine.
NMR (400MHz, CDjOD): Ô 7.53-7.40 (m, 3H), 6.40 (m, IH), 5.97 (m, IH), 4.58 (m, IH), 3.45 (m, IH), 3.15 (s, 6H), 2.98 (m, 3H), 2.70 (s, 3H), 2.35-2.20 (m, IH), 2.03 (m, IH), 1.711.55 (m, 4H).
LC/MS (m/z): 491.2 [M+H]+
Intermediate 48
Boc H Boc
Dissolved intermediate 46 (S)-tert-butyl-2-(7-methyl-5-oxo-4,5-dihydropyrazolo[l,5a]pyrimidin-2-yl) piperidine-1 -carboxylate (lOOmg, 0.3mmol) in anhydrous DCM (3mL) and @ 0°C under nitrogen. Added pyridine (121uL, l.Smmol). Added trifluoromethane sulfonic anhydride (76uL, 0.45mmol) dropwise. Warmed to room temperature and stirred for 2hrs. Added more pyridine (300uL) and Tf2O (76uL). Stirred for 2 hrs. Concentrated under reduced pressure. Dissolved with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution twice and saturated aqueous sodium chloride solution. Dried organic extract over
209 anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0-20% EtOAc in hexanes) to give intermediate 48 (97mg, 70% yield).
*H NMR (400MHz, CD3OD): δ 6.85 (s, 1H), 6.51 (s, 1H), 5.59 (m, 1H), 4.05 (m, 1H), 2.97 (m, 1H), 2.82 (s, 3H), 2.48 (m, 1H), 1.91 (m, 1H), 1.65 (m, 2H), 1.55-1.45 (m, 11H).
LC/MS (m/z): 365.1 [M+H]+
Intermediate 49
hn0>
THF
Dissolved (S)-tert-butyl-2-(7-methyl-5-(trifluoromethylsulfonyloxy)pyrazolo[l ,5-a] pyrimidin2-yl)piperidine-l-carboxylate) (46mg, O.lmmol) in THF (ImL). Added azetidine (68uL, lmmol). Stirred @ 70°C for 2hrs. Cooled to room temperature. Dissolved with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution twice and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0-60% EtOAc in hexanes) to give intermediate 49 (29mg, 78% yield).
Ή NMR (400MHz, CD3OD): δ 5.96 (s, 1H), 5.84 (s, 1H), 5.44 (m, 1H), 4.15-4.11 (m, 4H), 4.01 (m, 1H), 2.96 (m, 1H), 2.58 (s, 3H), 2.45-2.38 (m, 3H), 1.81 (m, 1H), 1.62 (m, 2H), 1.531.45 (m, 11H).
LC/MS (m/z): 372.2 [M+H]+
Compound 42
1) HCI in dioxane
HO
2) HATU, DMF. TEA
c
210
Dissolved intermediate (S)-tert-butyl-2-(5-(azetidin-1-yl)-7-methylpyrazolo[ I,5-a]pyrimidin-2yl) piperidine-1-carboxyl (Intermediate 49) (29mg, 0.078mmol) in 4N HC1 in dioxane (ImL) and stirred for Ihr. Concentrated under reduced pressure.
Mixed 5-chloro-2-(methylsulfonamido)benzoic acid (20mg, 0.082mmol) with HATU (36mg, 10 0.094mmol) and dissolved in anhydrous DMF (ImL). Stirred for L5hr. Dissolved above amine in anhydrous DMF (ImL) and added to the reaction. Added TEA (44uL, 0.312mmol). Stirred for 12 hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution twice and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Prep 15 HPLC to give compound 42 (24mg, 61% yield).
*H NMR (400MHz, CD3OD): δ 7.52 (m, 3H), 6.15-5.92 (m, 2H), 4.90-4.58 (m, 1H), 4.17-4.13 (m, 4H), 3.42 (m, 1H), 3.01 (m, 1H), 2.81 (s, 3H), 2.67 (s, 3H), 2.35-2.20 (m, 2H), 2.05 (m, 1H), 1.75-1.50 (m, 4H).
LC/MS (m/z): 503.3 [M+H]+
Intermediate 51
Mixed intermediate 4 (1.33g, 5mmol) with dimethyl uracil (771mg, 5.5mmol) in anhydrous 25 EtOH (12mL). Added 3M sodium ethoxide in ethanol (5.83mL, 17.5mmol). Stirred @90°C for
3hrs. Cooled to room temperature. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution twice and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0-60% EtOAc in hexanes) to give intermediate 51 (1.27g, 80% 30 yield).
2ll
Ή NMR (400MHz, CD3OD): δ 8.29 (d, J=7.6Hz, 1H), 5.78 (d, J=8.0Hz, 1H), 5.70 (s, 1H),
5.40 (m, 1H), 4.01 (m, 1H), 2.89 (m, 1H), 2.34 (m, 1H), 1.80 (m, 1H), 1.63 (m, 2H), 1.54-1.45 (m, 11H).
LC/MS (m/z): 319.0 [M+H]+
Intermediate 52
2) Cbz-CI, TEA
1) HCI in dioxane
Dissolved intermediate 51 ((S)-tert-butyl-2-(5-0 xo-4,5-dihydropyrazolo[ 1,5-a]pyrimidin-2yl)piperidine-l-carboxylate) (1.35g, 4.27mmol) in 4N HCI in dioxane (lOmL) and stirred for lhr. Concentrated under reduced pressure and dried under high vacuum. Mixed with THF (20mL) and TEA (1.8mL, 12.8mmol). Added Cbz-CI (630uL, 4.48mmol) dropwise. Stirred for 2hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure to give solid which was then suspended in a mixture of DCM/hexanes (4mL:80mL). Collected solid and dried under high vacuum to give intermediate 52 (1,25g, 83% yield).
H NMR (400MHz, CD3OD): δ 8.29 (d, J=7.6Hz, 1H), 7.33 (m, 5H), 5.98 (d, J=8.0Hz, 1H),
5.71 (s, 1H), 5.48 (m, 1H), 5.20-5.11 (m, 2H), 4.10 (m, 1H), 3.01 (m, 1H), 2.32 (m, 1H), 1.87 (m, 1H), 1.67-1.47 (m, 4H).
Intermediate 53,
Dissolved intermediate 52 ((S)-benzyl-2-(5-oxo-4,5-dihydropyrazolo[l,5-a]pyrimidin-2yl)piperidine-l-carboxylate) (462mg, 1.31mmol) in anhydrous DCM (10mL) stirred under
212 nitrogen. Added pyridine (530uL, 6.55mmol). Added trifluoromethane sulfonic anhydride (44luL, 2.62mmol) dropwise. Stirred for 1.5hrs. Concentrated under reduced pressure. Dissolved with ethyl acetate and washed with 5% citric acid aqueous solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0-20% EtOAc in hexanes) to give intermediate 53 (577mg, 90% yield).
'H NMR (400MHz, CD3OD): 5 9.03 (d, J=7.6Hz, 1H), 7.31 (m, 5H), 6.90 (d, J=7.2Hz, 1H), 6.50 (s, 1H), 5.66 (m, 1H), 5.22-5.12 (m, 2H), 4.13 (m, 1H), 3.05 (m, 1H), 2.44 (m, 1H), 1.93 (m, 1H), 1.68-1.48 (m,4H).
Intermediate 54
Dissolved intermediate 53 ((S)-benzyl-2-(5-(trifluorom ethylsulfonyl oxy)pyrazolo[ 1,5a]pyrimidin-2-yl)piperidine-1-carboxylate) (115mg, 0.237mmoJ) in THF (ImL). Added azetidine (161uL, 2.37mmol). Stirred @ 70°C for 2hrs. Cooled to room temperature. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure to give intermediate 54 (78mg, 84% yield).
*H NMR (400MHz, CD3OD): 5 8.31 (d, J=8.0Hz, 1H), 7.33 (m, 5H), 6.12 (d, J=7.2Hz, 1H),
5.83 (s, 1H), 5.53 (m, 1H), 5.16 (m, 2H), 4.19-4.15 (m, 4H), 4.09 (m, 2H), 3.03 (m, 1H), 2.482.40 (m, 2H), 2.35 (m, 1H), 1.86 (m, 1H), 1.64-1.49 (m, 4H).
LC/MS (m/z): 392.3 [M+H]+
Compound 43
213
Dissolved intermediate 54 ((S)-benzyl-2-(5-(azetidin-l-yl)pyrazolo[l,5-a]pyrimidin-2yl)pipcridine-l-carboxylate) (78mg) in MeOH, added Pd/C and stirred under atm H2(g) for lhr. Filtered through Celite and concentrated under reduced pressure.
Mixed 5-chloro-2-(methylsulfonamido)benzoic acid (51mg, 0.205mmol) with HATU (78mg,
0.205mmol) and dissolved in anhydrous DMF (ImL). Stirred for lhr. Dissolved hydrogenation product in anhydrous DMF (ImL) and added to the reaction. Added TEA (52uL, 0.374mmol). Stirred for 16 hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Prep HPLC to give compound 43 (49mg, 54% yield).
!H NMR (400MHz, CD3OD): Ô 8.75-8.45 (m, 1H), 7.68-7.43 (m, 3H), 6.20-6.12 (m, 2H), 6.02
5.95 (m, 1H), 4.90-4.50 (m, 1H), 4.21-4.17 (m, 4H), 3.30-3.18 (m, 1H), 2.98-2.94 (m, 3H), 2.492.25 (m,3H), 2.05 (m, 1H), 1.78-1.45 (m, 4H).
LC/MS (m/z): 489.2 [M+H]+
Compound 44
214
Dissolved intermediate 56 ((S)-N-(4-chloro-2-(2-(5,7-dichloropyrazolo[l,5-a]pyrimidin-2yl)piperidine-l -carbonyl)phenyl)methanesulfonamide) (50mg, 0. Immol) in THF (1.5mL). Added hydroxypiperidine (lOmg, 0.1 mmol) and sodium bicarbonate (lOmg, 0.12mmol). Stirred for 1.5hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Dissolved in THF (2mL). Added azetidine (68uL, Immol). Stirred @ 70°C for 2hrs. Concentrated under reduced pressure. Diluted with ethyl acetate and washed with saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Prep HPLC to give compound 44 (28m g, 48% yield).
*H NMR (400MHz, CD3OD): δ 7.50-7.40 (m, 3H), 6.18-5.95 (m, 1H), 5.25 (s, 1H), 4.25-4.15 (m, 6H), 3.93 (m, 1H), 3.56-3.40 (m, 3H), 3.04 (m, 3H), 2.51 (m, 2H), 2.40-2.05 (m, 4H), 1.781.60 (m, 4H).
LC/MS (m/z): 588.3 [M+H]+
Compound 45
Dissolved intermediate 56 ((S)-N-(4-chloro-2-(2-(5,7-dichloropyrazolo[l,5-a]pyrimidin-2yl)piperidine-l-carbonyl)phenyl)methanesulfonamide) (50mg, 0.Immol) in THF (1.5mL). Added Boc-piperazine (17mg, 0.Immol) and sodium bicarbonate (lOmg, 0.12mmol). Stirred for 2hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced
215 pressure. Dissolved in THF (l.5mL). Added azetidine (68uL, lmmol). Stirred @ 70°C for 2.5hrs. Concentrated under reduced pressure. Diluted with ethyl acetate and washed with saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Dissolved in 4N HCl in dioxane (2mL) and stirred for lhr. Concentrated under reduced pressure. Purified with Prep HPLC to give compound 45 (26.9mg, 44% yield).
]H NMR (400MHz, CD3OD): δ 7.50-7.40 (m, 3H), 6.28-6.04 (m, 2H), 5.46 (s, lH), 4.42 (m, 4H), 4.15 (m, 4H), 3.75 (m, 1H), 3.68 (m, 1H), 3.56 (m, 1H), 3.50 (s, 4H), 3.04 (s, 3H), 2.58 (m, 2H), 2.38-2.09 (m, 2H), 1.75-1.60 (m, 4H).
LC/MS (m/z); 573.3 [M+H]+
Intermediate 55
Mixed intermediate 45 (S)-tert-butyl-2-(7-methyl-5-oxo-4,5-dihydropyrazolo[l,5-a]pyrimidin-2yl) piperidine-1-carboxylate (lOOmg, 0.3mmol) with POCI3 (ImL) and stirred @ 110DC for lhr. Concentrated under reduced pressure. Dissolved in acetonitrile and added small amount of MeOH. Stirred at 0°C for 30mins. Collected solid and dried under high vacuum.
Mixed 5-chloro-2-(methylsulfonamido)benzoic acid (47mg, 0.187mmol) with HATU (71mg, 0.187mmol) and dissolved in anhydrous DMF (ImL). Stirred for lhr. Dissolved amine hydrogen chloride (49mg, 0.17mmol) in anhydrous DMF (ImL) and added to the reaction. Added TEA (71uL, 0.5lmmol). Stirred for 16 hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium chloride solution twice. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with silica gel column (0-50% EtOAc in hexanes) to give intermediate 55 (57mg, 39% yield).
216
LC/MS (m/z): 482.2 [M+Hf
Dissolved intermediate 55 (S)-N-(4-chloro-2-(2-(5-chloro-7-methylpyrazolo[l,5-a]pyrimidin-2yl) piperidine-1-carbonyl)phenyl)methanesulfonamide (I9mg, 0.039mmol) in THF (].5mL). Added pyrrolidine (33uL, 0.39mmol). Stirred @ 70°C for 2hrs. Concentrated under reduced pressure. Purified with Prep HPLC to give compound 46 (13.9mg, 56% yield).
ίΗ NMR (400MHz, CD3OD): δ 7.49 (m, 3H), 6.56 (s, 1H), 6.35-6.10 (m, 1H), 3.71 (m, 4H), 3.50-5.35 (m, 2H), 3.02 (s, 3H), 2.81 (s, 3H), 2.38-2.09 (m, 6H), 1.74-1.56 (m, 4H).
LC/MS (m/z): 517.3 [M+H]+
Used the same procedures as described for the synthesis of compound 46 except replacing pyrrolidine with the fluoro azetidine to provide compound 47 (13.9mg, 56%) 'H NMR (400MHz, CD3OD): δ 7.50 (m, 3H), 6.27 (s, 1H), 6.10 (m, 1H), 5.60-5.46 (m, 1H), 4.65 (m, 2H), 4.42 (m, 2H), 3.46 (m, 1H), 3.30 (s, 3H), 3.04 (s, 3H), 2.77 (s, 3H), 2.40-2.05 (m, 2H), 1.76-1.55 (m,4H).
217
LC/MS (m/z): 521.2 [M+H]+
Used the same procedures as described for the synthesis of compound 46 except replacing pyrrolidine with the (R)-hydroxy pyrroldine to provide compound 48 (6.5mg, 26%).
*H NMR (400MHz, CD3OD): δ 7.50 (m, 3H), 6.55 (s, IH), 6.30-6.10 (m, IH), 4.64 (m, 2H), 3.81-3.45 (m, 6H), 3.02 (s, 3H), 2.81 (s, 3H), 2.40-2.05 (m, 4H), 1.76-1.55 (m, 4H).
LC/MS (m/z): 533.3 [M+H]+
Compound 49
Cbz
HCI hnQ> -OH
Dissolved intermediate 53 ((S)-benzyl-2-(5-(trifluoromethylsulfonyloxy)pyrazolo[l,5aJpyriinidin-2-yl) piperidine-1-carboxylate) (57.7mg, 0.118mmol) in THF (ImL). Added 3hydroxy azetidine HCI (129mg, 1.18mmol) and DIPEA (247uL, 1.42mmol). Stirred @ 70°C for 2hrs. Cooled to room temperature. Diluted with ethyl acetate and washed with saturated aqueous
218 sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Dissolved in MeOH, added Pd/C and stirred under atm H2(g) for lhr. Filtered through Celite and concentrated under reduced pressure.
Mixed 5-chloro-2-(methylsulfonamido)benzoic acid (32mg, 0.13mmol) with HATU (49mg, 0.13mmol) and dissolved in anhydrous DMF (ImL). Stirred for lhr. Dissolved hydrogenation product in anhydrous DMF (ImL) and added to the reaction. Added TEA (41uL, 0.295mmol). Stirred for 2hrs. Diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate solution and saturated aqueous sodium chloride solution. Dried organic extract over anhydrous sodium sulfate and then concentrated under reduced pressure. Purified with Prep HPLC to provide compound 49 (35mg, 48% yield).
]H NMR (400MHz, CD3OD): δ 8.85-8.50 (m, IH), 7.66-7.43 (m, 3H), 6.30 (m, IH), 6.18-6.12 (m, IH), 4.77 (m, IH), 4.54 (m, 2H), 4.10 (m, 2H), 3.35-3.22 (m, 2H), 2.96 (s, 3H), 2.42 (m, IH), 2.04 (m, IH), 1.76-1.45 (m, 4H).
LC/MS (m/z): 505.2 [M+H]+
Compound 50
H N
N
Cl
Used the same procedures as described for the synthesis of compound 45 except substituting the corresponding reagents to provide compound 50 (11 mg, 35%).
’H NMR (400MHz, CD3OD): δ 7.50-7.40 (m, 3H), 6.28-6.04 (m, 2H), 5.50 (s, IH), 4.62 (m, 2H), 4.14 (m, 6H), 3.74 (m, IH), 3.66 (m, IH), 3.56 (m, IH), 3.51 (s, 4H), 3.04 (s, 3H), 2.382.09 (m, 2H), 1.75-1.60 (m, 4H).
219
LC/MS (m/z): 589.2 [M+H]+
Compound 51
Used the same procedures as described for the synthesis of compound 49 starting from intermediate 53, except using the appropriate (R)- hydroxyl pyrrolidine compound 51 (29mg, 46%) was obtained.
’H NMR (400MHz, CD3OD): δ 8.92-8.60 (m, 1H), 7.67-7.44 (m, 3H), 6.59 (m, 1H), 6.25-6.14 (m, 1H), 4.62 (m, 1H), 3.81 (m, 3H), 3.66 (m, 1H), 3.35-3.24 (m, 2H), 2.97 (s, 3H), 2.42 (m, 1H), 2.24-2.04 (m, 3H), 1.77-1.45 (m, 4H).
LC/MS (m/z): 519.2 [M+H]+
Dissolved intermediate 55 (S)-N-(4-chloro-2-(2-(5-chloro-7-methylpyrazolo[l,5-a]pyrimidin-2yl) piperidine- l-carbonyl)phenyl)methanesulfonamide (lOmg, 0.021 mmol) in THF (2mL). Added 3-N-Boc-amino azetidine (36mg, 0.21mmol). Stirred @ 70°C for 2hrs. Concentrated under reduced pressure. Dissolved in 4N HC1 in dioxane (2mL) and stirred for lhr. Concentrated under reduced pressure. Purified with Prep HPLC to give compound 52 (1 Omg, 75% yield).
220 ’H NMR (400MHz, CD3OD): Ô 7.51 (m, 3H),6.19 (s, 1H), 6.10 (m, 1H), 4.55 (m, 3H), 4.274.20 (m, 3H), 3.40 (m, 1H), 2.99 (s, 3H), 2.73 (s, 3H), 2.38-2.05 (m, 2H), 1.72-1.56 (m, 4H).
LC/MS (m/z): 518.3 [M+H]+
Compound 53,
Used the same procedures as described for the preparation of compound 46 to give compound 53 (36mg, 58%).
‘H NMR (400MHz, CD3OD): δ 8.90-8.58 (m, IH), 7.67-7.44 (m, 3H), 6.25 (m, IH), 6.11 (m, IH), 4.53 (m, 2H), 4.27 (m, IH), 4.18 (m, 2H), 3.22 (m, IH), 2.99 (s, 3H), 2.38-2.30 (m, IH), 2.03 (m, IH), 1.75-1.45 (m, 4H).
LC/MS (m/z): 504.2 [M+H]+
Used the same procedures as described for the preparation of compound 44 to give compound (6mg, 17%)
221 ’H NMR (400MHz, CD3OD): δ 7.49 (m, 3H), 6.28-6.04 (m, 1H), 5.50 (s, 1H), 4.80 (m, 2H),
4.55 (m, 4H), 4.14 (m, 3H), 3.70-3.45 (m, 6H), 3.04 (s, 3 H), 3.00 (s, 3H), 2.38-2.09 (m, 2H),
1.75-1.60 (m, 4H).
LC/MS (m/z): 603.3 [M+H]+
Used the same procedures as described for the preparation of compound 44 to give compound 55 (l.lmg, 4%).
!H NMR (400MHz, CD3OD): δ 7.50-7.40 (m, 3H), 6.08-5.85 (m, IH), 5.25 (s, 1H), 4.68 (m, 1H), 4.33 (m, 2H), 4.15-3.95 (m, 2H), 3.88 (m, 3H), 3.11 (s, 3H), 2.91-2.70 (m, 5H), 2.45-2.25 (m, 7H), 2.05 (m, 1H), 1.75-1.60 (m, 4H).
LC/MS (m/z): 605.3 [M+H]+
Intermediate 56
222
To a suspension of (5-chloro-2-(methylsulfonamido)benzoic acid) (0.7g, 2.8 mM) in DCM (6 ml) was added oxalylchloride (2 M in DCM, 6 ml, 12 mM) and DMF (5 microliter) and the stirred for 3 h at RT. Volatiles were removed under vacuum and the residue dissolved in DCM (20 ml). With ice-water bath cooling, the amine intermediate 64 (0.78g, 2.54 mM) and ET3N (0.55 g) was added and stirred for 10 min, then 30 min at RT. The reaction mixture was diluted with DCM (100 ml) and washed 3x with water. Volatiles were remove and the residue purified on silica gel (hexane/ AcOEt= 1/1). The product, intermediate 56, was obtained as a colorless oil in 75% purity and used without further purification in the next step.
Compound 56
Intermediate 56 (0.033g, 0.065 mM) was stirred with 3-hydroxyazetidine (0.0071g, 0.065 mM) and NaHCO3 (0.1 ml, aequ. sat.) in MeCN (4 ml) for 2 h. Additional 3hydroxyazetidine (0.0071g, 0.065 mM) was added and the solution heated to 50 °C for lh. Azetidine (0.5 ml) was then added and the solution stirred for 1 h at to 70 °C. Volatiles were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 5% to 95%) to afford compound 56 (14 mg, 39%) as a white powder after lyophilization.
’H-NMR (DMSO, 400 MHz):0 d 7.8 (s, br., 1H), 7.52-7.42 (m, 3H), 6.05 (s, br., 2H), 4.73 (s, 1H), 4.59 (s, 1H), 4.24 (m, 3H), 3.03 (s, 1H), 2.9-2.05 (m, 9H), 1.96 (m, 4H), 1.71 (s, br., 2H), 1.60 (s, br.,2H).
LCMS m/z [M+H]+ C25H3oC1N704S requires: 559.18. Found 560.23
HPLC Tr (min), purity %: 2.24, 98%.
223
Compound 57
Intermediate 56 (0.030g, 0.059 mM) was stirred with 3-hydroxypyrrolidine (0.0051g, 0.065 mM) and NaHCCfi (0.2 ml, aequ. sat.) in MeCN (4 ml) for 2 h. Additional 3hydroxyazetidine (0.0051g, 0.065 mM) was added and the solution heated to 50 °C for lh. Azetidine (0.5 ml) was then added and the solution stirred for 1 h at to 70 °C. Volatiles were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 5% to 95%) to afford compound 57 (17 mg, 50%) as a white powder after lyophilization.
'H-NMR (DMSO, 400 MHz):D d 7.8 (s, br, 1H), 7.52-7.42 (m, 3H), 6.05 (s, br, 2H), 4.79 (s, 1H), 4.58 (s, 1H), 4.25 (m, 3H), 3.05 (m, 2H), 2.9-2.05 (m, 11H), 1.96 (m, 4H), 1.71 (s, br, 2H), 1.61 (s, br, 2H).
LCMS m/z [M+H]+ C26H32C1N7O4S requires: 573.19. Found 574.30
HPLC Tr (min), purity %: 2.41, 98%.
Compound 58
224
A
Intermediate 56 (0.034g, 0.067 mM) was stirred with 2-Oxa-6-aza-spiro[3.3]heptane (0.006g, 0.067 mM) and NaHCO3 (0.2 ml, aequ. sat.) in MeCN (4 ml) for 2 h. Additional 2Oxa-6-aza-spiro[3.3]heptane (0.006g, 0.067 mM) was added and the solution heated to 50 °C for lh. 3-Hydroxyazetidine HCl-salt (0.3 g) and Et3N (0.2 ml) was then added and the solution stirred for I h at to 70 °C. Volatiles were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 5% to 95%) to afford compound 58 (2.1 mg, 5%) as a white powder after lyophilization.
'H-NMR (DMSO, 400 MHz):D d 7.95 (s, br., lH), 7.40-7.33 (m, 3H), 5.6 (s, br., 2H), 4.73 (s, 1H), 4.59 (m, 3H), 4.51 (s, br., 1H), 4.45-4.37 (m, 3H), 4.12 (t, J= 8, 1H), 3.68-6.65 (m, 2H), 3.54 (s, 1H), 2.87 (s, 1H), 2.05-1.87 (m, 10H), 1.60- 1.57 (m, 2H), 1.46 (s, br., 2H).
LCMS m/z [M+H]+ C27H32CIN.O5S requires: 601.19. Found 602.27
HPLC Tr (min), purity %: 1.92, 98%.
Compound 59
225
Intermediate 56 (0.034g, 0.067 mM) was stirred with 3-Hydroxyazetidine HCl-salt (0.148 g) and Et3N (0.18 ml) in MeOH (4 ml) for 16 h at 70 °C. Volatiles were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 5% to 95%) to afford compound 59 (7.8 mg, 20%) as a white powder after lyophilization.
’H-NMR (DMSO, 400 MHz):D d 9.20 (s, br., IH), 7.46-7.37 (m, 3H), 5.80 (m, 2H), 5.71 (s, IH), 5.62 (d, J= 5.6 Hz, IH), 4.81 (s, br., IH), 4.67 (s, br., IH), 4.52-4.38 (m, 3H), 4.09 (t, J= 7.6, IH), 3.94 (m, 2H), 3.25-2.60 (m, br., 2H), 2.47-2.02 (m, 2H), 2.05-1.87 (m, 8H), 1.52-1.16 (m, 2H).
LCMS m/z [M+H]+ C25H3oC1N70sS requires: 575.17. Found 576.26
HPLC Tr (min), purity %: 1.82, 98%.
Compound 60
226
2- methanesulfonamido-5-chlorobenzoic acid (0.1 g, 4.36 mmol), HATU (0.15 g, 0.52 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added intermediate 31 (0.32 g, 1.25 mmol) and triethylamine (0.17 ml). The reaction was stirred under nitrogen for 5 hours. Solvents were removed by rotary evaporation. The residue purified with preparatory HPLC to provide compound 60. (Yield 0.56 g, 90 %). Ή-NMR (DMSO, 400 MHz):D d 7.40 (m, 3H), 6.61 (s, 1H), 6.4 (s, br., 1H), 6.38 (s, br., Ih), 6.05 (s, br., 1H), 4.95 (s, br., 1H), 4.40 (s, br., IH), 3.06 (s, br.,lH, 2.86 (s, 3H), 2.01 (s, 3H), 1.86 (s, br., 4H), 1.60 (s, br., 2H), 1.45 (s, br., 2H), 1.00 (m, 4H).
LCMS m/z [M+H]+ C23H26CIN5O3S requires: 487.14. Found 488.19 HPLC Tr (min), purity %: 2.84,98%.
Intermediate 57
Boc
Intermediate 4 (5 g, 0.02 mol) in HOAc (20 mL) was treated with 3-cyclopropyl-3oxopropanoic acid methyl ester (14g, 0.1 mmol) and the mixture was stirred overnight at 100 °C. The mixture was concentrated and purified via SiO2 column chromatography (40 g S1O2 Combiflash HP Gold Column, 0-100% EtOAc/hexanes gradient) to afford intermediate 57 (4 g, 83%).
LCMS m/z [M+H]+ C19H26N4O3 requires: 359.20. Found 359.10
HPLC Tr (min), purity %: 2.45, 98%
Intermediate 58
POCI3
Lutidine, 140°C
227
Starting material intermediate 57 (400 mg, l.l mol) was dissolved in lutidine (5 ml), to the mixture was added POCl3 (340 mg, 2.2 mmol) and the mixture was heated at 140 °C. The reaction was completed in 30mins. The mixture was concentrated and purified via SiO2 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% EtOAc/hexanes gradient) to afford intermediate 58 (388 mg, 92%).
LCMS m/z [M+H]+ Ci9H25ClN4O2 requires: 377.17. Found 377,11
HPLC Tr (min), purity %: 3.21, 98%
Intermediate 59
H2i 5% Pd
Et3N, EtOH
Starting material intermediate 58 (400 mg, 1.1 mmol) was dissolved in EtOH (10 ml), to the mixture was added 5% Pd on carbon (20 mg, 0.053 mmol) and Et3N (0.5 ml). The mixture was heated under hydrogen balloon at RT for 1.5h. The mixture was filtered and filtrate was concentrated and purified via SiO2 column chromatography to afford intermediate 59 (283 mg,
80%).
LCMS m/z [M+H]+ Ci9H26N4O2 requires: 343.21. Found 343.13
HPLC Tr (min), purity %: 2.93,98%
Compound 61
228
Starting material intermediate 59 (283 mg) was dissolved in 10 ml of dioxane, to the solution was added concentrated HC1 (1 ml). The reaction was completed in 30mins, solvent was evaporated and the residue was used in the next step. 2- methanesulfonamido-5methylbenzoic acid (55 mg, 0.24 mmol), HATU (122 mg, 0.32 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added previous step crude product (50 mg, 0.16 mmol) and triethylamine (50 μΐ). The reaction was stirred under nitrogen for 20 mins. Solvents were removed by rotary evaporation. The residue was purified with prep HPLC to provide compound 61. (Yield 31 mg, 43 %).
Ή-NMR (CDsOD, 400 MHz): ÔD 9.04 (s, IH), 7.54 (d, J = 8.0 Hz, IH), 7.30 (d, J = 8.0 Hz, IH), 7.21 (s, IH), 6.82 (d, J= 7.2 Hz, IH), 6.45 (s, IH), 6.23-6.22 (m, IH), 4.58 (s, 2H), 3.31 (s, 3H), 3.00-2.91 (m, 3H), 2.48-2.38 (m, 3H), 2.12-2.06 (m, 2H), 1.75-1.73 (m, 2H), 1.52 (s,2H), 1.13 (s,3H).
LCMS m/z [M+H]+ C23H27N5O3S requires: 454.56. Found 454.13
HPLC Tr (min), purity %: 2.89, 98%
Intermediate 60
Starting material intermediate 58 (200 mg, 0.55 mmol) was dissolved in morpholine (10 ml), the mixture was stirred at RT for 30mins. The mixture was concentrated and purified via SiO2 column chromatography to afford intermediate 60 (200 mg, 88%).
LCMS m/z [M+H]+ C23H33N5O3 requires: 428.26. Found 428.17
HPLC Tr (min), purity %: 2.90, 98%
Compound 62
229
Starting material intermediate 60 (200 mg) was dissolved in 10 ml of dioxane, to the solution was added concentrated HCI (1 ml). The reaction was completed in 30mins, solvent was evaporated and the residue was used in the next step. 2- methanesulfonamido-5methylbenzoic acid (43 mg, 0.19 mmol), HATU (95 mg, 0.26 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added previous step crude product (50 mg, 0.13 mmol) and triethylamine (50 μΐ). The reaction was stirred under nitrogen for lh. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 62. (Yield 37 mg, 45 %).
’Η-NMR (CD3OD, 400 MHz): ÔD 7.40 (bs, 2H), 7.28 (s, IH), 7.23 (s, IH), 3.92-3.88 (m, 6H), 3.70 (bs, 4H), 2.95 (bs, 4H), 2.38-2.10 (m, 5H), 1.71-1.59 (m, 5H), 1.08-1.03 (m, 4H).
LCMS m/z [M+H]+ C27H34N6O4S requires: 539.24. Found 539.27
HPLC Tr (min), purity %: 2.60, 98%
Compound 63
HCI
Dioxane
230
Starting material intermediate 60 (200 mg) was dissolved in 10 ml of dioxane, to the solution was added concentrated HC1 (1 ml). The reaction was completed in 30mins, solvent was evaporated and the residue was used in the next step. 2- methanesulfonamido-5chlorobenzoic acid (20 mg, 0.08 mmol), HATU (38 mg, 0.1 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added previous step crude product (20 mg, 0.05 mmol) and triethylamine (40 μΐ). The reaction was stirred under nitrogen for lh. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 63. (Yield 9 mg, 26 %).
'H-NMR (CD3OD, 400 MHz): ÔD 8.78 (s, 1H), 7.65 (d, J= 7.2 Hz, 1H), 7.25 (d, J = 7.2 Hz, 1H), 7.18 (s, 1H), 6.68 (s, 1H), 6.11 (s, 1H), 4.46 (s, 2H), 3.83 (s, 5H), 3.81 (s, 3H), 3.04-2.94 (m, 3H), 2.91-2.80 (m, 3H), 2.57-2.48 (m, 3H), 2.22-2.16 (m, 2H), 1.76-1.74 (m, 2H), 1.51 (s, 2H).
LCMS m/z [M+H]+ C26H31C1N6O4S requires: 559.18. Found 559.24
HPLC Tr (min), purity %: 2.74, 98%
Intermediate 61
Starting material intermediate 58 (0.46g) was dissolved in azetidine (2g), the mixture was stirred at RT for 30mins. The mixture was concentrated and purified via SiO2 column chromatography to afford intermediate 61 (0.4 g, 83%).
LCMS m/z [M+H]+ C22H3]NsO2 requires: 398.25. Found 398.15
HPLC Tr (min), purity %: 2.25, 98%
Compound 64
HCl
-----►
Dioxane
231
Starting material intermediate 61 (400 mg) was dissolved in 10 ml of dioxane, to the solution was added concentrated HC1 (1 ml). The reaction was completed in 30mins, solvent was evaporated and the residue was used in the next step. 2- methanesulfonamido-5chlorobenzoic acid (45 mg, 0.18 mmol), HATU (93 mg, 0.25 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added previous step crude product (50 mg, 0.12 mmol) and triefhylamine (50 μΐ). The reaction was stirred under nitrogen for Ih. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 64. (Yield 37 mg, 80 %).
’H-NMR (CD3OD, 400 MHz)·· ÔD 7.32 (bs, IH), 7.16 (bs, 2H), 5.98 (s, 1H), 5.41 (s, 1H), 4.44 (bs, 6H), 2.84 (bs, 4H), 2.44-2.38 (m, 3H), 1.89-1.82 (m, IH), 1.59-1.45 (m, 4H), 0.91-0.84 (m, 5H).
LCMS m/z [M+H]+ CisH^ClNiCLS requires: 529.17. Found 529.19
HPLC Tr (min), purity %: 2.16, 98%
Compound 65
232
Starting material intermediate 61 (400 mg) was dissolved in 10 ml of dioxane, to the solution was added concentrated HC1 (1 ml). The reaction was completed in 30mins, solvent was evaporated and the residue was used in the next step. 2- methanesulfonamido-5-methylbenzoic acid (41 mg, 0.18 mmol), HATU (93 mg, 0.25 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added previous step crude product (50 mg, 0.12 mmol) and triethylamine (50 μΐ). The reaction was stirred under nitrogen for lh. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 65. (Yield 44 mg, 64 %).
]H-NMR (CD3OD, 400 MHz): δθ 7.28 (bs, 1H), 7.11 (bs, 2H), 6.05 (s, 1H), 5.44 (s, 1H), 4.46 (bs, 6H), 3.23-3.21 (m, 4H), 2.89 (bs, 3H), 2.43-2.36 (m, 2H), 2.27-2.19 (m, 3H), 1.90-1.83 (m, 1H), 1.60 (bs, 3H), 0.92-0.90 (m, 4H).
LCMS m/z [M+H]+ C^Hj-NALS requires: 509.23. Found 509.21
HPLC Tr (min), purity %: 2.12, 98%
Intermediate 62
2- Amino-5-chlorobenzoic acid (55 mg, 0.32 mmol), HATU (152 mg, 0.4 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added intermediate 31 (50 mg, 0.2 mmol) and tri ethylamine (50 pl). The reaction was stirred under nitrogen for 5 hours. Solvents were removed by rotary evaporation. The residue were purified with preparatory HPLC to provide, intermediate 62 (Yield 54 mg, 68 %).
LCMS m/z [M+H]+ C22H24C1NSO requires: 410.17. Found 410.15
HPLC Tr (min), purity %: 3.06, 98%
233
To a solution of intermediate 62 (49 mg, 0.12 mmol) in pyridine (2.0 mL) was added acetyl chloride (llmg, 0.14 mmol) at RT, The reaction was completed in 5mins. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 66 (46 mg, 85%) as a white powder after lyophilization.
]H-NMR (CD3OD, 400 MHz): ÔQ 7.49-7.38 (m, 3H), 6.64 (s, IH), 6.33-6.26 (m, IH), 6.02 (s, IH), 3.39 (s, IH), 2.65 (s, 3H), 2.42 (bs, 3H), 2.20 (bs, 3H), 2.03-1.93 (m, 6H), 1.63 (bs, 2H), 1.50 (bs, 2H), 1.03 (s, IH), 1.01 (s, 3H).
LCMS m/z [M+H]+ C24H26CINsO2 requires: 452.18. Found 452.04
HPLC Tr (min), purity %: 2.93, 98%
Intermediate 63
Boc
NaOMe, MeOH, 78°C
Intermediate 4 (3 g, 0.02 mol) was dissolved in MeOH (30 ml), to the solution was added dimethyl malonate (2.6 ml, 0.02 mmol) and 10% NaOMe in MeOH (25ml, 0.1 mmol). The reaction mixture was heated at 78°C for 5h. Solvent was evaporated, the residue was redissolved in EtOAc (20 mL), HOAc was added to make the solution slightly acidic, washed with brine, organic solvent was evaporated, the residue was purified by silica gel column chromatography to afford intermediate 63 (3g, 78%).
LCMS m/z [M+H]+ C16H22N4O4 requires: 335.16. Found 335.05
234
HPLC Tr (min), purity %: 2.82, 98%
Intermediate 63 (10 g) was added to neat POCL (25 ml), the reaction mixture was heated at I00°C for 3h. Solvent was evaporated, to the residue was added MeOH until no bubble formed. Then 30 mL of acetonitrile was added to the above residue, orange solid precipitated out of mixture to afford intermediate 64 (7.4g, 92%).
LCMS m/z [M+H]+ C11H12N4CI2 requires: 271.04. Found 271.07
HPLC Tr (min), purity %: 1.78,98%
Intermediate 65
Intermediate 64 (4.2g, 15.5 mmol) was added to CH3CN (40 ml) and H2O (40 ml), to the above mixture was added NaHCO3 (2.6G, 31 mmol) and morpholine (1.35g, 15.5 mmol). The reaction mixture was stirred at RT for 30 mins, solvents were evaporated and to the residue was added 20 ml of DCM, the mixture was filtered and filtrate was evaporated to give intermediate 65 (4.5g, 91%).
LCMS m/z [M+H]+ C15H20CIN5O requires: 322.14. Found 322.10
HPLC Tr (min), purity %: 1.81, 98%
Intermediate 66
235
2- Amino-5-chIorobenzoic acid (5 g, 19.94 mmol), HATU (9.5 , 24.92 mmol) were dissolved in anhydrous DMF (50 ml). After activation for I hour, to the above solution was added intermediate 65 (4 g, 12.46 mmol) and triethylamine (6.93 ml). The reaction was stirred under nitrogen for 2 hours. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 66. (Yield 4.7 g, 68 %). LCMS m/z [M+H]+ C23H26CI2N6O4S requires: 553.11. Found 553.16
HPLC Tr (min), purity %: 2.72, 98%
Intermediate 66 (7 g, 12.66 mmol) was dissolved in azetidine (8g), the mixture was stirred at 70°C for 30mins. The mixture was concentrated and purified via SiO2 column chromatography to afford compound 67 (6 g, 83%).
236 'H-NMR (CD3OD, 400 MHz): ÔD 7.46 (bs, 3H), 6.13-5.85 (m, 2H), 4.15-4.07 (m, 4H), 3.913.89 (m, 5H), 3.53 (bs, 5H), 3.31-3.30 (m, 5H), 2.99 (s, 3H), 2.43-2.37 (m, 3H), 1.70-1.62 (m, 5H).
LCMS m/z [M+H]+ Q^CINvOîS requires: 574.19. Found 574.19
HPLC Tr (min), purity %: 2.32, 98%
Compound 68
The title compound was prepared in an analogous way as described for compound 52 starting from intermediate 66.
1 H-NMR (CD3OD, 400 MHz): ÔD 7.35 (bs, 3H), 5.95 (bs, 2H), 4.41-4.37 (m, 3H), 4.16-4.11 (m, 2H), 4.11-4.05 (m, 3H), 4.03-3.80 (m, 5H), 3.80 (bs, 3H), 3.20-3.16 (m, 2H), 2.90 (m, 3H), 1.62-1.57 (m, 4H).
LCMS m/z [M+H]+ ΟχΗχίΊΝχΟ/,δ requires: 589.20. Found 589.30
HPLC Tr (min), purity %: 2.20,98%
Compound 69
The title compound what prepared in an analogous way as described for compound 67 starting from intermediate 64.
’H-NMR (CD3OD, 400 MHz): δα 7.34 (bs, 4H), 5.28 (s, IH), 4.27-4.24 (m, 4H), 3.83-3.8I (m, 8H), 3.46-3.39 (m, 6H), 2.89 (bs , 5H), 1.62 (bs, 4H).
LCMS m/z [M+H]+ C26H32ClN7O5S requires: 590.11. Found 590.18
HPLC Tr (min), purity %: 2.2, 98%
Compound 70
The title compound what prepared in an analogous way as described for compound 67 starting from intermediate 64.
'H-NMR (CD3OD, 400 MHz): ÔD 7.38 (bs, 4H), 6.03 (bs, IH), 3.96-3.95 (m, 4H), 3.76-3.64 (m, 6H), 2.92 (bs, 6H),2.27 (t, J= 6.8 Hz , 4H), 1.63 (bs, 4H), 1.29-1.26 (m, IH).
LCMS m/z [M+H]+ C26H32CIN7O5S requires: 590.19. Found 590.30
238
HPLC Tr (min), purity %: 2.97, 98%
Compound 71
The title compound what prepared in an analogous way as described for compound 67 starting from intermediate 64.
‘H-NMR (CD3OD, 400 MHz): ÔD 7.35-7.20 (m, 4H), 5.41 (s, IH), 5.94-5.97 (bs, 1H), 3.83 (bs,
5H), 3.55-3.44 (m, 4H), 2.83 (bs, 4H), 2.69 (t, 6.8 Hz , 4H), 2.29-1.94 (m, 5H), 1.60-1.51 (m,4H).
LCMS m/z [M+H]+ C27H34CIN7O5S requires: 604.20. Found 604.28
HPLC Tr (min), purity %: 2.33, 98%
Compound 72,
The title compound what prepared in an analogous way as described for compound 67 starting from intermediate 64.
239
’H-NMR (CDjOD, 400 MHz): ÔD 7.35 (bs, 4H), 6.05 (bs, 1H), 5.32 (s, 1H), 4.37-4.29 (m, 2H),
4.28-4.06 (m, 2H), 4.04-3.81 (m, 5H), 3.83-3.61 (m, 7H), 2.89 (bs, 5H), 1.61-1.53 (m, 4H). LCMS m/z [M+H]+ C26H31CIFN7O4S requires: 592.18. Found 592.22
HPLC Tr (min), purity %: 2.85, 98%
Compound 73,
Cyclobutyl Bromide (300 mg, 0.22 mmol) was dissolved in THF (1 ml), to the mixture were added Mg (5 mg, 0.44 mmol) and catalytic amount of L· The reaction mixture was stirred at RT for 2h. To the above mixture were added intermediate 66 (10 mg, 0.018 mmol) and Fe(AcAc)3 (0.005 mmol). The reaction mixture was stirred at RT overnight. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in ILO with a gradient from 0% to 95%) to afford compound 73 (3 mg, 30%) as a white powder after lyophilization.
’H-NMR (CD3OD, 400 MHz): 50 7.39 (bs, 3H), 6.23 (bs, 2H), 4.46 (bs, 5H), 3.85-3.82 (m, 3H), 3.82-3.28 (m, 3H), 3.21-3.16 (m, 2H), 2.92 (s, 3H), 2.33-2.26 (m, 4H), 2.05-1.98 (m, 2H), 1.83-1.81 (m, 1H), 1.64-1.44 (m, 4H).
LCMS m/z [M+H]+ C27H33C1N6O4S requires: 573.20. Found 573.22
HPLC Tr (min), purity %: 3.00, 98%
240
Compound 74
THF/DIPEA
70°C
Intermediate 56 (30 mg, 0.06 mmol) was dissolved in THF (2 ml) and to the solution were added 1,3-oxazolidine (4.4 mg, 0.06 mmol) and DIPEA (0.3 ml). The reaction mixture was heated at 70°C for 2h. Then azetidine (0.2 ml) was added to the above solution and heated at 70°C for 2h. The volatile were removed under reduced pressure at 40°C and the resulting residue was purified by preparative HPLC (MeCN in H2O with a gradient from 0% to 95%) to afford compound 74 (20 mg, 62%) as a white powder after lyophilization.
‘H-NMR (CD3OD, 400 MHz): δΠ 7.49-7.47 (m, 4H), 7.37 (bs, 1H), 6.01 (bs, 1H), 5.61 (s, 2H), 4.22 (bs,4H), 3.81 (bs, 3H), 2.59-2.55 (m, 4H), 2.39-2.31 (m, 2H), 2.04-1.93 (m, 3H), 1.74 (bs, 6H).
LCMS m/z [M+H]+ C25H30CIN7O4S requires: 560.18. Found 560.17HPLC Tr (min), purity %: 2.06, 98%
Compound 75
The title compound what prepared in an analogous way as described for compound 67 starting from intermediate 64.
241 ’H-NMR (CD3OD, 400 MHz): ÔD 7.50 (bs, 3H), 7.41 (s, 1H), 6.01 (bs, 1H), 4.3M.27 (m, 6H), 3.75 (s, 1H), 3.07 (bs, 5H), 2.54 (t, J = 7.2 Hz, 3H), 2.38 (bs, 2H), 2.17-2.03 (m, 3H), 1.74 (bs, 6H).
LCMS m/z [M+H]+ C27H32C1N7O4S requires: 586.19. Found 586.16
HPLC Tr (min), purity %: 1.94, 98%
Compound 76
The title compound what prepared in an analogous way as described for compound 67 starting from intermediate 64.
\
‘H-NMR (CD3OD, 400 MHz): 5D 7.36 (bs, 3H), 7.29 (bs, 1H), 4.17 (bs, 8H), 3.94 (bs, 3H), 2.92 (bs, 8H), 2.53 (bs, 2H), 2.42 (bs, 3H), 2.21-2.12 (m, 2H), 1.64 (bs, 5H).
LCMS m/z [M+H]+ C2sH37C1N8O3S requires: 601.24. Found 601.08
HPLC Tr (min), purity %: 1.79, 98%
Compound 77
The title compound what prepared in an analogous way as described for compound 74 starting from intermediate 56.
C
242
’H-NMR (CD3OD, 400 MHz): ÔD 7.43 (bs, 3H), 7.37 (bs, IH), 5.62 (bs, 3H), 4.53-4.49 (m,
3H), 4.22 (bs, 3H), 4.10-4.06 (m, 2H), 3.82 (bs, 3H), 3.06 (bs, 5H), 1.75 (bs, 5H).
LCMS m/z [M+H]+ C25H30ClN7O5S requires: 576.17. Found 576.27
HPLC Tr (min), purity %: 1.98, 98%
Compound 78
The title compound what prepared in an analogous way as described for compound 85 starting from intermediate 73
*H-NMR (CD3OD, 400 MHz): ÔD 8.71 (s, IH), 8.42 (s, IH), 7.68 (d,J= 8.8 Hz, IH), 7.48 (d, J = 10.8 Hz, 2H), 7.44 (d, J= 2.4 Hz, IH), 6.13 (s, IH), 4.01-3.92 (m, 3H), 3.89-3.81 (m, 5H),
3.35-3.25 (m, 2H), 3.01-2.93 (m, 5H), 2.26-2.21 (m, 2H), 2.03 (bs, 2H), 1.75-1.72 (m, 3H),
1.55 (s, 3H).
LCMS m/z [M+H]+ C25H32CIN7O3S requires: 546.20. Found 546.28
HPLC Tr (min), purity %: 1.96, 98%
Intermediate 67
243
morpholine
NaHCO3
MeCN, H2O
Morpholine (56.8 pL, 0.65 mmol) and sodium bicarbonate (109 mg, 1.30 mmol) were added to a solution of intermediate 64 (S)-5,7-dichloro-2-(piperidin-2-yl)pyrazolo[l,5ajpyrimidine hydrochloride (200 mg, 0.65 mmol) in acetonitrile (1.65 mL) and water (1.65 mL) and the reaction mixture was stirred at room temperature. After 30 min, the reaction mixture was concentrated under reduced pressure. The crude residue was diluted with dichloromethane (50 mL) and the resulting suspension was filtered. The filtrate was concentrated under reduced pressure to afford the morpholine compound as a white solid (209 mg, 99%).
LCMS (ESI) mlz 322.45 [M + H]+, tR - 1.68 min.
Rf = 0.17 ( 10% MeOH/CH2Cl2).
HATU (297 mg, 0.78 mmol) was added to a solution of 5-bromo-2(methylsulfonamido)benzoic acid (210 mg, 0.72 mmol) in DMF and the reaction mixture was stirred at room temperature. After 1 h, morpholine intermediate above (209 mg,
0.65 mmol) and triethylamine (227 pl, 1.63 mmol) were added, and the reaction mixture was stirred at room temperature for 18 h. The reaction mixture was partitioned between ethyl acetate (150 mL) and water (150 mL), and the layers were separated. The organic layer was washed with water (150 mL), saturated aqueous sodium bicarbonate solution (50 mL), and saturated
sodium chloride solution (50 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (4 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 67 (348 mg, 89%) as a white solid.
‘H NMR (CDC13, 400MHz): d 8.15-7.62 (m, IH), 7.51 (m, 3H), 6.49-6.14 (m, IH), 6.10 (s, IH), 5.14 (br s, 0.2 H), 4.51 (br s, 0.2 H), 4.01-3.51 (m, 9H), 3.33 (m, IH), 2.95 (br s, 3H), 2.472.16 (m, IH), 2.09-1.91 (m, IH), 1.87-1.40 (m, 4H).
LCMS (ESI) m/z 597.25 [M + H]+, tR = 2.88 min.
HPLC îr (min), purity %: 4.76, 99%.
Rf= 0.66 (EtOAc).
Compound 79
To a solution of intermediate 67 (30.0 mg, 0.05 mmol) in MeOH (1.00 mL) was added azetidine (57.0 mg, 1.00 mmol) and triethylamine (279 pL, 2.00 mmol), and the reaction mixture was stirred at 70 °C. After 1 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 79 (30.4 mg, 98 %) as a white solid.
'H NMR (DMSO-ris, 400MHz): d 9.34 (br s, 1 H), 7.64-7.30 (m, 3H), 6.10-5.85 (m, 2H), 5.36 (s, IH), 4.75 (br s, 0.5H), 4.38 (br d, 0.5H), 4.20-3.00 (m, 16H ), 2.45-1.30 (m, 8H).
LCMS (ESI) m/z 618.36 [M + H]+, - 2.37 min.
245
HPLC <R (min), purity %: 3,43, 99%.
Rf= 0.33 (EtOAc).
Compound 80
To a solution of intermediate 67 (30.0 mg, 0.05 mmol) in MeOH (1.00 mL) was added 3hydroxyazetidine hydrochloride (110 mg, 1.00 mmol) and triethylamine (279 pL, 2.00 mmol), and the reaction mixture was stirred at 70 °C. After 2 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/lIjO, 0.1% trifiuoroacetic acid modifier) to afford compound 80 (28 mg, 99%) as a white solid.
*H NMR (DMSO-i/6, 400MHz): d 9.34 (br s, 1 H), 7.66-7.35 (m, 3H), 6.10-5.84 (m, 2H), 5.39 (s, IH), 4.74 (br s, 0.5H), 4.58 (br s, IH), 4.50-4.20 (m, 1.5H), 4.10-3.00 (m, 16H ), 2.40-1.30 (m, 6H).
LCMS (ESI) m/z 634.34 [M + H]+, tR = 2.25 min.
HPLC Zr (min), purity %: 3.19, 99%.
Rf= 0.30 (EtOAc).
246
Intermediate 68
4-hydroxypiperidme (20.2 pL, 0.20 mmol) and sodium bicarbonate (33.0 mg, 0.40 mmol) were added to a solution of intermediate 56 (100 mg, 0.20 mmol) in acetonitrile (0.50 mL) and water (0.50 mL) and the reaction mixture was stirred at room temperature. After 30 min, the reaction mixture was partitioned between ethyl acetate (50 mL) and water (50 mL), and the layers were separated. The organic layer was washed with saturated aqueous sodium bicarbonate solution (50 mL) and saturated sodium chloride solution (50 mL), was dried over Na2SO4, and was concentrated under reduced pressure to afford intermediate 68 (114 mg, 99%) as a light orange solid.
lH NMR (CDC13, 400MHz): d 8.15-7.11 (m, 4H), 6.43-5.94 (m, 2H), 5.12 (br s, 0.2 H), 4.50 (br s, 0.2 H), 4.28-3.91 (m, 3H), 3.81-3.15 (m, 4H), 2.93 (br s, 3H), 2.51-2.14 (m, 2H), 2.12-1.85 (m, 2H), 1.85-1.29 (m, 6H).
LCMS (ESI) m!z 567.37 [M + H]+, tR = 2.66 min.
HPLC (min), purity %: 4.21, 90%.
Rf= 0.46 (EtOAc).
Compound 81
247
To a solution of intermediate 68 (40.0 mg, 0.07 mmol) in MeOH (1.42 mL) was added 3hydroxyazetidine hydrochloride (154 mg, 1.41 mmol) and triethylamine (396 μ1_, 2.84 mmol), and the reaction mixture was stirred at 70 °C. After 2 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 81 (35.5 mg, 83%) as a white solid.
Ή NMR (CD3OD, 400MHz): d 7.49 (br s, 3H), 6.10-5.60 (m, 2H), 5.34 (s, 1H), 4.72-4.66 (m, 1H), 4.30-4.45 (m, 1H), 4.35 (app t, J = 8.0 Hz, 3H), 4.20-3.94 (m, 2H), 3.93-3.85 (m, 3H), 3.50-3.39 (m, 1H), 3.29-3.20 (m, 2H), 2.99 (br-s, 3H), 2.40-2.15 (m, 1H), 2.10-1.98 (m, 3H), 1.80-1.50 (m, 5H), 1.35-1.20 (m, 1H).
LCMS (ESI) m/z 604.44 [M + H]+, tR = 2.03 min.
HPLC (min), purity %: 2.89, 89%.
Rf= 0.50 (10% MeOH/CH2Cl2).
Intermediate 69
248
HATU (350 mg, 0.92 mmol) was added to a solution of 5-bromo-2(m ethyl sulfonamido)benzoic acid (247 mg, 0.84 mmol) in DMF (3.80 mL), and the reaction mixture was stirred at room temperature. After 1 h, the piperidine substrate (prepared as exemplified in the first step of conversion of Intermediate 46 to intermediate 55) (220 mg, 0.77 mmol) and triethylamine (267 pL, 1.90 mmol) were added, and the reaction mixture was stirred at room temperature for 17 h. The reaction mixture was partitioned between ethyl acetate (100 mL) and water (100 mL), and the layers were separated. The organic layer was washed with saturated aqueous sodium bicarbonate solution (100 mL) and saturated sodium chloride solution (100 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (8 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 69 (342 mg, 85%) as a white solid.
'H NMR (CDC13, 400MHz): d 7.93-7.64 (m, IH), 7.62-7.40 (3H), 6.71 (s, IH), 6.56-6.23 (m, IH), 5.05 (br s, 0.2H), 4.57 (br s, 0.2H), 3.62-3.33 (m, IH), 3.11-2.73 (m, 4H), 2.84 (s, 3H), 2.38-2.20 (m, IH) 2.16-1.91 (m, IH), 1.87-1.34 (m, 4H).
LCMS (ESI) m!z 526.32 [M + H]+, tR = 3.03 min.
HPLC (min), purity %: 5.15, 90%.
Rf= 0.68 (EtOAc).
Compound 82
249
Et3N, MeOH
To a solution of intermediate 69 ¢40.0 mg, 0.08 mmol) in MeOH (1.50 mL) was added 3hydroxyazetidine hydrochloride (166 mg, 1.50 mmol) and triethylamine (424 pL, 3.00 mmol), and the reaction mixture was stirred at 70 °C. After 3 h, the reaction mixture was allowed to cool to room temperature and was partitioned between ethyl acetate (50 mL) and water (25 mL). The layers were separated, and the organic layer was washed with saturated aqueous sodium bicarbonate solution (25 mL) and saturated sodium chloride solution (25 mL), was dried over and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (4 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford compound 82 (43 mg, 99%) as a white solid.
lH NMR (CD3OD, 400MHz): d 7.70-7.35 (m, 3H), 6.12-5.92 (m, 2H), 6.07 (s, 1H), 4.72-4.67 (m, 1H), 4.60-4.50 (m, 1H), 4.36 (app t, J = 8.0 Hz, 2H), 3.92 (dd, J = 9.6, 4.4 Hz, 2H), 3.503.45 (m, 1H), 2.98 (br s, 3H), 2.69 (s, 3H), 2.44-2.15 (m, 2H), 2.11-2.00 (m, 1H), 1.79-1.53 (m, 3H).
LCMS (ESI) m!z 563.2 [M + H]+, tR = 2.20 min.
HPLC Tr (min), purity %: 3.35, 99%.
Æ/=0.50 (EtOAc).
Intermediate 70
250
NaHCO3
MeCN, H2O
l-(2,2,2-trifluoroethyI)piperazine (32.6 mg, 0.16 mmol) and sodium bicarbonate (26.8 mg, 0.32 mmol) were added to a solution of intermediate 56 (80.0 mg, 0.16 mmol) in acetonitrile (0.40 mL) and water (0.40 mL) and the reaction mixture was stirred at room temperature. After 3 h, the reaction mixture was partitioned between ethyl acetate (20 mL) and water (50 mL), and the layers were separated. The organic layer was washed with saturated sodium chloride solution (50 mL), was dried over Na2SÛ4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (4 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 70 (79.1 mg, 78%) as a white solid.
LCMS (ESI) m/z 634.2 [M + H]+, tR = 2.78 min.
HPLC îr (min), purity %: 5.37, 54%.
Rf= 0.39 (EtOAc).
Compound 83
251
To a solution of intermediate 70 (20.0 mg, 0.03 mmol) in MeOH (0.64 mL) was added 3hydroxyazetidine hydrochloride (68.9 mg, 0.63 mmol) and triethylamine (178 μΐ., 1.28 mmol), and the reaction mixture was stirred at 70 °C. After 5 h, the reaction mixture was allowed to cool to room temperature and was partitioned between ethyl acetate (10 mL) and water (10 mL). The layers were separated, and the organic layer was washed with saturated aqueous sodium bicarbonate solution (10 mL) and saturated sodium chloride solution (10 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (4 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford compound 83 (9.4 mg, 44%) as a white solid.
Ή NMR (CD3OD, 400MHz): d 7.54-7.34 (m, 3H), 6.30-5.95 (m, 2H), 5.31 (s, IH), 4.81-4.74 (m, IH), 4.58-4.48 (m, 2H), 4.14-4.08 (m, 2H), 4.03-3.85 (m, 4H), 3.48 (quintet, J = 1.6, IH),
3.23-3.08 (m, IH), 3.07-3.00 (m, 2H), 2.96-2.89 (app t, J = 5.2 Hz, 4H), 2.40-2.00 (m, 2H), 1.80-1.56 (m, 4H).
LCMS (ESI) m/z 671.3 [M + H]+, tR = 2.18 min.
HPLC /r (min), purity %: 4.07, 99%.
Rf= 0.39 (EtOAc).
Compound 84
252
To a solution of intermediate 70 (20.0 mg, 0.03 mmol) in MeOH (0.64 mL) was added azetidine (42.0 pL, 0.63 mmol) and triethylamine (178 pL, 1.28 mmol), and the reaction mixture was stirred at 70 °C. After 2 h, the reaction mixture was allowed to cool to room temperature 10 and was partitioned between ethyl acetate (10 mL) and water (10 mL). The layers were separated, and the organic layer was washed with saturated aqueous sodium bicarbonate solution (10 mL) and saturated sodium chloride solution (10 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (4 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to 15 afford compound 84 (6.2 mg, 30%) as a white solid.
*H NMR (CD3OD, 400MHz): d Ί.6Ί-Ί2Ί (m, 3H), 6.14-5.74 (m, 2H), 5.32 (s, 1H), 4.14 (app t, J= 7.2 Hz, 4H), 3.67-3.43 (m, 2H), 3.20-3.08 (m, 2H), 3.01-2.95 (m, 2H), 2.92 (app t, J= 4.8 Hz, 4H), 2.41 (quintet,/= 6.8 Hz, 2H), 2.20-1.99 (m, 2H), 1.76-1.54 (m, 4H).
LCMS (ESI) m!z 655.3 [M + H]+, tR = 2.32 min.
HPLC tR (min), purity %: 3.81, 99%.
Λζ=0.50 (EtOAc).
Intermediate 71
[E)-ethyl-3-ethoxy-2-methylacrylate (11.8 g, 67.6 mmol) and CS2CO3 (22.0 g, 67.6 mmol) were added to a solution of intermediate 4 (12.0 g, 45.1 mmol) at room temperature and the reaction mixture was heated to 130 °C. After 17 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was diluted with ethyl acetate (250 mL) and was filtered. The resulting filtrate was concentrated under reduced pressure and the residue was purified via SiO2 column chromatography (330 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 71 (8.58 g, 57%) as a light yellow solid.
'H NMR (CDCI3, 400MHz): d 12.01 (br s, 1H), 7.99 (s, 1H), 5.73 (s, 1H), 5.42 (br s, 1H), 4.01 (brd, J = 12.2 Hz, 1H), 2.81 (brt, J= 11.2 Hz, 1H), 2.29 (d, J= 13.5 Hz, 1H), 2.07 (d, J = 1.1 Hz, 3H), 1.87 - 1.69 (m, 1H), 1.68-1.41 (m, 4H), 1.48 (s, 9H).
13CNMR (CDCI3, 100MHz): d 162.87, 156.34, 155.43, 140.16, 135.00, 113.29, 86.50, 79.75, 28.41, 27.79, 25.27,21.00, 19.88, 13.38.
LCMS (ESI) m/z 333.0 [M + H]+, = 2.24 min.
HPLC iR (min), purity %: 3.969,99%.
^=0.50 (EtOAc).
Chiral HPLC, 98%ee (Chiralpak 1C 5 mM, 4.6 χ 150 mm, 10-95% MeCN/ H2O, 0.05% trifluoroacetic acid modifier) (S)-isomer tR = 22.234 min, (7?)-isomer tR = 20.875 min.
254
Intermediate 72
POCI3
POCI3 ¢5.60 mL, 59.8 mmol) was added to intermediate 71 ¢993.4 mg, 2.99 mmol) at room temperature and the reaction mixture was heated to 100 °C. After 2 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure to afford intermediate 72 as an orange semi-solid, which was used directly in the following step.
’H NMR (DMSO-J6, 400MHz): d 9.40 (br d, J= 7.6 Hz, 1H), 9.27-9.16 (m, 2H), 6.85 (s, 1H), 4.54 (t, J= 112.4 Hz, 1H), 3.32 (d. J - 12.8 Hz, 1H), 3.08 (q, 8.81 Hz, 1H), 2.33 (s, 3H),
2.23-2.14 (m, 1H), 1.92-1.61 (m, 5H).
LCMS (ESI) m/z 251.1 [M + H]+, rR = 0.21 min.
HPLC tR - 2.35 min.
Intermediate 73
HATU (1.37 g, 3.59 mmol) was added to a solution of 5-chloro-2(methylsulfonamido)benzoic acid ¢823 mg, 3.29 mmol) in DMF ¢15.0 mL), and the reaction mixture was stirred at room temperature. After 1 h, a solution of crude intermediate 72 ¢220 mg,
255
2.99 mmol) in DMF (1 mL) was added followed by the addition of triethylamine (2.00 mL, 14.3 mmol), and the reaction mixture was stirred at room temperature for 19 h. The reaction mixture was partitioned between ethyl acetate (250 mL) and saturated aqueous sodium bicarbonate solution (200 mL), and the layers were separated. The organic layer was washed with saturated aqueous sodium bicarbonate solution (200 mL) and saturated sodium chloride solution (200 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (12 g SiO2 Combifiash HP Gold Column, ΟΙ 00% ethyl acetate/hexanes) to afford intermediate 73 (736.2 mg, 51% (2-steps)) as a white solid.
!H NMR (CDCh, 400MHz): d 10.05 (br s, 0.2H), 9.13 (br s, IH), 8.95 (br s, IH), 8.81 (br s, 0.2H), 7.70 (d, J= 8.8 Hz, IH), 7.56 (d, 8.8 Hz, 0.2H), 7.40 (dd, J= 8.8, 2.4 Hz, IH), 7.33 (d, J= 2.4 Hz, IH), 7.31 (d, 4.4 Hz, 0.2H), 6.45 (s, IH), 6.40 (br s, 0.2H), 6.28 (br d, J= 4.4
Hz, IH), 5.01 (brs, 0.2H), 4.54 (brd, J= 14.0Hz,0.2H), 3.35 (brd, J= 13.2 Hz, IH), 3.15-3.03 (m, IH), 2.92 (s, 3H), 2.39 (s, 3H), 2.13-1.98 (m, IH), 1.90-1.59 (m, 2H), 1.59-1.31 (m, 3H).
,3C NMR (CDC13, 100MHz): d 167.09, 156.12,153.13, 147.86, 135.68, 131.79, 131.66, 131.38, 130.12, 125.91, 125.44, 117.08,93.74,47.65,44.07, 39.81,27.83,25.47, 19.78, 16.90.
LCMS (ESI) miz 482.1 [M + H]+, tR = 2.79 min.
HPLC ZR (min), purity %: 5.438,99%
Rf- 0.47 (50% EtOAc/hexanes).
Chiral HPLC, 99%ee (Chiralpak IC 5 mM, 4.6 x 150 mm, 10-95% MeCN/ H2O, 0.05% trifluoroacetic acid modifier) (S)-isomer tR = 29.739 min, (R)-isomer tR = 29.495 min.
Compound 85
Et3N, MeOH
256
To a solution of intermediate 73 (20.0 mg, 0.04 mmol) in MeOH (0.84 mL) was added (S)-3-hydroxypyrroIidine (72.5 mg, 0.83 mmol) and triethylamine (234 pL, 1.68 mmol), and the reaction mixture was stirred at 70 °C. After 2 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 85 (17.7 mg, 65 %) as a white solid. (TFA Salt) *H NMR (CDC13, 400MHz): d 8.90 (s, 1H), 8.64 (br s, 0.7H), 8.52 (br s, 0.15H), 8.45 (br s, 0.15H), 7.70 (d, J= 8.8 Hz, 1H), 7.57 (br d, J= 12 Hz, 0.2H), 7.41 (dd, J= 8.8, 2.8 Hz, 1H), 7.33 (d, J =2.4 Hz, 1H), 6.44 (br s, IH), 6.17 (d,/=4.4 Hz, 1H), 4.75 (br s, 1H), 4.61 (br s, 0.2H), 4.39-4.27 (m, 1H), 4.24-4.14 (m, 1H), 4.12-4.03 (m, 1H), 3.34 (br d, J = 13.6 Hz, 1H), 3.16-3.04 (m, 2H), 2.92 (s, 3H), 2.80 (s, 0.4H), 2.56 (s, 3H), 2.41 (s, 0.6H), 2.38-2.26 (m, 2H),
2.24-1.99 (m, 2H), 1.84-1.75 (brd, J= 12.4 Hz, IH), 1.64-1.42 (m,2H), 1.41-1.29 (m, 1H). LCMS (ESI) m/z 533.2 [M + H]+, tR = 2.41 min.
HPLC rR (min), purity %: 3.80, 99%.
Rf= 0.5 (EtOAc).
Intermediate 74
Intermediate 14 (244 mg, 0.68 mmol) in THF/NMP 7:1 (8 mL) was treated with Fe(acac)3 (66 mg, 0.19 mmol) and placed under Ar. The mixture was treated dropwise with PhMgBr (508 pL, 1.015 mmol, 2.0 M) and the mixture was stirred overnight. The mixture was treated with saturated NHiCl/Na^EDTA (100 pL) poured into EtOAc (100 mL) and H2O (50 mL). The organic layer was washed with ILO (50 mL) and saturated sodium chloride solution (50 mL), then dried over MgSO4. Purification via SiO2 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% EtOAc/hexanes) afforded intermediate 74 (9 mg, 3%) as a white solid:
257
LCMS m/z [M + H]* 407, [M + Na]* 429.
Compound 86
IO Intermediate 74 (9 mg, 0,02 mmol) was treated with 4 N HCl/dioxane (1 mL) and stirred at for 3 h. The mixture was concentrated and treated with DMF (1 mL), HATU (13 mg, 0.03 mmol), X-methylmorpholine (15 pL, 0.11 mmol), and 5-methyl-2-(methylsulfonamido)benzoic acid (7 mg, 0.03 mmol). The mixture was stirred overnight then poured into EtOAc (100 mL) and H2O (50 mL). The organic layer was washed with H2O (50 mL) and saturated sodium chloride solution (50 mL), then dried over MgSOi. Purification via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) afforded compound 86 (1 mg, 9%) as a white solid (TFA salt):
m/z [M + H]+ 518, [M + Na]+ 540.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 5.236 min (>95% purity @ 20 254 nM).
Intermediate 75
cPrMgBr, Fe(acac)3
258
Intermediate 14 (247 mg, 0.68 mmol) in THF/NMP 7:1 (8 mL) was treated with Fe(acac)3 (66 mg, 0.19 mmol) and placed under Ar. The mixture was treated dropwise with cPrMgBr (2.07 mL, 1.015 mmol, 0.5 M) and the mixture was stirred overnight. The mixture was treated with saturated NH4CL/Na2EDTA (100 pL) poured into EtOAc (100 mL) and H2O (50 mL). The organic layer was washed with H2O (50 mL) and saturated sodium chloride solution (50 mL), then dried over MgSCh. Purification via SiO2 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% EtOAc/hexanes) afforded intermediate 75 (16 mg, 6%) as a white solid:
LCMS m/z [M + H]+ 371, [M + Na]+ 393.
Compound 87
Intermediate 75 (9 mg, 0.02 mmol) was treated with 10% H2SC>4 /dioxane (1 mL) and stirred at for 3 h. The mixture was concentrated and treated with DMF (1 mL), HATU (25 mg, 0.06 mmol), A-m ethylmorpholine (30 pL, 0.21 mmol), and 5-methyl-2-(methylsulfonamido) benzoic acid (13 mg, 0.06 mmol). The mixture was stirred overnight then poured into EtOAc (100 mL) and H2O (50 mL). The organic layer was washed with H2O (50 mL) and saturated sodium chloride solution (50 mL), then dried over MgSCh. Purification via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) afforded compound 87 (0.7 mg, 3%) as a white solid (TFA salt):
m/z [M + H]+ 482.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 5.118 min (>95% purity @ 254 nM).
259
Intermediate 76
NH3
Intermediate 14 (610 mg, 1.67 mmol) was treated with NH3 (10 mL) and heated at 80 °C overnight. The mixture was cooled and NH3 was removed with degassing. The mixture was suspended in MeOH and filtered through a medium glass fritted funnel to afford intermediate 76 (375 mg, 65%) as a white solid:
LCMS m/z [M + H]+ 346.
Intermediate 77
Intermediate 76 (185 mg, 0.53 mmol) inCIhCh (5 mL) was treated with pyridine (430 pL, 5.3 mmol) and AcCI (113 pL, 1.6 mmol) and stirred overnight. The mixture was poured into EtOAc (100 mL) and H2O (50 mL). The organic layer was washed with H2O (50 mL) and saturated sodium chloride solution (50 mL), then dried over MgSO4. Purification via SiO2 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% EtOAc/hexanes) afforded intermediate 77 (29 mg, 6%) as a white solid:
LCMS m/z [M + 2H]+ 389.
Compound 88
260
Intermediate 77 (29 mg, 0.07 mmol) was treated with 4 N HCl/dioxane (2 mL) and stirred at for 3 h. The mixture was concentrated and treated with DMF (2 mL), HATU (39 mg, 0.1 mmol), .V-methylmorpholine (50 pL, 0.34 mmol), and 5-methyl-210 (methylsulfonamido)benzoic acid (20 mg, 0.09 mmol). The mixture was stirred overnight then poured into EtOAc (100 mL) and H2O (50 mL). The organic layer was washed with H2O (50 mL) and saturated sodium chloride solution (50 mL), then dried over MgSO4. Purification via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) afforded compound 88 (8 mg, 22%) as a white solid (TFA salt):
*H-NMR (CD3CN, 400 MHz):D d 7.31 (m, 3H), 6.71 (s, 1H), 6.27 (s 1H), 2.92 (s, 3H), 2.36 (s, 2H), 1.91 (m, 2H), 1.96 (s, 3H), 1.68 (m, 3H).
m/z [M + H]+ 499.
HPLC (RP: 15-100% MeCN-H2O gradient, 0.05% TFA modifier) tR = 14.65 min (>95% purity @ 254 nM).
Compound 89
Cbz intermediate 203 (119 mg, 0.30 mmol) in EtOH (6 mL) was treated with 10% Pd/C (50 mg) and HOAc (18 mL, 0.33 mmol) and placed under H2. The mixture was stirred overnight then filtered through Celite plug. The solution is concentrated and treated with DMF (6 mL), HATU (172 mg, 0.45 mmol), jV-methylmorpholine (250 pL, 1.5 mmol), and 5-methyl-2(methylsulfonamido)benzoic acid (90 mg, 0.29 mmol). The mixture was stirred overnight then poured into EtOAc (100 mL) and H2O (50 mL). The organic layer was washed with H2O (50 mL) and saturated sodium chloride solution (50 mL), then dried over MgSO4. Purification via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) afforded compound 89 as a mixture of isomers (5 mg, 3%) as a white solid (TFA salt): m/z [M + H]+472.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 4.016 min (80% purity @ 254 nM).
Compound 90
5-Chloro-2-(methylsulfonamido)benzoic acid (40 mg, 0.16 mmol) and HATU (69 mg, 0.18 mmol) in DMF (2 mL) were stirred for 1 h. Intermediate 72 (35 mg, 0.12 mmol) and TEA (42 pL, 0.30 mmol) and the mixture was stirred overnight. The mixture was stirred
262 overnight then poured into EtOAc (100 mL) and H2O (50 mL). The organic layer was washed with H2O (50 mL) and saturated sodium chloride solution (50 mL), then dried over MgSO4. Purification via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) afforded compound 90 (also same as intermediate 73 ) (27 mg, 46%) as a white solid (TFA salt): *H-NMR (CDCh, 400 MHz):D d 9.13 (s, 1H), 8.94 (br s, 1 H), 7.70 (d, J= 6.6 Hz, 1 H), 7.39 (d, J = 6.6 Hz, 1 H), 7.32 (s, 1H), 6.45 (s, 1H), 6.28 (d, J = 3.3 Hz, 1 H), 3.31 (d, J = 9.9 Hz, 1H), 3.12 (m, 1H), 2.92 (s, 3H), 2.38 (s, 3H), 1.38-1.62 (m, 6H).
m/z [M + H]+ 483, [M + Na]+ 505.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR ‘ 5.261 min (95% purity @ 254 nM).
Compound 91
Compound 90 (9 mg, 0.02 mmol) in azetidine (1 mL) was stirred at 70 °C for 1 h. The solution was concentrated and purified via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) to afford compound 91 (5 mg, 53%) as a white solid (TFA salt): 'H-NMR (CD3OD, 400 MHz):D d 8.65 (s, 1H), 7.67 (d, J= 6.9 Hz, 1 H), 7.48 (d, 6.6 Hz, 1
H), 7.43 (s, 1H), 6.10 (br d, 1 H), 4.51 (br m, 1H), 2.51 (app t, 2H), 3.29 (m, 1H), 3.12 (m, 1H), 2.96 (s, 3H), 2.29 (s, 3H), 2.03 (br m, 2 H), 1.35-1.75 (m, 6H).
m/z [M + H]+ 504, [M + Naf 526.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 4.197 min (>99% purity @ 254 nM).
Compound 92
263
Compound 90 (9 mg, 0.02 mmol) in THF (I mL) was treated with DIPEA (66 pL, 0.38 mmol) and 3-hydroxyazetidine*HCl (20 mg, 0.19 mmol). The mixture was stirred at 70 °C for
1.5 h. The solution was concentrated and purified via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) to afford compound 92 (8 mg, 87%) as a white solid (data for TFA salt):
=0.41 (EtOAc) ! H-NMR (CDCI3,400 MHz, retainer denoted by *):□ d 9.30 (br s, 1H), 8.81 (s, 1H), 7.68 (d, J =
6.6 Hz, 1H), 7.54 (d, J= 6.3 Hz, 1H), 7.41 (s, 1H), 6.21 (s, 1H), 6.14 (d, J= 4.0 Hz, 1H), 4.92* (br s, 1H, retainer), 4.85* (br s, 1H, rotamer), 3.33 (app d, J= 9.3 Hz, 1H), 3.12 (app t, J = 8.7 Hz, 2H), 2.91 (s, 3H), 2.32 (s, 3H), 2.27 (m, 1H, unresolved), 2.00 (app t, J= 10.5 Hz, 1H), 1.76 (d,7=9.9 Hz, iH), 1.56 (appd,7= 9.6 Hz, 1H), 1.45 (m, 1H), 1.27 (m, 1H).
m/z [M + H]+ 520, [M + Naf 542.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 3.778 min (>99.9% purity @ 254 nM).
Chiral HPLC (Chiralpak IC 5 mM, 4.6 x 150 mm, 10-95% MeCN/ H2O, 0.05% trifluoroacetic acid modifier) (5)-isomer tR = 19.274 min, (S)-isomer iR = 19.773 min.
Compound 93
264
Compound 90 (9 mg, 0.02 mmol) in pyrrolidine (I mL) was stirred at 70 °C for 1 h. The solution was concentrated and purified via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) to afford compound 93 (5 mg, 53%) as a white solid (TFA salt): ]H-NMR (CD3OD, 400 MHz):D d 8.64 (s, 1H), 7.56 (d, J= 6.3 Hz, 1 H), 7.39 (d, J= 6.6 Hz, 1 H),7.34(s, 1H), 6.02 (br d, 1 H), 3.80 (brm,4H), 3.20 (m, 1H),3.O9 (s,3H),2.31 (m, 1H), 1.99 (br s, 6H), 1.93-1.36 (complex, 5H) m/z [M + H]+ 518, [M + Na]+ 540.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 4.413 min (>95% purity @ 254 nM).
Compound 94
Cl
Compound 90 (20 mg, 0.04 mmol) in THF (3 mL) was treated with DIPEA (150 pl, 0.83 mmol) and 3-fluoroazetidine*HCl (46 mg, 0.4 mmol). The mixture was stirred at 70 °C for 1 h. The solution was concentrated and purified via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) to afford compound 94 (13 mg, 60%) as a white solid (TFA salt):
’H-NMR (CD3CN, 400 MHz):D d 8.82 (s, 1H), 8.65 (s, 1H), 7.68 (m, 1 H), 7.48 (m, 2H), 6.07 (s, 1H), 6.03 (m, 1H), 5.45 (s, 1H), 5.40 (s, 1H), 3.80 (br m, 4H), 3.20 (m, 1H), 2.95 (s, 3H), 2.31 (m, 1H), 1.99 (br s, 6H), 1.93-1.36 (m, 5H).
m/z [M + H]+ 522, [M + Na]+ 543.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 4.937 min (>95% purity @ 254 nM).
Compound 95
265
Compound 90 (15 mg, 0.03 mmol) in THF (3 mL) was treated with DIPEA (110 pL, 0.6 mmol) and (R)-pyrrolidin-3-ol*HCl (38 mg, 0.3 mmol). The mixture was stirred at 70 °C for 1 h. The solution was concentrated and purified via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) to afford Compound 95 (13 mg, 60%) as a white solid (TFA salt): m/z [M + H]+ 534.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) tR = 3.761 min (>95% purity @ 254 nM).
Compound 96
Compound 90 (30 mg, 0.06 mmol) in THE (6 mL) was treated with DIPEA (221 pL, 1.2 mmol) and 3-methylazetidin-3-obHCI (75 mg, 0.6 mmol). The mixture was stirred at 70 °C for 2 h. The solution was concentrated and purified via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) to afford Compound 96 (19 mg, 57%) as a white solid (TFA salt): m/z [M + H]+ 534.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) t.K = 3.959 min (>95% purity @ 254 nM).
266
Compound 97
Compound 90 (47 mg, 0.1 mmol) in MeOH (1 mL) was treated with TEA (270 pL, 1.9 mmol) and tert-butyl azetidin-3-ylcarbamate (167 mg, 1.0 mmol). The mixture was stirred at 70 °C overnight. The solution was concentrated to afford the product as a white solid which was used without further purification: m/z [M + H]+ 619, [M + Na]+ 641. The product (60 mg, 0.1 mmol) was treated with 4 N HCl/dioxane (1 mL) and the mixture was stirred for 3 h. The solution was concentrated and purified via preparative HPLC (5-100% MeCN/ H2O, 0.1% trifluoroacetic acid modifier) to afford compound 97 (13 mg, 60%) as a white solid (TFA salt): ‘H-NMR (CD3OD, 400 MHz):D d 8.84 (s, IH),8.38 (s, 1H), 7.70 (m, 1 H), 7.47 (s, 1H), 7.43 (s, 1H), 6.10 (m, 1H), 4.63 (m, 1H), 4.28 (m, 2H),4.18 (m, 2H), 3.20 (m, 2H), 3.01 (m, 1H), 2.97 (s, 3H), 2.40 (m, 1H), 2.25 (s, 3H), 2.05 (m, 1H), 1.75 (m, 1H), 1.55 (m, 1H), 1.45 (m, 1H). m/z [M + H]+519.
HPLC (RP: 6-98% MeCN-H2O gradient, 0.05% TFA modifier) = 3.314 min (>95% purity @ 254 nM).
Intermediate 78
267
Pyrrolidine (7,4 mL, 89.3 mmol) was added to a solution of intermediate 14 (250mg, 0.687 mmol) in 15mL of dioxane at room temperature. Reaction mixture was stirred overnight. Solution was concentrated to L volume and was poured into 50 mL of water/ 50 mL Brine. Aqueous was extracted with ethyl acetate (3x70mL) and combined organic was washed with 150 mL of 1:1 water:brine, dried (MgSO4), filtered, and concentrated under reduced pressure. Silica gel column chromatography (20-50% Ethyl Acetate in Hexanes) yielded intermediate 78 (232 mg, 85%)
LCMS m/z [M+H]+ C22H33N5O2 requires: 400.26. Found 400.20
Intermediate 79
A 4N solution of hydrogen chloride in dioxane (7.0 mL, 28 mmol) was added to a mixture of N-Boc piperdine intermediate 78 (230 mg, 0.575 mmol) in anhydrous dioxane (16 mL), forming a white precipitate after 5-10 minutes. Reaction mixture was stirred 18 hours. Analytical HPLC indicated 86% conversion to desired product. Additional 2.5 mL of HC1 in dioxane was then added and mixture was stirred for 1 hour and concentrated under reduced pressure to yield unprotected intermediate 79 as a white solid after drying in-vacuo, (236 mg, 99%, 90 % purity), which was used in the next step without further purification.
’H-NMR (DMSO, 400 MHz): δα 9.81 (s, IH), 9.60 (m, IH), 6.72 (s, IH), 4.51 (t, IH), 4.20 (m, 5H), 3.37(m, IH), 3.08 (m, IH), 2.40 (m, IH) 2.25 (s, 3H), 2.16 (m, 2H), 1.94 (s, 3H), 1.841.60 (m, 6H)
LCMS m/z [M+H]+ Cp^sNs requires: 300.21. Found 300.20
Compound 98
268
HATU (64.6 mg, 0.170 mmol) was added to a solution of 5-methyl-2(methylsulfonamido)benzoic acid (34.1 mg, 0.159 mmol) in 5 mL of anhydrous DMF at room temperature. After 45 min of stirring, intermediate 79 (50.3 mg, 0.123 mmol) was added followed immediately by triethylamine (0.07 mL, 0.548 mmol). Reaction mixture stirred at room temperature overnight under argon. Mixture was then poured into 50 mL of I l?O and extracted three times with 50 mL of ethyl acetate. The combined organic layers were washed with 100 mL Brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by prep HPLC (15-100% Acetonitrile (with 0.1 % trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 98 (51 mg, 66%) as a yellow off-white solid, trifluoroacetate salt, after lyophilization.
’H-NMR (DMSO, 400 MHz): δΠ 9.08 (s, 1H) 7.35 (m, 2H), 7.13 (d, 1H), 6.41 (s, 1H), 6.01 (s, 1H), 4.18 (m, 4H), 4.11 (m, 2H), 3.42 (m, 1H), 3.13 (m, 1H), 3.01 (s, 3H), 2.40-2.05 (m, 3H), 2.32 (s, 3H), 2.23 (s, 3H), 1.94 (s, 3H), 1.93 (m, 1H), 1.66-1.35 (m, 4H).
LCMS m/z [M+H]+ CzcH^N^OjS requires: 511.24. Found 511.30.
HPLC Tr (min), purity %: 5.50, 99%
Intermediate 80
Piperidine (8.8 mL, 89.3 mmol) was added to a solution of intermediate 14 (247 mg, 0.679 mmol) in 16 mL of dioxane at room temperature. Reaction mixture was stirred overnight. Solution was concentrated to % volume and was poured into 35 mL of water/15 mL Brine. Aqueous was extracted with ethyl acetate (3x40mL) and combined organic was washed with 100 mL of 1:1 water:brine, dried (MgSO4), filtered, and concentrated under reduced pressure. Desired product, intermediate 80 was recovered as a beige film (282 mg, 99%) and used without further purification.
LCMS m/z [M+H]+ C23H35N5O2 requires: 414.28. Found 414.48.
Intermediate 81
4N HCI in dioxane rt
A 4N solution of hydrogen chloride in dioxane (8.0 mL, 32 mmol) was added to a mixture of N-Boc piperdine intermediate 80 (275 mg, 0.666 mmol) in anhydrous dioxane (17 mL), forming a light yellow precipitate after 5-10 minutes. Reaction mixture was stirred 18 hours at room temperature and concentrated under reduced pressure to yield unprotected intermediate 81 as a light yellow solid after drying in-vacuo, (280 mg, 99%) that was used in the next step without further purification.
LCMS m/z [M+H]+ -CjgF^Ns requires: 314.23. Found 314.30.
270
Intermediate 82
4NHC) in dioxane rt
Following the procedure for the synthesis of intermediate 81 from 80 and 80 from
Intermediate 14, intermediate 89 was synthesized as a yellow solid from intermediate 14 ¢232 mg, 99%).
’ll-NMR (DMSO, 400 MHz): δΠ 9.98 (s, 1H),9.79 (s, IH), 6.84 (s, IH), 4.53 (m, IH), 3.42 (s, 6H), 3.05 (m, IH), 2.60 (s, 3H), 2.23 (s, IH), 2.17 (m, IH), 1.94-1.72 (m, 5H), 1.65 (m, IH) LCMS m/z [M+H]+ Cjs^jNs requires: 274.20. Found 274.23
Compound 99
HATU (85.8 mg, 0.226 mmol) was added to a solution of 5-chloro-2(methylsulfonamido)benzoic acid (48.6 mg, 0.194 mmol) in 8.0 mL of anhydrous DMF at room temperature. After 45 min of stirring, intermediate 82 (56.1 mg, 0.146 mmol) was added followed immediately by tri ethylamine (0.09 mL, 0.641 mmol). Reaction mixture stirred at room temperature overnight under argon. Mixture was then poured into 30 mL of H2O and 10 mL brine and extracted three times with 30 mL of ethyl acetate. The combined organic layers
C
27l were washed with 60 mL of Ï : 1 watcr:brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 99 (58 mg, 66%) as a white solid, trifluoroacetate salt, after lyophilization.
'H-NMR (DMSO, 400 MHz): δθ 9.34 (s, IH) 7.45 (m, 3H), 6.43 (d, IH), 6.01 (s, IH), 5.67 (s, 10 IH), 4.61 (m, IH), 3.35 (m, IH), 3.25 (s, 3H), 3.19 (s, 3H), 3.07 (s, 3H), 2.48 (s, 3H), 2.38 (m, IH), 2.22 (s, 3H), 2.01 (m, IH), 1.70-1.41 (m, 3H).
LCMS m/z [M+H]+ C23H29CIN6O3S requires: 505.17. Found 505.12
HPLC Tr (min), purity %: 5.39, 95%
Compound 100
Following the procedure for the synthesis of compound 99, beginning with 2(methylsulfonamido)benzoic acid (46.5 mg, 0.216 mmol) and intermediate 82 (56 mg, 0.146 20 mmol), compound 100 was synthesized as a white solid, trifluoroacetate salt, after lyophilisation (62.5 mg, 75%).
’H-NMR (DMSO, 300 MHz): δθ 9.15 (s, IH), 7.45 (m, 4H), 6.49 (s, IH), 6.36 (s, IH), 6.03 (s, IH), 3.28 (s, 6H), 3.4-3.21 (m, 2H), 3.06 (s, 3H), 3.01-2.85 (m, IH), 2.44 (s, 3H), 2.22 (s, 3H), 2.05 (m,lH), 1.71-1.38 (m, 4H).
LCMS m/z [M+HJ+ C23H30N6O3S requires: 471.21. Found 471.20
HPLC Tr (min), purity %: 4.99, 99%
Compound 101
Following the procedure for the synthesis of compound 99, beginning with 5-methyl-2(methylsulfonamido)benzoic acid (43.1 mg, 0.188 mmol) and intermediate 82 (45 mg, 0.130 mmol), compound 101 was synthesized as a light yellow solid, tri fluoroacetate salt, after lyophilisation (33.2 mg, 43%).
!H-NMR (DMSO, 400 MHz): ÔD 9.02 (s, 1H), 7.28 (m, 3H), 6.45 (s, 1H), 6.03 (s, 1H), 3.39 (m, 1H) 3.21 (s, 6H), 3.17 (m, 1H), 3.00 (s, 3H), 2.47 (s, 3H), 2.45 (m, 1H), 2.33 (m, 2H), 2.22 (s, 3H),2.17(m, 1H), 1.92 (m, 1H), 1.69-1.38 (m, 4H)
LCMS m/z [M+H]+ C24H33N6O3S requires: 485.23. Found 485.19
HPLC Tr (min), purity %: 5.27, 99%
Intermediate 83
Cyclopropylamine (2.0 mL, 28.9 mmol) was added to a solution of intermediate 14 (130 mg, 0.357 mmol) in 8 mL of dioxane at room temperature. Reaction mixture was stirred overnight. HPLC indicated starting material remained. Reaction mixture was heated at 50 °C for 24 hours. Solution was concentrated under reduced pressure and residue was subjected to silica gel column chromatography (25-50% Ethyl Acetate in Hexanes. Desired product intermediate 83 was recovered as a clear film (65 mg, 47%).
273
LCMS m/z [M+H]+ C21H31N5O2 requires: 386.25. Found 386.43.
Intermediate 84
4N HCI in Dioxane, rt
A 4N solution of hydrogen chloride in dioxane (1.2 mL, 4.8 mmol) was added to a mixture of intermediate 83 (65 mg, 0.168 mmol) in anhydrous dioxane (5.5 mL), forming a white precipitate after 5-10 minutes. Reaction mixture was stirred 18 hours at room temperature and concentrated under reduced pressure to yield intermediate 84 as a white solid after drying in-vacuo, (48 mg, 99%) that was used in the next step without further purification.
LCMS m/z [M+H]+ Ci6H23N5 requires: 286.20. Found 286.46.
Compound 102
Following the procedure for the synthesis of compound 99, beginning with 5-methyl-2(methylsulfonamido)benzoic acid (28.4 mg, 0.124 mmol) and intermediate 84 (33 mg, 0.093 mmol), compound 102 was synthesized as a white solid, trifluoroacetate salt, after lyophilisation (29.2 mg, 53%).
274
LCMS m/z [M+H]+ C25H32N6O3S requires: 497.23. Found 497.39.
HPLC Tr (min), purity %: 5.39, 99%
Intermediate 85
Potassium cyanide (175 mg, 2.69 mmol) was added to a solution of intermediate 14 (200 mg, 0.55 mmol) in 5 mL of anhydrous DMF at room temperature. After stirring for 65 hours, reaction mixture was poured into 50 mL of water and extracted with ethyl acetate (3x40 mL). Combined organics were washed with 100 mL of water and brine, dried (MgSO4), filtered, and concentrated under reduced pressure to yield a residue. Silica gel column chromatography (1530% ethyl acetate in hexanes) yielded intermediate 85 (111 mg, 57%) as a yellow film.
LCMS m/z [M+H]+ C19H25N5O2 requires: 356.20. Found 356.08
Intermediate 86
A 4N solution of hydrogen chloride in dioxane (4.0 mL, 60 mmol) was added to a mixture of intermediate 85 (110 mg, 0.31 mmol) in anhydrous dioxane (10 mL), forming a yellow precipitate after 5-10 minutes. Reaction mixture was stirred 18 hours at room
275 temperature and concentrated under reduced pressure to yield intermediate 86 as a yellow solid after drying in-vacuo, (100 mg, 98%) that was used in the next step without further purification. jH-NMR (DMSO, 400 MHz): SD 9.57 (s, 2H), 7.07 (s, 1H),4.57 (t, J = 8.8 Hz, 1H), 3.34 (s, 3H), 3.07 (m, 1H), 2.54 (s, 3H), 2.15 (dd, J=13.8Hz, 2.8Hz, 1H), 1.97-1.76 (m, 5H), 1.68 (m, 1H)
LCMS m/z [M+H]+ C14H17N5 requires: 256.15. Found 256.09
Compound 103
Following the procedure for the synthesis of compound 99, beginning with 5-methyl-2(methylsulfonamido)benzoic acid (34.8 mg, 0.152 mmol) and intermediate 86 (40.6 mg, 0.123 mmol), compound 103 was synthesized as a yellow solid, trifluoroacetate salt, after lyophilisation (38.7 mg, 56%).
1 H-NMR (DMSO, 400 MHz): δΠ 9.03 (s, 1H), 7.26 (m, 3H), 6.85 (s, 1H), 6.07 (s, 1H), 3.37 (m, 1H), 3.14 (m, 1H), 3.05 (m, 1H), 3.02 (s, 3H), 2.59 (m, 1H), 2.57 (s, 3H), 2.34 (s, 3H), 2.17 (m, 1H), 1.94 (m, 1H), 1.70-1.30 (m, 5H)
LCMS m/z [M+H]+ requires: 467.18. Found 467.34.
HPLC Tr (min), purity %: 6.72, 99%
Intermediate 87
276
Morpholine (2.0 mL, 23.0 mmol) was added to a solution of intermediate 14 (75 mg, 0.206 mmol) in 3 mL of anhydrous THF at room temperature. Reaction mixture was stined overnight. Solution was poured into 20 mL of water and aqueous was extracted with ethyl acetate (3x20mL) and combined organic was washed with 100 mL of water, dried (MgSO4), filtered, and concentrated under reduced pressure. Desired product intermediate 87 was recovered as a clear film (77 mg, 90%) and used without further purification.
‘H-NMR (CDCI3,300 MHz): ÔD 6.31 (s, 1H), 5.59 (m, 1H), 4.07 (m, 1H), 3.91 (m, 5H), 3.58 (m, 5H), 2.91 (m, 1H), 2.54 (s, 3H), 2.52 (m, 1H), 2.40 (m, 2H), 2.25 (s, 3H), 1.84 (m, 1H), 1.47 (s, 9H).
LCMS m/z [M+H]+ C22H33N5O3 requires: 416.26. Found 416.49
Intermediate 88
4N HCI in Dioxane, ft
A 4N solution of hydrogen chloride in dioxane (2.3 mL, 9.2 mmol) was added to a mixture of intermediate 87 (75 mg, 0.180 mmol) in anhydrous dioxane (9 mL), forming a yellow precipitate after 5-10 minutes. Reaction mixture was stirred 18 hours at room temperature and
277 concentrated under reduced pressure to yield intermediate 88 as a yellow solid after drying invacuo, (75 mg, 98%) that was used in the next step without further purification.
’H-NMR (DMSO, 300 MHz): ÔD 9.29 (s, IH), 9.04 (s, IH), 6.62 (s, IH), 4.49 (m, IH), 3.80 (m, IH), 3.41 (m, 3H), 3.13 (m, 3H), 2.32 (s, 6H), 2.29 (m, IH), 1.84-1.61 (m, 8H), 1.30 (m, 2H)
LCMS m/z [M+H]+ CnH^NsO requires: 316.21. Found 316.25
Compound 104
Following the procedure for the synthesis of compound 99, beginning with 5-methyl-2(methylsulfonamido)benzoic acid (30.1 mg, 0.131 mmol) and intermediate 88 (40 mg, 0.095 mmol), compound 104 was synthesized as a white solid, trifluoroacetate salt, after lyophilization (36 mg, 59%).
’H-NMR (DMSO, 400 MHz): §□ 9.07 (s, IH), 7.28 (m, 2H), 7.30 (s, IH), 6.41 (d, IH), 6.03 ( s, IH), 3.76 (m, 5H), 3.54 (s, 3H), 3.52 (m, IH), 3.38 (m, IH), 3.13 (m, 2H), 3.01 (s, 3H), 2.47 (s, 3H), 2.34 (m, 2H), 2.24 (s, 3H), 2.15 (m, IH), 1.95 (m, IH), 1.66-1.40 (m, 3H)
LCMS m/z [M+H]+ C26IL4N6O4S requires: 527.24. Found 527.13
HPLC Tr (min), purity %: 5.10, 88%
Intermediate 89
Intermediate 56 (31 mg, 0.062 mmol), 3-methylazetidin-3-ol hydrochloride (7.9 mg, 0.064 mmol), and sodium bicarbonate (13.1 mg, 0.156 mmol) were suspended in 2 mL of THF and stirred at room temperature for 36 hours. Mixture was poured into 10 mL of water and extracted with ethyl acetate (3xI0mL) and combined organic was washed with 20 mL of brine, dried (MgSO4), filtered, and concentrated under reduced pressure. Desired intermediate 89 was recovered as a white solid (34 mg, 99%) and used without further purification.
LCMS m/z [M+H]+ C23H26CI2N6O4S requires: 553.11. Found 553.18
Compound 105
Azetidine (0.05 mL, 0.73 mmol) was added to a solution of intermediate 89 (34 mg, 0.062 mmol) in 2 mL of anhydrous THF. Mixture was heated at 70 °C overnight after which it was concentrated and residue was purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% tri fluoroacetic acid)) to yield compound 105 (24 mg, 56%) as a white solid, trifluoroacetate salt, after lyophilization.
C
279
Ή-NMR (DMSO, 400 MHz): δ□ 9.41 (s, IH) 7.53 (m, 2H), 7.45 (m, IH), 7.30 (s, IH), 6.07 (s,
IH), 5.91 (d, 2H), 5.67 (s, IH), 4.17 (m, 4H), 3.34 (d, IH), 3.21-3.01 (m, 3H), 3.06 (s, 3H), 2.40 (m, 2H),2.31 (m,IH), 2.07-1.90 (m, IH), 1.66-1.54 (m, 3H), 1.50-1.40 (m, 2H), 1.48 (s, 3H) LCMS m/z [M+H]+ C26H32CIN7O4S requires: 574.19. Found 574.12
HPLC Tr (min), purity %: 5.32, 95%
Intermediate 90
Following the procedure of intermediate 89, starting with intermediate 56 (37 mg, 0.074 mmol) and thiazolidine (0.0058 mL, 0.074 mmol), intermediate 90 (34 mg, 99%) was recovered as a film and used without further purification.
LCMS m/z [M+H]+ Cj^CfcNeOsSj requires: 555.07. Found 555.09.
Compound 106
280
Following the procedure of compound 105, starting with intermediate 90 (34 mg, 0.061 mmol) and azetidine (0.040 mL, 0.60 mmol), compound 106 (36 mg, 86%) was isolated as a white solid, trifluoroacetate salt, after lyophilization.
‘H-NMR (DMSO, 400 MHz): ÔQ 9.61 (s, 1H) 7.55-7.46 (m, 3H), 6.08 (s, 1H),5.93 (d, 1H), 5.28 (m, 1H), 5.02 (m, 2H), 4.21-4.01 (m, 7H), 3.72 (m, 4H), 3.32 (m, 1H), 3.16 (t, 2H), 3.07 (s, 3H), 2.40-2.22 (m, 2H), 1.66-1.36 (m, 2H).
LCMS m/z [M+H]+ C25H30CIN7O3S requires: 576.15. Found 576.40
HPLC Tr (min), purity %: 5.93, 89%
Intermediate 91
Following the procedure of intermediate 89, starting with intermediate 56 (34 mg, 0.068 mmol) and (0.0089 mL, 0.072 mmol), intermediate 91 (40 mg, 99%) was recovered as a clear solid and used without further purification.
LCMS m/z [M+H]+ C2SH3oC]2N604S requires: 581.14. Found 581.33.
Compound 107
Following the procedure of compound 105, starting with intermediate 91 (40 mg, 0.068 mmol) and azetidine (0.045 mL, 0.68 mmol), compound 107 (43 mg, 87%) was isolated as a white solid, trifluoroacetate salt, after lyophilization.
LCMS m/z [M+H]+ C28H36CIN7O4S requires: 602.22. Found 602.19.
HPLC Tr (min), purity %: 5.95, 91%
Compound 108
Azetidin-3-oI hydrochloride (77 mg, 0.7 mmol) and triethylamine (0.2 mL, 1.4 mmol) were added to a solution of intermediate 91 (43 mg, 0.074 mmol) in 2 mL of anhydrous methanol. Reaction mixture was heated at 70 °C overnight. Solution was cooled to room temperature and concentrated under reduced pressure. Residue was purified by prep HPLC (15100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% tri fluoroacetic acid)) to yield compound 108 (32 mg, 59%) as a white solid, tri fluoroacetate salt, after lyophilization.
282
Ή-NMR (DMSO, 400 MHz): ÔD 938 (s, 1H) 7.47 (m, 3H), 6.09 (s, 1H), 5.92 (d, 1H), 5.38 (s, 1H), 4.75 (m, IH), 4.59 (m, 1H), 4.51-4.22 (m, 6H), 3.83 (m, 3H), 3.04 (s, 3H), 2.66 (m, 2H), 2.30 (m, 1H), 2.01 (m, 2H), 1.70-135 (m, 4H), 1.16-1.04 (m, 6H).
LCMS m/z [M+H]+ C28H36CIN7O5S requires: 618.22. Found 618.42.
HPLC Tr (min), purity %: 5.56, 99%
Compound 109
(R)-pyrrolidine-3-carbonitrile hydrochloride (82 mg, 0.618 mmol) and triethylamine (0.17 mL, 0.122 mmol) were added to a mixture of intermediate 73 (29.8 mg, 0.062 mmol) in 4 mL of anhydrous methanol. Reaction mixture was heated at 70 °C overnight. After cooling to room temperature, mixture was poured into 10 mL of water and extracted with ethyl acetate (3x20mL). Combined organics were dried (MgSO4), filtered, and concentrated under reduced pressure. Residue was purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 109 (35 mg, 82%) as a white solid, trifluoroacetate salt, after lyophilization.
*H-NMR (DMSO, 400 MHz): ÔÜ 9.23 (s, 1H) 8.53 (s, IH), 7.52 (m, 2H), 7.42 (m, 1H), 6.15 (s, 1H), 5.97 (s, IH), 3.96 (m, 1H), 3.85 (m, 3H), 3.50 (m, 1H), 3.21 (m, 1H), 3.06 (m, 1H), 3.04 (s, 3H), 237 (s, 3H), 2.33 (m,2H),2.20 (m, IH), 1.91(m, IH), 1.67-1.27 (m, 4H).
LCMS m/z [M+H]+ C25H2gClN7O3S requires: 542.17. Found 542.17.
HPLC Tr (min), purity %: 7.17, 99%
283
A mixture of intermediate 66 (52 mg, 0.094 mmol), tributyl(prop-l-ynyl)stannane (0.035 mL, 0.154 mmol), and Pd(PPh3)4 (69.8 mg, 0.060 mmol) in 2 mL of anhydrous dioxane was heated at 100 °C overnight under argon. Reaction mixture was cooled to room temperature and concentrated under reduced pressure. Residue was purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 110 (13 mg, 19%) as a yellow solid, trifluoroacetate salt, after lyophilization. ‘H-NMR (DMSO, 400 MHz): δθ 9.45 (s, 1H) 7.65-7.40 (m, 3H), 6.41 (s, 1H), 6.08 (s, 1H), 3.81 (m, 5H), 3.58 (m, 1H), 3.44 (m, 1H), 3.20 (m, 2H), 3.09 (m, 2H), 3.05 (s, 3H), 2.42 (m, 2H),2.17(s, 3H), 2.11 (m, 1H), 1.55 (m, 3H).
LCMS m/z [M+H]+ C26H29C1N6O4S requires: 557.15. Found 557.14.
HPLC Tr (min), purity %: 5.89,94%
Intermediate 92
MeSO2CI, pyr. CH2CI2, rt
To a solution of methyl 3-amino-5-methylthiophene-2-carboxylate (497 mg, 2.91 mmol) and pyridine (0.71 mL, 8.77 mmol) in 10 mL of anhydrous CH2CL2, was added slowly methane sulfonylchloride (0.7 mL, 9.06 mmol). After stirring overnight, reaction mixture was quenched with 30 mL of IN HCI (aqj. Aqueous mixture was extracted with ethyl acetate (3x40 mL) and combined organic layers were washed with sat. CuSC>4(aq) and then brine. Organics were dried
284 (MgSO<), filtered, and concentrated under reduced pressure to yield intermediate 92 (707 mg, 98%) as a peach colored solid that was used in the next step without further purification.
*H-NMR (CDClj, 400 MHz): ÔD 9.41 (s, 1H), 7.11 (s, IH), 3.85 (s,3H), 3.06 (s, 3H), 2.49 (s, 3H).
LCMS m/z [M+H]+ CgHnNChSi requires: 250.01. Found 250.09
Intermediate 93
LiOH-H2O, THF
H2O,60 °C
Lithium hydroxide monohydrate (1.0 g, 23.8 mmol) was added to a solution of intermediate 92 (695 mg, 2.8 mmol) in 25 mL of THF and 14 mL of water at room temperature. Reaction mixture was heated at 60 °C for one hour. After cooling to room temperature, reaction mixture was acidified with 70 mL of IN HCI (aq) and extracted with ethyl acetate (3x50 mL). The combined organic layers were washed 80 mL of Brine, separated, dried (MgS 0/.), filtered, and concentrated under reduced pressure to yield intermediate 93 as a yellow-white solid (650 mg, 99%).
'H-NMR (DMSO, 300 MHz): δΠ 9.55 (s, IH), 7.04 (s, IH), 3.20 (s, 3H), 2.45 (s, 3H)
LCMS m/z [M+H]' C7H9NO4S2 requires: 234.00. Found 234.02
Compound 111
O
NHSO2Me
HATU, TEA, DMF, rt
285
Following the procedure for the synthesis of compound 104, beginning with intermediate 31 (77.1 mg, 0.329 mmol) and a 0.5 M DMF solution of intermediate 93 (0.5 mL, 0.25 mmol), compound 116 was synthesized as an off-white solid, trifluoroacetate salt, after lyophilization. (91 mg, 62%).
’H-NMR (DMSO, 300 MHz): 5D 9.63 (s, IH), 6.86 (s, IH), 6.39 (s, IH), 5.39 (s, IH), 4.15 (m, IH), 3.05 (s, 3H), 3.04 (m, 2H), 2.63 (s, 3H), 2.39 (s, 3H), 2.37 (m, IH), 2.14 (m, IH), 1.97 (m, IH), 1.61-1.40 (m, 4H), 1.03 (m,4H).
LCMS m/z [M+H]+ C22H27N5O3S2 requires: 474.16. Found 474.10.
HPLC Tr (min), purity %: 7.18, 99%
Intermediate 94 o
O
Pd2(dba)3, Xanphos CS2CO3, Dioxane, 100°C
To an oven dried 25 mL round-bottom flask, methyl 2-bromo-5-methylbenzoate (356 mg, 1.55 mmol), 2-pyrrolidinone (0.15 mL, 1.95 mmol), cesium carbonate (739 mg, 2.27 mmol), Pd2(dba)3 (70.0 mg, 0.076 mmol), and Xanphos (134 mg, 0.231 mmol) were added and flask was placed under argon. Reagents were suspended in 8 mL of anhydrous dioxane and mixture was heated at 100 °C overnight. After cooling to room temperature, reaction mixture was filtered, washing with ethyl acetate. Combined filtrate was concentrated under reduced pressure and resulting film was purified by silica gel column chromatography (50-100% Ethyl Acetate in Hexanes) to yield intermediate 94 (335 mg, 92%) as a light yellow solid.
'H-NMR (CDCI3, 400 MHz): ÔD 7.77 (d, IH), 7.37 (m, IH), 7.15 (m, IH), 3.86 (s, 3H), 3.81 (t, 2H), 2.56 (t, 2H), 2.38 (s, 3H), 2.22 (m, 2H).
LCMS m/z [M+H]+ Cj3Hi5N€>3 requires; 234.11. Found 234.26.
286
Intermediate 95
Lithium hydroxide monohydrate (305 mg, 7.26 mmol) was added to a solution of intermediate 94 (235 mg, 1.01 mmol) in 6 mL of 1:1:1 THF:MeOH:H2O at room temperature. Reaction mixture was heated at 60 °C for two hours. After cooling to room temperature, reaction mixture was acidified with 15 mL of IN HC1 (aqj and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed 50 mL of Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 95 as a light yellow solid (199 mg, 90%).
‘H-NMR (DMSO, 400 MHz): δθ 12.7 (s, IH), 7.58 (d, J=2Hz,lH), 7.38 (dd, J=8.2Hz, 2Hz, IH), 7.20 (d, J=8.2Hz, IH), 3.69 (t, J=6.4 Hz, 2H), 2.32 (s, 3H), 2.30 (t, >8.4 Hz, 2H), 2.07 (m, 2H).
LCMS m/z [M+H]’ C12H13NO3 requires: 218.09. Found 218.17.
Compound 112
Following the procedure for the synthesis of compound 99, beginning with intermediate 95 (57.3 mg, 0.261 mmol) and a 0.5 M DMF solution of intermediate 31 (0.4 mL, 0.20 mmol),
287 compound 112 was synthesized as a white solid, trifluoroacetate salt, after lyophilization. (29 mg, 28%).
‘H-NMR (DMSO, 400 MHz): ÔD 7.31 (m, 3H), 6.42 (d, 1H), 6.00 (dd, 1H), 3.71 (m, 3H), 3.44 (m, 1H), 3.11 (m, 1H), 2.66 (s, 3H), 2.41 (m, 4H), 2.13 (s, 3H), 2.11 (m, 1H), 1.91 (m, 1H), 1.62-1.35 (m, 5H), 1.03 (m, 4H).
LCMS m/z [M+H]+ C27H31N5O2 requires: 458.25. Found 458.46.
HPLC Tr (min), purity %: 6.31, 99%
Intermediate 96
Pd(OAc)2, Xanphos Cs2CO3, Dioxane, 100°C
O
To an oven dried 50 mL round-bottom flask, methyl 2-bromo-5-methylbenzoate (352 mg, 1.54 mmol), sultam (236 mg, 1.95 mmol), cesium carbonate (732 mg, 2.25 mmol), palladium acetate (40.4 mg, 0.18 mmol), and Xanphos (136 mg, 0.235 mmol) were added and flask was placed under argon. Reagents were suspended in 8 mL of anhydrous dioxane and mixture was heated at 100 °C overnight. After cooling to room temperature, reaction mixture was filtered, washing with ethyl acetate. Combined filtrate was concentrated under reduced pressure and resulting film was purified by silica gel column chromatography (25-100% Ethyl Acetate in Hexanes) to yield intermediate 96 (322 mg, 78%) as a yellow off-white solid. ‘H-NMR (DMSO, 400 MHz): δθ 7.75 (d, 1H), 7.44 (m, 1H), 7.35 (m, 1H), 3.89 (s, 3H), 3.81 (t, 2H), 3.28 (t, 2H), 2.55 (m, 2H), 2.39 (s, 3H).
LCMS m/z [M+Hf C!2H]5NO4S requires: 270.07. Found 270.12.
Intermediate 97
288
LiOH-H2O
THF/HjO, 60 °C
Lithium hydroxide monohydrate (496 mg, 11.8 mmol) was added to a solution of intermediate 96 (316 mg, 1.17 mmol) in 22 mL of THF and 12 mL of water at room temperature. Reaction mixture was heated at 60 °C for two hours. After cooling to room temperature, reaction mixture was acidified with 40 mL of IN HC1 (aq> and extracted with ethyl _____ <1 acetate (3 x 30 mL). The combined organic layers were washed 50 mL of Brine, separated, dried (MgSCU), filtered, and concentrated under reduced pressure to yield intermediate 97 as a off-white solid (293 mg, 98%).
'H-NMR (DMSO, 400 MHz): δϋ 12.9 (s, IH), 7.57 (d, >1.6 Hz, IH), 7.41-7.34 (m, 2H), 3.66 (t, J=6.8 Hz, 2H), 3.28 (m, 2H), 2.37 (m, 2H), 2.33 (s, 3H).
LCMS m/z [M+H]' C11H13NO4S requires: 254.06. Found 254.18.
Compound 113
Following the procedure for the synthesis of compound 99, beginning with intermediate 31 (84.8, 0.332 mmol) and a 0.5 M DMF solution of intermediate 97 (0.5 mL, 0.25 mmol), compound 113 was synthesized as a white solid, trifluoroacetate salt, after lyophilization. (93 mg, 61%).
289
H-NMR (DMSO, 400 MHz): SO 8.8l (s, ÎH), 7.48 (m, 1H), 7.31 (m, 1H), 7.24 (m, 1H), 6.87 (d, ÎH), 6.60 (s, 1H), 6.46 (d, 1H), 6.01 (dd, 1H), 3.84-3.64 (m, 1H), 3.54-3.28 (m,4H), 3.12 (m, 1H), 2.66 (s, 3H), 2.36 (s, 3H), 2.26 (m,lH), 1.84-1.55 (m, 5H), 1.03 (m,5H)
LCMS m/z [M+H]+ C26H31N5O3S requires: 494.21. Found 494.07
HPLC Tr (min), purity %: 6.74, 99%
Compound 114
Following the procedure for the synthesis of compound 99, beginning with 5-amino-2(methylsulfonamido)benzoic acid (45.5 mg, 0.198 mmol) and a 0.5 M DMF solution of intermediate 31 (0.30 mL, 0.15 mmol), compound 114 was synthesized as a white solid, tri fluoroacetate salt, after lyophilization. (60.2 mg, 69%).
'H-NMR (DMSO, 400 MHz): ÔD 8.75 (s, 1H), 7.19 (m, 1H), 6.84 (m, 3H), 6.4 (d, 2H), 6.01 ( s, 1H), 3.39(m, lH),3.18(m, 1H), 2.97 (s, 3H), 2.68 (s, 3H),2.12(m, 1H), 1.86(m, 1H), 1.61(m, 2H), 1.46 (m, 3H), 1.04 (m, 5H)
LCMS m/z [M+H]+ C23H28N6O3S requires: 469.19. Found 469.14.
HPLC Tr (min), purity %: 5.20, 99%
Intermediate 98
290
To a solution of methyl 2-amino-5-ethylbenzoate (569 mg, 3.18 mmol) and pyridine (0.70 mL, 8.72 mmol) in 15 mL of anhydrous CH2CL2, was added slowly methane sulfonyl chloride (0.71 mL, 9.12 mmol). After stirring overnight, reaction mixture was quenched with 30 mL of IN HC1 (aq). Aqueous mixture was extracted with ethyl acetate (3x40 mL) and combined organic layers were washed with IN HC1 (aq) and then brine. Organics were dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 98 (785 mg, 96%) as a brown oily residue that was used in the next step without further purification. LCMS m/z [M+H]+ C]iHi5NO4S requires: 258.07. Found 258.20.
Intermediate 99
NaOH(aq)1 THF, rt
A 1.0 M solution of NaOH in water (16 mL, 16 mmol) was added to a solution of intermediate 98 (817 mg, 3.19 mmol) in 30 mL of THF with strong stirring. Reaction mixture was stirred at room temperature for twenty four hours. Mixture was then acidified with 40 mL of IN HCl(aq) and extracted with ethyl acetate (3 x 60 mL). The combined organic layers were washed 100 mL of Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 99 as a tan solid (714 mg, 92%).
'H-NMR (DMSO, 400 MHz): ÔD 13.8 (s, 1H), 10.5 (s, 1H), 7.82 (d, J=l,2 Hz, 1H), 7.48 (m, 2H), 3.13 (s, 3H), 2.59 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 7.2 Hz, 3H).
LCMS m/z [M+H]' CiqHi3NO4S requires: 242.06. Found 242.10.
Compound 115
291
Following the procedure for the synthesis of compound 99, beginning with intermediate (60.1 mg, 0.247 mmol) and the bis-hydrochloride salt of intermediate 99 (57 mg, 0.173 mmol), compound 115 was synthesized as a white solid, tri fluoroacetate salt, after lyophilization. (67.8 mg, 66%).
’H-NMR (DMSO, 400 MHz): δϋ 8.90 (s, IH), 7.26 (m, 3H), 6.89 (s, IH), 6.49 (d, IH), 3.403.17 (m, IH), 3.00 (s, IH), 2.68 (s, 3H), 2.67 (m, IH), 2.42 (m, IH), 2.12 (m, IH), 1.91 (m, IH), 1.67-1.33 (m, 4H), 1.20 (t,2H, J=8Hz), 1.04 (m, 5H), 1.01 (s, 3H)
LCMS m/z [M+H]+ C25H3]NsO3S requires: 482.21. Found 482.38
HPLC Tr (min), purity %: 7.54, 99%
Compound 116
Following the procedure for the synthesis of compound 99, beginning with intermediate (101 mg, 0.416 mmol) and the bis-hydrochloride salt of intermediate 6 (106 mg, 0.333 mmol), compound 116 was synthesized as a white solid, trifluoroacetate salt, after lyophilization (99.3 mg, 50%).
c
292 lH-NMR (DMSO, 300 MHz): δα 12.1 (s, IH), 9.15 (s, IH), 7.25 (hi, 3H), 5.97 (s, IH), 4.314.15 (m, 3H), 3.39 (m, IH), 3.12 (s, 3H), 3.11 (m, IH), 2.64 (m, IH), 2.42 (m, IH), 2.30 (s, 3H),
1.95 (s, 3H), 1.94 (m, IH), 1.65 (m, IH), 1.46-1.21 (q, 2H), 1.18 (t, 3H)
LCMS m/z [M+H]+ C23H29N5O4S requires: 472.20. Found 472.40.
HPLC Tr (min), purity %: 5.73, 99%
10
Intermediate 100
HO HO
MeSO2CI, Na2CO3 Λ -O
/\ H2O, rt /=<
F”VJ^NH2 -NH
/ F / F & O O
Sodium carbonate (4.1 g, 38.7 mmol) was added to a mixture of 2-amino-4,515 difluorobenzoic acid (704 mg, 4.07 mmol) in 6 mL of water. Methane sulfonyl chloride (2.5 mL,
32.5 mmol) was added slowly (delayed exotherm). Reaction mixture was stirred at room temperature. Sodium carbonate (3.5 g) was added after one hour to maintain pH > 8. HPLC indicates -85% conversion to desired product. Methane sulfonyl chloride (0.5 mL) was added and after one hour, reaction mixture was carefully quenched with IN HCl(aqjuntil pH <2.
Aqueous was extracted with ethyl acetate (3x60 mL) and combined organic layers were washed with brine, dried (MgSO4), filtered, and concentrated to yield an off white solid. This solid was suspended in a minimal amount of di chi orom ethane, stirred for 20 min, filtered, and dried invacuo to yield intermediate 100 (586 mg, 60%) as a creamy white solid.
*H-NMR (DMSO, 400 MHz): ÔD 10.6 (s, IH), 7.97 (m, IH), 7.53 (m, IH), 3.24 (s, 3H)
LCMS m/z [M+H]+ CgH7F2NO4S requires: 252.01. Found 252.09.
Compound 117
293
HATU TEA DMF, rt
Following the procedure for the synthesis of compound 99, beginning with intermediate 100 (53.2 mg, 0.212 mmol) and a 0.5 M DMF solution of intermediate 31 (0.30 mL, 0.15 mmol), compound 117 was synthesized as a white solid, tri fluoroacetate salt, after lyophilization. (53 mg, 59%).
‘H-NMR (DMSO, 400 MHz): δΠ 9.29 (s, IH), 7.63 (m, IH), 7.47 (m, IH), 6.89 (s, IH), 6.54 (d, lH),3.34(m, lH),3.21(m, IH), 3.08 (s, IH), 2.67 (s, 3H),2.12(m, IH), 2.08-1.96 (m, IH), 1.65-1.35 (m, 5H), 1.03 (m, IH)
LCMS m/z [M+H]+ C23H25F2N5O3S requires: 490.16. Found 490.03
HPLC Tr (min), purity %: 7.28, 99%
Compound 118
O
Following the procedure for the synthesis of compound 99, beginning with (R)-2(m ethoxycarbonyl am ino)-2-phenylacetic acid (45.1 mg, 0.216 mmol) and a 0.5 M DMF solution of intermediate 31 (0.30 mL, 0.15 mmol), compound 118 was synthesized as a 1:1 mixture of diasteromers as a white solid, trifluoroacetate salt, after lyophilization. (69 mg, 82%).
294
Ή-NMR (DMSO, 400 MHz): δα 7.65 (d, 1Η), 7.42 (m, 5H), 6.84 (m, IH), 5.94 (m, IH), 5.70 (m, IH), 4.41 (m, IH), 3.8l(m, IH), 3.53 (s, 3H), 2.98 (tt, 1H), 2.63 (s, 3H), 2.37 (m, 1H), 2.14 (m, IH), 1.55 (m,4H), 1.31 (m, IH), 1.03 (m,4H).
LCMS m/z [M+H]+ C25H29N5O3 requires: 448.23. Found 448.20.
HPLC Tr (min), purity %: 6.83, 6.96, 1:1 mixture of diastereomers, 99%
Intermediate 101
A solution of (S)-2-amino-2-phenyl propanoic acid (246.2 mg, 1.49 mmol) and 0.6 mL of concentrated H2SO4 in 6 mL of anhydrous methanol was heated overnight. After cooling to room temperature, methanol was concentrated under reduced pressure. Residue was taken up in 20 mL of water and added to a separatory funnel. Solid sodium carbonate was added slowly until gas evolution ceased (pH 9-10). Aqueous layer was extracted with ethyl acetate (3x30 mL). The combined organic layers were washed with 80 mL sat. NaHCO3(aq) and 80 mL of Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 101 (117 mg, 44%) as a yellow-green oily residue.
'H-NMR (DMSO, 400 MHz): ÔÜ 7.44 (m, 2H), 7.32 (m, 2H), 7.24 (m, 1H), 3.59 (s, 3H), 2.37 (s, 2H), 1.51 (s,3H)
LCMS m/z [M+H]+ CioHi3N02 requires: 180.09. Found 180.19.
Intermediate 112
To a solution of intermediate 10Ï (116 mg, 0.647 mmol) and pyridine (0.16 mL, 1.98 mmol) in 4 mL of anhydrous CH2CL2, was added slowly methane sulfonylchloride (0.070 mL, 0.91 mmol). After stirring overnight, reaction mixture was quenched with 20 mL of IN HCI (aq).
295
Aqueous mixture was extracted with ethyl acetate (3x20 mL) and combined organic layers were washed with IN HCI (aq) and then brine. Organics were dried (MgSO/), filtered, and concentrated under reduced pressure to yield intermediate 102 (312 mg, 97%) as a yellow-green oily residue that was used in the next step without further purification.
LCMS m/z [M+H]+ CuHjjNC^S requires: 258.08. Found 258.19
Intermediate 113
Li0H-H2O.
THF, MeOH,H2O, rt
Lithium hydroxide monohydrate (169 mg, 4.02 mmol) was added to a solution of intermediate 102 (102 mg, 0.397 mmol) in 6 mL of 1:1:1 THF:MeOH:H2O at room temperature. Reaction mixture was stirred overnight and then was acidified with 15 mL of IN HCI (aq) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed 50 mL of Brine, separated, dried (MgSCh), filtered, and concentrated under reduced pressure to yield intermediate 103 as a light green film (93.6 mg, 97%).
LCMS m/z [M+H]’ C]oHi3N04S requires: 242.06. Found 242.10.
Compound 119
Following the procedure for the synthesis of compound 99, beginning with a 0.082 DMF solution of intermediate 103 (2.5 mL, 0.205 mmol) and a 0.5 M DMF solution of intermediate
296 (0.30 mL, 0.15 mmol), compound 119 was synthesized as a white solid, trifluoroacetate salt, after lyophilization. (6.2 mg, 7%).
'H-NMR (DMSO, 300 MHz): δα 7.51-7.35 (m, 5H), 6.85 (s, IH), 6.45 (s, IH), 6.00 (s, IH),
3.64 (m,3H),2.63 (s, 3H), 2.52 (s, 3H), 2.32 (m,2H),2.11 (m, IH), 1.92 (s, 3H), 1.65 (m, IH), 1.38 (m,2H), 1.05 (m, 5H)
LCMS m/z [M+H]+ C25H31N5O3S requires: 482.21. Found 482.12.
HPLC Tr (min), purity %: 7.22, 85%
Intermediate 104
A solution of 2-amino-5-chioro-3-methylbenzoic acid (928 mg, 4.99 mmol) and 2.0 mL of concentrated H^S/Lin 15 mL of anhydrous methanol was heated for 66 hours. After cooling to room temperature, methanol was concentrated under reduced pressure. Residue was taken up in 50 mL of water and added to a separatory funnel. Solid sodium carbonate was added slowly until gas evolution ceased (pH 9-10). Aqueous layer was extracted with ethyl acetate (3x50 mL). The combined organic layers were washed with 100 mL sat. NaHCCfyaq) and 100 mL of Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 104 (817 mg, 83%) as a brown solid, which was used without further purification. 'H-NMR (CDCI3, 300 MHz): δα 7.75 (d, J = 2.7 Hz, IH), 7.17 (d, J = 2.7Hz, IH), 5.83 (br s, 2H),3.88(s, 3H), 2.16 (s, 3H)
LCMS m/z [M+H]+ C9H10CINO2 requires: 200.04. Found 200.10
Intermediate 105
297
To a solution of intermediate 104 (392 mg, 1.97 mmol) and pyridine (0.45 mL, 5.68 mmol) in 9 mL of anhydrous CH2CL2, was added slowly methane sulfonylchloride (0.46 mL, 5.66 mmol). After stirring overnight, an addition 0.7 mL of pyridine and methane sulfonyl chloride were each added reaction mixture stirred for two hour. It was then quenched with 30 mL of IN HC1 (aq). Aqueous mixture was extracted with ethyl acetate (3x40 mL) and combined organic layers were washed with IN HC1 (3q) and then brine. Organics were dried (MgSOfr, filtered, and concentrated under reduced pressure to yield a light yellow film. Silica gel column chromatography (0-50% Ethyl Acetate in Hexanes) yielded intermediate 105 (330, 60%) as a light yellow solid.
’H-NMR (CDCI3, 300 MHz): ÔÜ 8.47 (s, IH), 7.86 (d, J = 2.4 Hz, IH), 7.50 (d, J = 2.4 Hz, IH), 3.96 (s, 3H), 2.90 (s, 3H), 2.53 (s, 3H)
LCMS m/z [M+H]+ CjoH^ClNOqS requires: 278.03. Found 278.08
Intermediate 106
Lithium hydroxide monohydrate (228 mg, 5.43 mmol) was added to a solution of intermediate 105 ¢120 mg, 0.433 mmol) in 3 mLof 1:1:1 THF:MeOH:H2O at room temperature. Reaction mixture was heated at 50 °C for four hours. After cooling to room temperature, reaction mixture was acidified with 20 mL of IN HC1 (aq) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed 50 mL of Brine, separated, dried (MgSCL), filtered, and concentrated under reduced pressure to yield intermediate 106 as a white solid (114 mg, 100%).
298
Ή-NMR (DMSO, 300 MHz): δα 9.2 (s, IH), 7.59 (m, 2H), 2.96 (s, 3H), 2.37 (s, 3H)
LCMS m/z [M+H]’ C9H10CINO4S requires: 264.00. Found 264.09
Compound 120
Following the procedure for the synthesis of compound 99, using intermediate 106 (67.3 mg, 0.252 mmol) and intermediate 6 (61.6 mg, 0.193 mmol), compound 120 was synthesized as an off-white solid, trifluoroacetate salt, after lyophilization. (49 mg, 43%).
’H-NMR (DMSO, 300 MHz): ÔÜ 12.1 (s, lH),9.0(s, IH) 7.46-7.2 (m, 2H), 6.10 (s,lH), 5.91 (s, IH), 4.05 (m, IH), 3.21 (m, IH), 3.11 (s, 3H), 2.45 (m, IH), 2.40 (s, 3H), 2.30 (s, 3H), 1.99 (s, 3H), 1.65-1.27 (m, 4H)
LCMS m/z [M+H]+ C22H26CIN5O4S requires: 492.14 Found 492.09
HPLC Tr (min), purity %: 5.67, 99%
Intermediate 107
HO 3 -O HO :O
f-O NBS, DMF, rt -NH --------- S— 0 0 f <4 Br -NH O O
N-Bromosuccinimide (919 mg, 3.32 mmol) was added to a solution of 5-fluoro-2(methylsulfonamido)benzoic acid (701 mg, 3.01 mmol) in 11 mLof anhydrous DMF. After stirring overnight, reaction mixture was poured into 100 mL of water and 50 mL of brine and extracted with ethyl acetate (3x100 mL). Combined organic layers were washed with 300 mL of
299
1:1 watcr.bnnc, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 107 (910 mg, 97%).
1 H-NMR (DMSO, 400 MHz): δα 11.1 (s, 1H), 9.50 (s, 1H), 7.90 (d, >3.6 Hz, 1H), 7.56 (d, >3.6 Hz, 1H), 4.70 (br s, 1H),4.39 (t, J =10.2 Hz, 1H), 3.28 (d, J = 14.1 Hz, 1H), 3.01 (s, 3H) LCMS m/z [M+H]’ Cg^BrFNC^S requires: 309.93. Found 309.97
Compound 121
HATU TEA DMF, rt
Following the procedure for the synthesis of compound 99, beginning with intermediate 107 (61.2 mg, 0.196 mmol) and a 0.5 M DMF solution of intermediate 31 (0.30 mL, 0.15 mmol), compound 121 was synthesized as a white solid, trifluoroacetate salt, after lyophilization. (69.3 mg, 70%).
LCMS m/z [M+H]+ C23H25BrFN5O3S requires: 550.08. Found 550.04.
HPLC Tr (min), purity %: 6.93, 99%
Intermediate 108
0 o
Ί MeSO2CI, CH2CI2 [ | O Pyridine, rt ΒΊ
'^^x'NHSO2Me
To a solution of methyl 2-amino-5-bromobenzoate (7.38 g, 32.0 mmol) and pyridine (6.3 mL, 81.5 mmol) in 100 mL of anhydrous CH2CL2, was added slowly methane sulfonyl chloride
300 (6.5 mL, 79.9 mmol). After stirring overnight, reaction mixture was quenched with 100 mL of IN HC1 (aq). Aqueous mixture was extracted with ethyl acetate (3x120 mL) and combined organic layers were washed 200 mL brine. Organics were dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 108 as an off white solid. Silica gel column chromatography (0-30% Ethyl Acetate in Hexanes), yielded intermediate C-C (9.35 g, 95 %) as a white off-white solid.
’H-NMR (CDCI3, 300 MHz): ÔD 10.4 (s, IH), 8.22 (s, IH), 7.63 (s, 2H), 3.96 (s, 3H), 3.05 (s, 3H)
LCMS m/z [M+H]+ C9HioBrN04S requires: 307.95. Found 308.06
Intermediate 109
A 2.65 M solution of NaOH in water (2.65 mL, 7.02 mmol) was added to a solution of intermediate 108 in 9 mL of THF with strong stirring. Reaction mixture was stirred at room temperature over night. Mixture was then acidified with 10 mL of IN HC1 and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed 30 mL of Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 109 as a white solid (338 mg, 98%).
’H-NMR (DMSO, 300 MHz): ÔD 10.6 (s, IH), 8.05 (s, IH), 7.79 (d, IH), 7.55 (d, 1H), 3.18 (s, 3H)
LCMS m/z [M+H]· C8HsBrNO4S requires: 291.94. Found 291.90
Compound 122
HATU TEA DMF, rt
Following the procedure for the synthesis of compound 99, beginning with intermediate 109 (58.6 mg, 0.199 mmol) and a 0.5 M DMF solution of intermediate 31 (0.30 mL, 0.15 mmol), compound 122 was synthesized as an white solid, trifluoroacetate salt, after lyophilization. (71 mg, 73%).
'H-NMR (DMSO, 400 MHz): ÔD 9.39 (s, 1H), 7.61 (m, 2H), 7.40 (m, 1H), 6.92 (s, 1H), 6.53 (d, 1H), 6.01 (s, 1H), 4.44 (m, 1H), 3.25 (m, 1H), 3.04 (s, 3H), 2.79 (m, 1H), 2.68 (s, 3H), 2.40-1.91 (m, 3H), 1.64-1.25 (m, 4H), 1.02 (m, 3H).
LCMS m/z [M+H]+ C23H25BrNsO3S requires: 532.09. Found 532.05.
HPLC Tr (min), purity %: 7.52, 99%
Compound 123
Following the procedure for the synthesis of compound 13, using intermediate 109 (85.2 mg, 0.290 mmol) and intermediate 6 (73.1 mg, 0.229 mmol), compound 123 was synthesized as a white solid, trifluoroacetate salt, after lyophilization. (83 mg, 57%).
302 *H-NMR (DMSO, 300 MHz): ÔD 12.1 (s, 1H), 9.61 (s, 1H), 9.30 (m, 1H), 7.65 (m, 2H), 7.38 (m, 1H), 6.01 (m, 1H), 3.08 (m, 1H), 3.05 (s, 3H), 2.39 (m, 1H), 2.34 (s, 3H), 1.99 (s, 3H), 1.97 (m, 1H), 1.84-1.45 (m, 4H)
LCMS m/z [M+H]+ C2iH24BrNsO4S requires: 522.07. Found 522.25
HPLC Tr (min), purity %: 5.81, 99%
Compound 124
HATU (52.4 mg, 0.138 mmol) was added to a solution of 5-methyl-2(methylsulfonamido)benzoic acid (26.8 mg, 0.117 mmol) in 2.1 mL of anhydrous DMF at room temperature. After 45 min of stirring, intermediate 28 (30.4 mg, 0.091 mmol) was added followed immediately by triethylamine (0.044 mL, 0.315 mmol). Reaction mixture stirred at room temperature overnight under argon. Mixture was then poured into 20 mL of H2O and 10 mL of brine and extracted three times with 20 mL of ethyl acetate. The combined organic layers were washed with 60 mL of 1:1 water:brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% tri fluoroacetic acid)) to yield compound 129 (34.3mg, 65%) as a white solid, tri fluoroacetate salt, after lyophilization.
*H-NMR (DMSO, 300 MHz):ôü 9.08 (s, 1H),8.68 (s, 1H), 7.30-7.21 (m, 2H), 7.13 (m, 1H), 6.39 (s, 1H), 6.00 (s, 1H), 3.40 (in, 1H), 3.11 (m, 1H), 3.01 (s, 3H), 2.91 (m, 1H), 2.33 (s, 3H), 2.30 (m,2H), 2.20 (s, 3H),2.17(m, 1H), 1.94 (m, 1H), 1.75-1.38 (m, 5H).
LCMS m/z [M+H]+ CsjHjqNgOsS requires: 471.21. Found 471.42.
303
HPLC Tr (min), purity %: 5.03, 99%
Compound 125
Following the procedure for the synthesis of compound 13, using 5-methyl-2(methylsulfonamido)benzoic acid (96.1 mg, 0.419 mmol) and intermediate 6 (101 mg, 0.317 mmol), compound 125 was synthesized as a white solid, tri fluoroacetate salt, after lyophilization (113 mg, 63%).
*H-NMR (CDC13, 300 MHz): ÔÜ 10.3 (s, lH),8.94(s, IH) 7.55-7.40 (m, IH), 7.35-7.18 (m, 2H), 6.01 (s,lH), 5.74 (brm, 2H), 3.51 (m, 2H), 3.38 (s, 3H), 2.38 (s, 3H), 2.23 (s, 3H), 2.21 (m, IH) 1.99 (s, 3H) 1.97 (m, IH), 1.80-1.2 (m, 3H)
LCMS m/z [M+H]+ C22H27N5O4S requires: 458.18. Found 458.12
HPLC Tr (min), purity %: 5.33,95%
Compound 126
304
Following the procedure for the synthesis of compound 13, using 5-chloro-2(methylsulfonamido)benzoic acid (140 mg, 0.562 mmol) and intermediate 6 (138 mg, 0.433 mmol mg, 0.317 mmol), compound 126 was synthesized as a white solid, trifluoroacetate salt, after lyophilization (184 mg, 73%).
*H-NMR (DMSO, 300 MHz): δΠ 12.1 (s, IH), 9.59 (s, IH) 7.51 (m, 3H), 6.05 (s,lH), 5.90 (s, IH), 4.05(m, lH),3.31(m, 1H),3.25 (s,3H), 2.40 (m, lH),2.35(s, 3H), 1.99 (s, 3H), 1.97(m, IH), 1.75-1.30 (m, 4H)
LCMS m/z [M+H]+ C21H24CIN5O4S requires: 478.12. Found 478.07
HPLC Tr (min), purity %: 5.67, 99%
Intermediate 110
N-chlorosuccinimide (528 mg, 3.95 mmol) was added to a solution of 5-fluoro-2(methylsulfonamido)benzoic acid (705 mg, 3.03 mmol) in 9 mL of anhydrous DMF. After stirring overnight, reaction mixture was poured into 100 mL of water and 50 mL of brine and extracted with ethyl acetate (3x100 mL). Combined organic layers were washed with 300 mL of 1:1 water:brine, dried (MgSCb), filtered, and concentrated under reduced pressure to yield intermediate 110 (746 mg, 93%).
'H-NMR (DMSO, 400 MHz): δΠ 9.5 (s, IH), 7.76 (dd, JHf = 8 Hz, JHH = 3 Hz, IH), 7.52 (dd, JHF = 8 Hz, Jhh = 3 Hz, 1H),3.O1 (s, 3H)
LCMS m/z [M+H] CgHîClFbKhS requires: 265.98. Found 265.09
Compound 127
305
HO
Following the procedure for the synthesis of compound 13, intermediate 110 (109 mg, 0.410 mmol) and intermediate 6 (102 mg, 0.318 mmol), compound 127 was synthesized as a white solid, tri fluoroacetate salt, after lyophilization. (77 mg, 40%).
’H-NMRtCDCh, 300 MHz): δα 12.1 (s, 1H) 9.35 (s, 1H), 7.7-7.2 (m, 2H), 6.17 (s, 1H), 5.95 10 (s, 1H), 4.27 (br s, IH), 3.23 (m, 1H), 3.17 (s, 3H), 2.39 (m, 1H), 2.30 (s, 3H), 2.08 (m, 1H),
1.97 (s, 3H), 1.94 (m, IH), 1.65-1.25 (m, 5H)
LCMS m/z [M+H]+ C?]E L jClFN/'LS requires: 496.11. Found 496.02
HPLC Tr (min), purity %: 5.64, 90%
Compound 128
HATU (25.8 mg, 0.0678 mmol) was added to a solution of 5-methyl-2(methylsulfonamido)benzoic acid (13.2 mg, 0.058 mmol) in 1.0 mL of anhydrous DMF at room 20 temperature. After 45 min of stirring, Boc- deprotected intermediate 25 (12.2 mg, 0.044 mmol) was added followed immediately by triethylamine (0.020 mL, 0.150 mmol). Intermediate 25 was BOC-deprotected using the procedure cited in the preparation of intermediate 28. Reaction mixture stirred at room temperature overnight under argon. Mixture was then poured into 20
306 mL of H2O and 10 mL of brine and extracted three times with 20 mL of ethyl acetate. The combined organic layers were washed with 60 mL of 1:1 water:brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 128 (12.8 mg, 54%) as a white solid, tri fluoroacetate salt, after lyophilization.
'H-NMR (DMSO, 300 MHz): ÔÜ 8.91 (s, IH) 7.40-7.15 (m, 3H), 6.47 (d, IH), 6.05 (s, IH), 4.82 (m, 2H), 4.51 (m, IH), 3.42 (m, IH), 3.23 (m, IH), 3.03 (s, 3H), 2.73 (s, 3H), 2.41 (m, IH), 2.35 (s, 3H), 2.26 (s, 3H), 1.95 (m, IH), 1.57 (m, 4H)
LCMS m/z [M+H]+ C23H29N5O3S requires: 456.20. Found 456.47.
HPLC Tr (min), purity %: 6.47, 98%.
Compound 129
Et3N. MeOH
To a solution of intermediate 73 (15.0 mg, 0.03 mmol) in MeOH (400 pL) was added 3m ethyl azetidine benzenesulfonic acid salt (95.0 mg, 0.41 mmol) and triethylamine (112 pL, 0.82 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 2 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 129 (18.3 mg, 93 %) as a white solid tri fluoroacetate salt.
*H NMR (CD3OD, 400MHz): d 8.81-8.56 (m, IH), 7.75-7.60 (m, IH), 7.55-7.37 (m, 2H), 6.16-6.05 (br s, IH), 5.90 (s, IH), 4.71^1.38 (m, 2H), 4.20-3.87 (m, 2H), 3.18-3.07 (m, 2H), 2.95 (br s, 3H), 2.43-2.33 (m, IH), 2.27 (br s, 3H), 2.26-2.18 (m, IH), 2.09-1.94 (m, IH), 1.811.42 (m, 4H), 1.34 (br d, J = 5.6 Hz, 3H).
307
LCMS (ESI) miz 517.35 [M + H]+, = 3.15 min.
HPLC iR (min), purity %: 4.53, 99%.
Intermediate 111
HCI
NaHCO3 MeCN, HZO
NHBoc
tert-butyl azetidin-3-ylcarbamate hydrochloride (62.3 mg, 0.30 mmol) and sodium bicarbonate (50.3 mg, 0.60 mmol) were added to a solution of intermediate 56 (150 mg, 0.30 mmol) in acetonitrile (0.85 mL) and water (0.85 mL) and the reaction mixture was stirred at room temperature. After 18 h, the reaction mixture was partitioned between ethyl acetate (50 mL) and water (50 mL), and the layers were separated. The organic layer was washed with saturated aqueous sodium bicarbonate solution (50 mL) and saturated sodium chloride solution (50 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (12 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 111 (166.8 mg, 87%) as a light yellow solid.
LCMS (ESI) m!z 638.12 [M + H]+, tR = 2.99 min.
HPLC /r (min), purity %: 5.61, 89%.
Rf = 0.65 (75% EtOAc/hexanes).
Intermediate 112
C
308
To a solution of intermediate 111 (25.0 mg, 0.05 mmol) in MeOH (1.00 mL) was added azetidin-3-ol hydrochloride (109.0 mg, 1.00 mmol) and triethylamine (279 pL, 2.00 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 18 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% tri fluoroacetic acid modifier) to afford intermediate 112 (3.7 mg, 11 %) as a white solid.
LCMS (ESI) m/z 675.22 [M + H]+, rR = 2.10 min.
HPLC /r (min), purity %: 3.83, 99%.
Rf= 0.15 (EtOAc).
Compound 130
To a solution of intermediate 112 (3.7 mg, 5.5 pmol) in dioxane (0.50 mL) was added
4N HC1 in dioxane solution (1.00 mL, 4.00 mmol) and the reaction mixture was stirred at room
309 temperature. After 2 h, the reaction mixture was concentrated under reduced pressure to afford compound 130 (1.1 mg, 33 %) as a white solid hydrochloric acid salt.
’H NMR (CD3OD, 400MHz): d 7.55-7.36 (m, 3H), 6.20 (br s, 1H), 6.09-5.91 (m, 2H), 4.574.48 (m, 1H), 4.21 (dd, J= 5.7, 1.9 Hz, 4H), 4.09 (br d, J= 6.0 Hz, 1H), 3.76-3.68 (m, 4H), 3.63-3.54 (m, 1H), 3.09 (s, 3H), 2.46-2.26 (m, 1H), 2.24-1.92 (m, 2H), 1.84-1.51 (m, 4H). LCMS (ESI) m/z 575.17 [M + H]+, zR = 1.63 min.
HPLC (min), purity %: 2.50, 95%.
Rf= 0.45 (20% methanol/CH2Cl2).
Intermediate 113
To a solution of intermediate 111 (25.0 mg, 0.05 mmol) in MeOH (1.00 mL) was added tert-butyl azetidin-3-ylcarbamate hydrochloride (104.0 mg, 0.5 mmol) and triethylamine (139 pL, 1.00 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 18 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford intermediate 113 (5.0 mg, 13 %) as a white solid. LCMS (ESI) m/z 774.31 [M + H]+, tR = 2.43 min.
HPLC tR (min), purity %: 4.48, 99%.
Ry= 0.56 (EtOAc).
Compound 131
310
NH2
To a solution of intermediate 113 (5.0 mg, 6.5 pmol) in dioxane (0.50 mL) was added 4N HC1 in dioxane solution (1.00 mL, 4 mmol) and the reaction mixture was stirred at room temperature. After 2 h, the reaction mixture was concentrated under reduced pressure to afford compound 131 (1.8 mg, 43 %) as a white solid bis-hydrochloric acid salt.
*H NMR (CD3OD, 400MHz): d 7.56 - 7.31 (m, J= 32.0 Hz, 3H), 6.25 (br s, IH), 6.12-5.94 (m, 2H), 4.73—4.65 (m, 1H), 4.48-4.32 (m, 5H), 4.21 (dd, J= 5.7, 1.9 Hz, 4H), 3.55-3.45 (m, IH),
3.08 (s, 3H), 2.46-2.25 (m, 1H), 2.23-1.97 (m, 2H), 1.84-1.53 (m, 4H). LCMS (ESI) m/z 574.20 [M + H]+, iR = 1.53 min.
HPLC tR (min), purity %: 2.32, 95%.
Rf= 0.05 (20% methanol/CH2CI2).
Compound 132
HN%
HCI
OH
Et3N, MeOH; HCI, dioxane
3i I
To a solution of intermediate 111 (10.0 mg, 15.7 pmol) in MeOH (1.00 mL) was added (7?)-pyrrolidin-3-ol hydrochloride (62.0 mg, 0.50 mmol) and triethylamine (139 pL, 1.00 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 20 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. 4N HC1 in dioxane solution (1.00 mL, 4 mmol) was added to the crude residue and the reaction mixture was stirred at room temperature. After 20 h, the reaction mixture was concentrated under reduced pressure, and the crude residue was purified by preparatory HPLC (5-100% MeCNÆLO, 0.1% trifluoroacetic acid modifier) to afford compound 132 (4.2 mg, 45%) as a white solid trifluoroacetate salt.
'H NMR (CDjOD, 400MHz): d 7.57-7.42 (m, 3H), 6.39-5.99 (m, 2H), 5.56 (s, IH), 4.64 (s, IH), 4.10-3.88 (m, 4H), 3.85-3.68 (m, 4H), 3.66-3.35 (m, 2H), 3.08 (s, 3H), 2.51-2.34 (m, IH), 2.33-1.97 (m, 4H), 1.87-1.49 (m, 4H).
LCMS (ESI) m/z 589.18 [M + H]+, tR = 1.61 min.
HPLC (min), purity %: 2.74, 95%.
Rf= 0.50 (20% methanol/CH2Cl2).
Compound 133
EUN, MeOH; HCI, dioxane
To a solution of intermediate 111 (48.0 mg, 64.0 pmol) in MeOH (1.00 mL) was added azetidine (86 pL, 1.3 mmol) and triethyl amine (357 pL, 2.65 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 18 h, the reaction mixture was allowed to cool
G
312 to room temperature and was concentrated under reduced pressure. 4N HCI in dioxane solution (1.00 mL, 4 mmol) was added to the crude residue and the reaction mixture was stirred at room temperature. After 5 h, the reaction mixture was concentrated under reduced pressure, and the crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 133 (19.2 mg, 54%) as a white solid trifluoroacetate salt.
’H NMR (CD3OD, 400MHz): d 7.61-7.31 (m, 3H), 6.38-5.98 (m, 2H), 5.71 (s, IH), 4.80-4.50 (m, IH), 4.08-3.80 (m, 5H), 3.72 (t,J = 6.2 Hz, 2H), 3.59 (t, 6.7 Hz, 2H), 3.50-3.30 (m, IH),
3.08 (s, 3H), 2.43 (br d, J= 12.3 Hz, IH), 2.18 (quint, J = 6.5 Hz, 2H), 2.13-2.00 (m, 2H), 1.821.50 (m, 4H).
LCMS (ESI) miz 559.16 [M + H]\ iR = 1.90 min.
HPLC iR (min), purity %: 3.07, 95%.
Rf= 0.70 (10% methanol/CH2Cl2).
Compound 134
PhB(OH)2
Pd(PPh3)4
Na2CO3
THF, H2O
Tetrahydrofuran (620 pL) and water (62 pL) were added to intermediate 73 (30.0 mg, 62.0 pmol), phenylboronic acid (9.4 mg, 77.5 pmol), Pd(PPh3)4 (7.1 mg, 6.2 5 pmol), and sodium carbonate (32.9 mg, 310 pmol) at room temperature under an argon atmosphere, and the 25 reaction mixture was heated to 60 °C. After 3 h, the reaction mixture was allowed to cool to room temperature and was partitioned between ethyl acetate (10 mL) and water (10 mL). The phases were separated, and the organic layer was washed with saturated sodium chloride solution (10 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic 30 acid modifier) to afford compound 134 (13.5 mg, 42%) as a white solid.
313 *H NMR (CDCLj, 400MHz): 9.19 (s, 1H), 9.15 (s, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.63-7.52 (m, 2H), 7.53-7.45 (m, 2H), 7.41 (dd, J= 8.8, 2.3 Hz, 1H), 7.36-7.30 (m, 1H), 6.32 (d, J= 4.5 Hz, 1H), 4.56 (br t, J= 13.8 Hz, 1H),3.34 (d, J= 12.7 Hz, 1H), 3.16 (appt,7=7.6 Hz, 1H),2.95 (s, 3H), 2.46-2.28 (m, 1H), 2.36 (s, 3H), 2.14-1.92 (m, 1H), 1.90-1.70 (m, 2H), 1.69-1.40 (m, 2H).
LCMS (ESI) m/z 524.07 [M + H]+, iR = 3.21 min.
HPLC îr (min), purity %: 5.75, 99%.
Rf= 0.70 (EtOAc).
Intermediate 114
1)MeCN, nBuLi
2) N2H4.AcOH
EtOH, H2O
n-Butyl lithium (1.6 M in THF, 9.00 mL, 14.5 mmol) was added slowly via syringe to a solution of acetonitrile (1.41 mL, 27.0 mmol) in tetrahydrofuran (51 mL) at - 78 °C under and argon atmosphere. After 30 min, a solution of (25,55)-1-benzyl 2-methyl 5-methylpiperidine1,2-dicarboxylate (4.00 g, 13.7 mmol) in tetrahydro furan (17 mL) was added slowly via cannula. After 1 h, a solution of acetic acid (2.35 mL, 41.1 mmol) in ethanol (5 mL) was added slowly and the reaction mixture was allowed to warm to room temperature. The reaction mixture was then partitioned between ethyl acetate (500 mL) and water (500 mL). The phases were separated, and the organic layer was washed with saturated sodium chloride solution (500 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The residue was dissolved in ethanol (51 mL) and water (17 mL), and hydrazine acetate (1.64 g, 17.8 mmol) was added, and the resulting mixture was stirred at room temperature. After 15 h, the reaction mixture was partitioned between ethyl acetate (200 mL) and water (200 mL). The phases were separated, and the organic layer was washed with saturated sodium chloride solution (500 mL),
314 was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (80 g SiO2 Combiflash HP Gold Column, 0-20% methanoI/CH2Cl2) to afford intermediate 114 (2.95 g, 68%) as a light yellow foam.
LCMS (ESI) m/z 315.1 [M + H]+, tR = 2.02 min.
HPLC /r (min), purity %: 3.33,99%.
Intermediate 115
(£)-ethyl-3-ethoxy-2-methylacrylate (830 mg, 4.77 mmol) and Cs2CO3 (1.55 g, 4.77 mmol) were added to a solution of intermediate 114 (800 mg, 2.55 mmol) in DMF (15.9 mL) at room temperature and the reaction mixture was heated to 130 °C. After 15 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was diluted with ethyl acetate (250 mL) and was filtered. The resulting filtrate was concentrated under reduced pressure and the residue was purified via SiO2 column chromatography (80 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 115 (230 mg, 24%) as a light yellow solid.
LCMS (ESI) m/z 381.1 [M + H]+, iR = 2.39 min.
HPLC Zr (min), purity %: 4.41, 99%.
R/= 0.45 (75% EtOAc/hexanes).
Intermediate 116
315
EtOH
H2, Pd/C
H
A slurry of 10% palladium on carbon (25 mg, 24.0 pmol) in ethanol (0.4 mL) was added to a solution of intermediate 115 (180 mg, 0.47 mmol) in ethanol (2.0 mL) under argon. A balloon containing hydrogen gas was applied and the reaction vessel was evacuated and refilled with a hydrogen gas atmosphere (3*), and the reaction mixture was stirred vigorously at room temperature. After 7h, the reaction mixture was filtered through celite and the filtrate was concentrated under reduced pressure to afford to afford intermediate 116 (116 mg, 99%) as a light yellow foam.
LCMS (ESI) m/z 247.15 [M + H]+, iR = 0.28 min.
Intermediate 117
POCI3 (2 mL, 21.4 mmol) was added to intermediate 116 (66 mg, 0.27 mmol) at room temperature and the reaction mixture was heated to 100 °C. After 1 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure to afford intermediate 117 as an orange semi-solid, which was used directly in the following step. LCMS (ESI) m/z 265.06 [M + H]+, = 1.75 min.
Intermediate 118
316
Crude intermediate 117 from the previous step was dissolved in dichloromethane (2.6 mL). Tri ethylamine (144 μΐ, 0.52 mmol) followed by (5-chloro-2-(methyl sulfonamido)benzoyl chloride (138.8 mg, 0.52 mmol) were added and the reaction mixture was stirred at room temperature under and argon atmosphere. After Ih, the reaction mixture was concentrated under reduced pressure and the residue was purified via SiO2 column chromatography (12 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 118 (57.5 mg, 43% (2-steps)) as a white solid.
LCMS (ESI) m/z 496.27 [M + H]+, rR = 3.20 min.
HPLC îr (min), purity %: 5.69, 90%.
Rf= 0.55 (50% EtOAc/hexanes).
Compound 135
Et3N, MeOH
To a solution of intermediate 118 (5.0 mg, 0.01 mmol) in MeOH (400 pL) was added azetidin-3-ol hydrochloride (21.8 mg, 0.20 mmol) and triethylamine (56 pL, 0.40 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 6 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude
3I7 residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 135 ¢5.0 mg, 91 %) as a white solid.
'H NMR (CD3OD, 400MHz): d 8.66 (s, IH), 7.67 (d,/ = 8.8 Hz, 1H),7.5O (dd,/=8.8, 2.5 Hz, IH), 7,43 (d, J= 2.4 Hz, IH), 6.15 (s, IH), 6.10 (d, J = 4.7 Hz, IH), 4.74-4.58 (m, IH), 4.334.15 (m,/ = 18.4 Hz, 4H), 3.23 (d, / = 9.6 Hz, IH), 2.96 (s, 3H), 2.81 (t, J= 12.4 Hz, IH), 2.28 (s, 3H), 2.07 (brt, J= 14.1 Hz, IH), 1.73 (brq,/ = 13.7 Hz, 2H), 1.36-1.22 (m, IH), 1.11 (br q, / = 12.5 Hz, IH), 0.70 (d,/ = 6.5 Hz, 3H).
LCMS (ESI) m/z 533.37 [M + H]+, tR = 2.73 min.
HPLC rR (min), purity %: 4.04, 99%.
Rz= 0.45 (EtOAc).
Compound 136
ηνΛ
HCl
OH
Et3N, MeOH
To a solution of intermediate 118 (10.0 mg, 0.02 mmol) in MeOH (400 pL) was added (Â)-pyrrolidin-3-ol hydrochloride (44.0 mg, 0.40 mmol) and triethylamine (112 pL, 0.80 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 6 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 136 (8.5 mg, 89 %) as a white solid.
]H NMR (CD3OD, 400MHz): d 8.75 (s, IH), 7.67 (d,/= 8.1 Hz, IH), 7.50 (dd, J = 8.5, 2.0 Hz, IH), 7.44 (d,/= 2.1 Hz, IH), 6.15, (s, IH), 6.12 (d,/= 5.0 Hz, IH), 4.57 (br s, IH), 4.11-3.91 (m,3H),3.81 (d,/=11.7 Hz, IH), 3.23 (br d,/= 14.4 Hz, IH), 2.97 (s, 3H), 2.81 (t,/=12.2 Hz, IH), 2.49 (s, 3H), 2.41 (d, / = 13.7 Hz, IH), 2.19-1.99 (m, 2H), 1.83-1.62 (m, 2H), 1.381.19 (m, IH), 1.11 (brq,/ = 13.4 Hz, 1H),O.71 (d,/= 6.4 Hz, 3H).
LCMS (ESI) m/z 547.45 [M + H]+, rR = 2.80 min.
318
HPLC îr (min), purity %: 4.06, 99%.
Rf =0.50 (EtOAc).
Compound 137
NHBoc
Et3N, MeOH; HCI, dioxane
NH2
To a solution of intermediate 118 (10.0 mg, 0.02 mmol) in MeOH (400 pL) was added tert-butyl azetidin-3-ylcarbamate hydrochloride (20.3 mg, 0.10 mmol) and triethylamine (28.0 pL, 0.20 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 2 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. 4N HCI in dioxane solution (1.00 mL, 4 mmol) was added to the crude residue and the reaction mixture was stirred at room temperature. After 6 h, the reaction mixture was concentrated under reduced pressure, and the crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 137 (8.9 mg, 68%) as a white solid trifluoroacetate salt.
*H NMR (CD3OD, 400MHz): d 8.77 (br s, 1H), 7.66 (d, J= 8.4 Hz, 1H), 7.50 (dd, J= 8.8, 2.4 Hz, 1H), 7.44 (d,/=2.4 Hz, lH),6.30(s, 1H), 6.12 (d, J = 4.2 Hz, 1H), 5.06-4.89 (m, 2H), 4.71 (br d, /= 8.5 Hz, 2H), 4.38^1.27 (m, 1H), 3.28-3.23 (m, 1H), 2.98 (s, 3H), 2.81 (t, J= 12.5 Hz, 1H), 2.33 (s,3H), 2.14-2.01 (m, 1H), 1.82-1.63 (m, 2H), 1.38-1.28 (m, 1H), 1.10 (br q, J= 13.3 Hz, 1H), 0.71 (d, J = 6.3 Hz, 3H).
LCMS (ESI) m/z 532.43 [M + H]+, tR = 1.95 min.
HPLC îr (min), purity %: 3.61, 99%.
Compound 138
319
HN—i
HCl *
Et3N, MeOH
To a solution of intermediate 118 (10.0 mg, 0.02 mmol) in MeOH (400 gL) was added azetidine hydrochloride (37.0 mg, 0.40 mmol) and triethylamine (80.9 pL, 0.80 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 3 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 138 (8.6 mg, 83 %) as a white solid.
'H NMR (CDClj, 400MHz): d 8.57 (s, 1H), 7.62 (d, J= 8.8 Hz, 1H), 7.32 (dd, J= 8.8, 2.5 Hz, 1H), 7.23 (d, J= 2.5 Hz, 1H), 6.10 (d, J= 4.4 Hz, 1H), 5.90 (s, 1H), 4.39 -4.18 (m, 4H), 3.03 (d, J = 12.8 Hz, 1H), 2.84 (s, 3H), 2.66 (t, J= 12.4 Hz, 1H), 2.32 (quint, J = 6.8 Hz, 2H), 2.15 (s, 3H), 1.99-1.81 (m, 1H), 1.74-1.44 (m,2H), 1.28-0.98 (m, 2H), 0.61 (d, 7=6.5 Hz, 3H) LCMS (ESI) mlz 517.39 [M + H]+, tR = 3.13 min.
HPLC iR (min), purity %: 4.49, 99%.
Rf= 0.55 (EtOAc).
Compound 139
NH HCI
NH2
Cs2CO3, DMF
To a solution of intermediate 73 (30.0 mg, 0.06 mmol) in DMF (620 pL) was added guanidine hydrochloride (59.0 mg, 0.62 mmol) and Cs2CO3 (404 mg, 1.24 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 8 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude
320 residue was purified by preparatory HPLC (5-100% MeCN/H20, 0.1% trifluoroacetic acid modifier) to afford compound 139 (6.8 mg, 18 %) as a white solid trifluoroacetic acid salt.
H NMR (CD3OD,400MHz): d9.05(s, IH), 7.68 (d, J= 8.4 Hz, IH), 7.49 (d, J- 8.8 Hz, IH), 7.46 (s, IH), 6.55 (s, IH), 6.20 (d, J= 2.6 Hz, IH), 3.42-3.32 (m, IH), 3.26-3.14 (m, IH), 2.98 (s, 3H), 2.47 (d,/ = 13.6 Hz, IH),2.35 (s, 3H), 2.15-2.03 (m, IH), 1.87-1.38 (m, 4H).
LCMS (ESI) m/z 505.33 [M + H]+, iR = 1.97 min.
HPLC tR (min), purity %: 3.68, 99%.
Rf= 0.62 (20% methanol/CH2Cl2).
Compound 140
Et3N, MeOH
To a solution of intermediate 73 (50.0 mg, 0.10 mmol) in MeOH (1.00 mL) was added pyrazolidine dihydrochloride (150 mg, 1.04 mmol) and triethylamine (287 pL, 2.06 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 1 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 140 (56.8 mg, 87 %) as a white solid trifluoroacetic acid salt. lH NMR (CD3OD, 400MHz): d 8.96 (s, IH), 7.65 (d, J= 5.0 Hz, IH), 7.50 (d, J= 5.0 Hz, IH), 7.45 (s, IH), 6.44 (br s, IH), 6.17 (br s, IH), 3.91 (t, ,/=4.5 Hz, 2H), 3.32 (t, ,/=4.2Hz, 2H), 3.25-3.18 (m, IH), 3.08-2.95 (m, IH), 2.97 (s, 3H), 2.50-2.39 (m, 3H), 2.42 (s, 3H), 2.18-2.00 (m, 2H), 1.73 (d,/ = 7.7 Hz, IH), 1.70-1.35 (m, 2H).
LCMS (ESI) m/z 518.38 [M + H]+, tR = 2.64 min.
HPLC tR (min), purity %: 3.52, 97%.
Rz=0.60 (EtOAc).
321
Compound 141
To a solution of intermediate 73 (50.0 mg, 0.10 mmol) in MeOH (1.00 mL) was added pyrazolidine dihydrochloride (164 mg, 1.03 mmol) and triethylamine (287 pL, 2.06 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 1 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 141 (51.8 mg, 78 %) as a white solid trifluoroacetic acid salt. 'H NMR (CD3OD, 400MHz): d 8.94 (s, IH), 7.58 (d, J= 4.7 Hz, IH), 7.40 (d, J = 4.7 Hz, IH), 7.36 (s, IH), 6.44 (br s, IH), 6.10 (br s, IH), 3.45-3.30 (m, 4H), 3.20-3.00 (m, IH), 2.95-2.85 (m, IH), 2.88 (s, 3H), 2.37 (d, J= 8.5 Hz, IH), 2.25 (s, 3H), 2.10-1.80 (m, 6H), 1.65 (d, J=7.7 Hz, IH), 1.60-1.20 (m, 2H).
LCMS (ESI) m/z 532.38 [M + H]+, ZR = 3.14 min.
HPLC ZR (min), purity %: 3.74, 99%.
Rf~ 0.65 (EtOAc).
Intermediate 119
EtONa, EtOH
322
Diethyl malonate (729 pL, 6.36 mmol) and sodium ethoxide (432 mg, 6.36 mmol) were added to a solution of intermediate 114 (800 mg, 2.55 mmol) in ethanol (15.9 mL) at room temperature under an argon atmosphere, and the reaction mixture was heated to 70 °C. After 7 h, the reaction mixture was allowed to cool to room temperature and was acidified to pH = 3 with IN aqueous hydrochloride acid solution. The resulting mixture was then partitioned between ethyl acetate (200 mL) and water (200 mL). The phases were separated, and the organic layer was washed with saturated sodium chloride solution (1500 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The resulting filtrate was concentrated under reduced pressure and the residue was purified via SiO2 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 119 (618 mg, 63%) as a light yellow solid.
LCMS (ESI) m'z 383.1 [M + H]+, /R = 2.40 min.
HPLC (min), purity %: 3.87, 99%.
Intermediate 120
EtOH
H2i Pd/C
A slurry of 10% palladium on carbon (60 mg, 57.0 pmol) in ethanol (1.4 mL) was added to a solution of intermediate 119 (433 mg, 1.14 mmol) in ethanol (4.3 mL) under argon. A balloon containing hydrogen gas was applied and the reaction vessel was evacuated and refilled with a hydrogen gas atmosphere (3*), and the reaction mixture was stirred vigorously at room temperature. After 1.5 h, the reaction mixture was filtered through celite and the filtrate was concentrated under reduced pressure to afford to afford intermediate 120 (323 mg, 99%) as a white solid.
323
LCMS (ESI) m!z 249.16 [M + H]+, = 1.56 min.
Intermediate 121
Cl
POCfi (2 mL, 10.7 mmol) was added to intermediate 120 (62.5 mg, 0.22 mmol) at room temperature and the reaction mixture was heated to 100 °C. After 5 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure to afford intermediate 121 as an orange semi-solid, which was used directly in the following step.
LCMS (ESI) mlz 285.06 [M + H]+, rR = 1.75 min.
Intermediate 122
Crude intermediate 121 from the previous step was dissolved in dichloromethane (1 mL). Triethylamine (91 μΐ, 0.65 mmol) followed by (5-chloro-2-(methylsulfonamido)benzoyl chloride (58.0 mg, 0.22 mmol) were added and the reaction mixture was stirred at room temperature under and argon atmosphere. After Ih, the reaction mixture was concentrated under reduced pressure was concentrated under reduced pressure to afford intermediate 122 as an orange semi-solid, which was used directly in the following step.
LCMS (ESI) m/z 516.23 [M + H]*, tR = 3.06 min.
324
Intermediate 123
Crude intermediate 122 from the previous step was dissolved acetonitrile (0.5 mL) and water (0.5 mL). Morpholine (19 pL, 0.22 mmol) and sodium bicarbonate (36.5 mg, 0.43 mmol) were added and the reaction mixture was stirred at room temperature. After 1 h, the reaction mixture was partitioned between dichloromethane (20 mL) and water (20 mL), and the layers were separated. The organic layer was washed with saturated aqueous sodium bicarbonate solution (20 mL) and saturated sodium chloride solution (50 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (12 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 123 (68.1 mg, 55% (3-steps) as a light orange solid.
LCMS (ESI) m/z 567.32 [M + H]+, tR = 2.92 min.
Compound 142
NHBoc
ELN, MeOH; HCI, dioxane
325
To a solution of intermediate 123 (20.0 mg, 35.0 pmol) in MeOH (700 pL) was added tert-butyl azetidin-3-yl carbamate hydrochloride (73.7 mg, 0.35 mmol) and tri ethyl amine (98.0 pL, 0.70 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 2 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier). 4N HC1 in dioxane solution (LOO mL, 4 mmol) was added and the reaction mixture was stirred at room temperature. After 4.5 h, the reaction mixture was concentrated under reduced pressure to afford compound 142 (9.5 mg, 43%) as a white solid hydrochloric acid salt.
'H NMR (CD3OD, 400MHz); d 7.58-7.33 (m, 3H), 6.30 (br s, IH), 6.03 (d, J = 4.8 Hz, IH),
5.41 (br s, IH), 4.55Ή.32 (m, 5H), 4.11-3.85 (m, 8H), 3.04 (s, 3H), 2.84 (t, J = 12.2 Hz, IH),
2.41 (d, 13.5 Hz, IH), 2.22 (br s, IH), 2.09 (t, J = 12.5 Hz, IH), 1.75 (d, J= 11.6 Hz, IH),
1.46-1.07 (m, 2H), 0.76 (d, J= 6.3 Hz, 3H).
LCMS (ESI) miz 603.40 [M + H]+, tR = 1.89 min.
HPLC iR (min), purity %: 3.05, 93%.
Rf = 0.50 (10% methanol/CHiCh).
Compound 143
HN—1
HCl L-J
Et3N, MeOH
To a solution of intermediate 123 (10.0 mg, 18 pmol) in MeOH (360 pL) was added azetidine hydrochloride (16.8 mg, 0.18 mmol) and triethylamine (50.0 pL, 0.36 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 3 b, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The residue
326 was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 143 (5.1 mg, 40%) as a white solid trifluoroacetate salt.
'H NMR (CD3OD, 400MHz): d 7.58-7.31 (m, 3H), 6.22 (br s, IH), 6.03 (br s, IH), 5.26 (s, IH), 4.37 (t, J = 7.4 Hz, IH), 4.02-3.80 (m, 8H), 3.04 (s, 3H), 2.85 (t, J= 12.7 Hz, IH), 2.56 (quint, J = 7.7 Hz, 2H), 2.40 (d, J = 14.2 Hz, IH), 2.27-2.16 (m, IH), 2.09 (br t, J= 13.7 Hz, IH), 1.75 (d, J= 13.3 Hz, IH), 1.38-1.23 (m, IH), 1.22-1.09 (m, IH), 0.76 (d,.7= 6.5 Hz, IH). LCMS (ESI) m/z 588.43 [M + H]+, tR = 2.14 min.
HPLC (min), purity %: 3.67, 99%.
Rf= 0.50 (EtOAc).
Compound 144
DMAP, CH2CI2
To a solution of compound 92 (50.0 mg, 0.10 mmol) in dichloromethane (500 pL) was added dihydrofuran-2,5-dione (10 mg, 0.10 mmol) and DMAP (1.2 mg, 0.01 mmol) at room temperature under an argon atmosphere. After 20 min, the reaction mixture was concentrated under reduced pressure. The residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% tri fluoro acetic acid modifier) to afford compound 144 (35.6 mg, 57%) as a white solid.
’H NMR (CD3OD, 400MHz): d 8.64 (s, IH), 7.66 (d, 7=8.8 Hz, IH), 7.48 (d, 7=8.8 Hz, IH), 7.43 (s, IH), 6.10 (br s, 2H), 5.31 (s, IH), 4.76-4.59 (m, 2H), 4.34 (d, 7= 10.1 Hz, 2H), 3.273.04 (m, IH), 3.00 (br s, IH), 2.95 (s, 3H), 2.72-2.56 (m, 4H), 2.39 (d, 7= 14.1 Hz, IH), 2.23 (s, 3H), 2.08-1.95 (m, IH), 1.84-1.58 (m, 2H), 1.58-1.39 (m, 2H).
LCMS (ESI) m/z 619.37 [M + H]+, tR = 2.77 min.
HPLC îr (min), purity %: 4.28, 99%.
Rf = 0.50 (10% methanol/CH2Ci2).
Intermediate 124
327
HCI
OjH
N
H
NaHCO3
MeCN, H2O
Pyrazolidine dihydrochloride (14.5 mg, 0.10 mmol) and sodium bicarbonate (16.8 mg, 0.20 mmol) were added to a solution of intermediate 56 (50 mg, 0.10 mmol) in acetonitrile (0.50 mL) and water (0.50 mL) and the reaction mixture was stirred at room temperature. After 3 h, the reaction mixture was purified by preparatory HPLC (5-100% MeCNÆLO, 0.1% trifluoroacetic acid modifier) to afford intermediate 124 (37.4 mg, 57%) as a white solid trifluoroacetate salt.
LCMS (ESI) m/z 538.31 [M + H]+, tR = 2.90 min.
HPLC îr (min), purity %: 4.74, 99%.
Rf= 0.65 (EtOAc).
Compound 145
HN—J
HCI *
Et3N, MeOH
To a solution of intermediate 124 (37.0 mg, 0.07 mmol) in MeOH (1.4 mL) was added azetidine hydrochloride (64.0 mg, 0.70 mmol) and triethylamine (192 μΤ, 1.40 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 14 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude
328 residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 145 (6.3 mg, 14 %) as a white solid trifluoroacetate salt.
]H NMR (CD3OD, 400MHz): d 7.48 (br s, 2H), 7.37 (br s, IH), 6.15 (br s, IH), 6.02 (br s, IH), 5.61 (s, IH), 4.47-4.18 (m, 8H), 3.56-3.42 (m, IH), 3.20 (t, J= 14.1 Hz, lH),3.06(s, 3H), 2.54 (quint, J = 7.7 Hz, 2H), 2.46-2.32 (m, IH), 2.24 (quint, J = 6.8 Hz, 2H), 2.18-1.99 (m, IH), 1.85-1.47 (m, 4H).
LCMS (ESI) m/z 559.42 [M + H]+, rR - 2.06 min.
HPLC tR (min), purity %: 3.57, 99%.
Rf= 0.60 (10% methanol/CH2Cl2).
Compound 146
To a solution of intermediate 73 (50 mg, 0.10 mmol) in DMF (1.00 mL) was added 4,5dihydro-lH-îmidazol-2-amine (88 mg, 1.04 mmol) and Cs2CO3 (677 mg, 2.08 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 4 h, the reaction mixture was allowed to cool to room temperature and was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 146 (10.7 mg, 16 %) as a white solid trifluoroacetic acid salt.
'H NMR (CD3OD, 400MHz): d 9.25 (br s, IH), 7.68 (d, J= 8.1 Hz, IH), 7.50 (d, /= 9.0 Hz, IH), 7.48 (s, IH), 6.71 (s, IH), 6.24 (br s, IH), 4.23 (t,/=8.5 Hz, 2H), 3.88 (t,/= 8.4 Hz, 2H), 3.39 (d,/= 12.8 Hz, IH), 3.24-3.11 (m, IH), 2.99 (s, 3H), 2.51 (d, /= 14.3 Hz, IH), 2.40 (s, 3H), 2.19-2.01 (m, 2H), 1.87-1.34 (m, 4H).
LCMS (ESI) m/z 531.40 [M + H]+, rR = 1.90 min.
HPLC tR (min), purity %: 3.47, 91%.
Intermediate 125
329
Boc
H
NaHCO3
MeCN, H2O
(lR,4Æ)-tert-butyI-2,5-diazabicycio[2.2.l]heptane-2-carboxylate (50 mg, 0.10 mmol) and sodium bicarbonate (16.8 mg, 0.20 mmol) were added to a solution of intermediate 56 (50 mg, 0.10 mmol) in acetonitrile (0.50 mL) and water (0.50 mL) and the reaction mixture was stirred at room temperature. After 3.5 h, the reaction mixture was purified by preparatory HPLC (5100% MeCN/H2O, 0.1% tri fluoroacetic acid modifier) to afford intermediate 125 (43.1 mg, 65%) as a white solid tri fluoroacetate salt.
LCMS (ESI) m/z 664.37 [M + H]+, tR = 3.05 min.
HPLC tR (min), purity %: 5.30,99%.
Compound 147
Et3N, MeOH; TFA
To a solution of intermediate 125 (43.1 mg, 65.0 pmol) in MeOH (1.00 mL) was added azetidine hydrochloride (60.0 mg, 0.65 mmol) and triethyiamine (181 pL, 1.30 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 11 h, the reaction mixture was
330 allowed to cool to room temperature and was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier). Trifluoroacetic acid (1 mL) was added at room temperature. After 45 min, the resulting mixture was concentrated to afford compound 147 (18.6 mg, 41 %) as a white solid trifluoroacetate salt.
‘H NMR (CD3OD, 400MHz): d 7.48 (br s, 2H), 7.38 (br s, 1H), 6.21 (br s, 1H), 6.00 (br s, 2H), 5.03 (s, 1H), 4.64 (s, 1H), 4.34 (t, J= 7.7 Hz, 4H), 4.27^1.00 (m, 2H), 3.69 (d, J = 11.2 Hz, 1H), 3.50 (d, J = 11.3 Hz, 2H), 3.08 (s, 3H), 2.61-2.51 (m, 2H), 2.40 (d, J = 11.7 Hz, 2H), 2.21 (d, J = 11.4 Hz, 2H), 2.16-1.98 (m, 1H), 1.84-1.52 (m, 4H).
LCMS (ESI) m/z 585.46 [M + H]+, tR = 1.66 min.
HPLC (min), purity %: 2.59, 96%.
Compound 148
hn^\^h ''NHBoc
H
Et3N, MeOH; TFA
To a solution of intermediate 73 (24.3 mg, 50.0 pmol) in MeOH (250 pL) was added tert-butyl-(1R,55,65)-3-azabi cyclo [ 3.1.0]hexan-6-yl carbarn ate (10 mg, 50.0 pmol) and triethylamine (14 pL, 0.10 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 6 h, the reaction mixture was allowed to cool to room temperature and was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier). Trifluoroacetic acid (1 mL) was added at room temperature. After 40 min, the resulting mixture was concentrated to afford compound 148 (26.9 mg, 82 %) as a grey solid tri fluoroacetate salt.
'H NMR (CD3OD, 400MHz): d 8.66 (br s, 1H), 7.65 (d, J = 8.6 Hz, 1H), 7.47 (d, J = 8.8 Hz, 1H), 7.41 (s, 1H), 6.11 (br s, 2H), 4.15 (d, J = 11.0 Hz, 2H), 3.75 (d, J = 10.5 Hz, 2H), 3.23-3.10 (m, 1H), 2.94 (s, 3H), 2.78-2.62 (m, 1H), 2.56 (s, 1H), 2.36 (s, 3H), 2.13 (s, 2H), 2.07-1.91 (m, 2H), 1.82-1.36 (m,4H).
LCMS (ESI) m/z 546.40 [M + H]+, /R = 1.94 min.
331
HPLC iR (min), purity %: 3.44, 97%.
Compound 149
Et3N, MeOH h2n
OH
To a solution of intermediate 73 (30.0 mg, 62.0 pmol) in MeOH (1 mL) was added (R)2-aminopropan-l-ol (48.0 pL, 0.62 mmol) and triethylamine (174 pL, 1.25 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 11 h, the reaction mixture was allowed to cool to room temperature and was purified by preparatory HPLC (5-100% MeCN/H;O, 0.1% trifluoroacetic acid modifier) to afford compound 149 (10.5 mg, 32 %) as a white solid.
’H NMR (CD3OD, 400MHz): d 8.66 (s, 1H), 7.67 (d, J= 8.7 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.44 (s, 1H), 6.12 (br s, 2H), 4.37^1.23 (m, 1H), 3.67 (d, J = 5.6 Hz, 2H), 3.25-3.15 (m, 1H),
2.95 (s, 3H), 2.40 (d, J = 13.7 Hz, 1H), 2.16 (s, 3H), 2.08-1.95 (m, 2H), 1.84-1.40 (m, 4H), 1.31 (d, 7=6.6 Hz, 3H).
LCMS (ESI) m/z 521.13 [M + Hf, ZR = 2.69 min.
HPLC ZR (min), purity %: 3.93, 96%.
Rf= 0.35 (EtOAc).
To a solution of intermediate 73 (30.0 mg, 62.0 pmol) in MeOH (I mL) was added 210 (methylamino)ethanol (48.0 pL, 0.62 mmol) and triethylamine (174 pL, 1.25 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 11 h, the reaction mixture was allowed to cool to room temperature and was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 150 (15.1 mg, 48 %) as a white solid.
lH NMR (CD3OD, 400MHz): d 8.75 (s, 1H),7.67 (d, 7=8.3 Hz, 1H), 7.48 (d,7 = 8.7 Hz, 1H), 7.44 (d, 7= 2.3 Hz, 1H), 6.45 (s, 1H), 6.14 (brd,7= 3.9 Hz, 1H), 3.84 (br t, 7= 5.3 Hz, 2H), 3.67 (brt, 7=5.4 Hz, 2H), 3.20 (s, 3H), 3.24-3.18 (m, 1H),2.95 (s, 3H), 2.38 (s, 3H), 2.10-1.95 (m, 1H), 1.83-1.65 (m, 2H), 1.62-1.39 (m, 4H).
LCMS (ESI) m/z 521.15 [M + H]+, iR = 2.75 min.
HPLC tR (min), purity %: 4.27, 87%.
/^=0.40 (EtOAc).
Compound 151
Et3N, MeOH; TFA
333
To a solution of intermediate 73 (30.0 mg, 62.0 pmol) in MeOH (1 mL) was added (R)tert-butyl-pyrrolidin-3-ylmethylcarbamate (146 mg, 0.62 mmol) and triethylamine (174 pL, 1.25 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 12 h, the reaction mixture was allowed to cool to room temperature and was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier). Trifluoroacetic acid (1 mL) was added at room temperature. After 30 min, the resulting mixture was concentrated to afford compound 151 (40.0 mg, 98 %) as a light yellow solid tri fluoroacetate salt.
'll NMR (CD3OD, 400MHz): d 8.67 (br s, IH), 7.67 (d, J = 8.5 Hz, IH), 7.48 (d, J = 8.9 Hz, IH), 7.44 (d, J =2.3 Hz, IH), 6.11 (br s, 2H), 4.05-3.75 (m, 3H), 3.57 (t, J= 8.6 Hz, IH), 3.263.15 (m, IH), 3.14-3.05 (m, 3H), 2.95 (s, 3H), 2.68-2.51 (m, IH), 2.40 (s, 3H), 2.31-2.19 (m, IH), 2.11-1.96 (m, 2H), 1.90-1.36 (m, 5H).
LCMS (ESI) m/z 546.19 [M + H]+, iR = 1.95 min. HPLC iR (min), purity %: 3.39, 98%.
Intermediate 126
HCI
Et3N, MeOH
To a solution of intermediate 72 (100.0 mg, 0.35 mmol) in MeOH (1.74 mL) was added (S)-pyrrolidine-3-carbonitrile hydrochloride (459 mg, 3.48 mmol) and triethylamine (970 pL,
6.96 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 2 h, the reaction mixture was allowed to cool to room temperature at which point a solid precipitate formed. The solids were collected by vacuum filtration to afford intermediate 126 (75 mg, 70%) as a grey solid.
LCMS (ESI) m/z 311.19 [M + H]+, /R = 1.63 min.
334
Compound 152
To a solution of intermediate 126 (45.0 mg, 0.15 mmol) in dichloromethane (725 pL). was added triethylamine (50 pl, 0.36 mmol) followed by 3-methylbenzoyl chloride (21 pL, 0.16 mmol) and the reaction mixture was stirred at room temperature under and argon atmosphere. After 15 min, the reaction mixture was concentrated under reduced pressure and was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% tri fluoroacetic acid modifier) to afford compound 152 (42.4 mg, 68 %) as a white solid.
lH NMR (CD3OD, 400MHz): d 8.26 (s, IH), 7.45-7.13 (m, 4H), 6.14-5.91 (m, 2H), 4.01 (dd, J = 11.0, 7.0 Hz, IH), 3.96-3.87 (m, 2H), 3.86-3.78 (m, IH), 3.41 (quint, J = 6.5 Hz, IH), 3.20-
2.96 (m, IH), 2.58-2.21 (m, 9H), 2.01-1.80 (m,2H), 1.79-1.46 (m, 4H).
LCMS (ESI) m!z 429.22 [M + H]+, iR = 2.73 min.
HPLC /r (min), purity %: 4.32, 99%.
Ry= 0.30 (EtOAc).
Compound 153
HATU (59.0 mg, 0.16 mmol) was added to a solution of 3-(tertbutoxycarbonylamino)benzoic acid (34 mg, 0.14 mmol) in DMF (645 pL), and the reaction mixture was stirred at room temperature. After 30 min, intermediate 126 (40 mg, 0.13 mmol)
335 was added followed by the addition of tri ethyl amine (45 pL, 0.32 mmol), and the reaction mixture was stirred at room temperature. After 19 h, the reaction mixture was purified via preparatory HPLC (5-100% MeCNÆLO, 0.1% tri fluoroacetic acid modifier). Trifluoroacetic acid (1 mL) was added at room temperature. After 30 min, the resulting mixture was concentrated to afford compound 153 (47.4 mg, 68 %) as a tan solid tri fluoroacetate salt.
*H NMR (CD3OD, 400MHz): d 8.28 (s, IH), 7.67-7.36 (m, 4H), 6.18-5.94 (m, 2H), 4.03 (dd, J = 10.9, 7.1 Hz, IH), 3.98-3.88 (m, 2H), 3.88-3.79 (m, IH), 3.43 (quint, J = 6.5 Hz, IH), 3.172.93 (m, IH), 2.54-2.22 (m, 6H), 2.00-1.82 (m, 2H), 1.78-1.50 (m, 4H).
LCMS (ESI) m/z 430.19 [M + H]+, iR = 2.35 min.
HPLC tR (min), purity %: 2.93, 98%.
Intermediate 127
(Æ)-2-methyIpiperazine (12 mg, 0.12 mmol) and sodium bicarbonate (20.0 mg, 0.24 mmol) were added to a solution of intermediate 56 (60 mg, 0.12 mmol) in acetonitrile (0.60 mL) and water (0.60 mL) and the reaction mixture was stirred at room temperature. After 4 h, the reaction mixture was purified by preparatory HPLC (5-100% MeCN/ΗτΟ, 0.1% tri fluoroacetic acid modifier) to afford compound 127 (73.4 mg, 90%) as a white solid tri fluoroacetate salt. LCMS (ESI) m/z 566.13 [M + H]+, tR = 1.90 min.
Compound 154
336
HN—»
HCl LEt3N, MeOH
To a solution of intermediate 127 (73 mg, 0.11 mmol) in MeOH (1.20 mL) was added azetidine hydrochloride ¢112 mg, 1.20 mmol) and triethylamine (335 pL, 2.40 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 6 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 154 (58.6 mg, 77 %) as a white solid trifluoroacetate salt.
’H NMR (CD3OD, 400MHz): d 7.50 (br s, 2H), 7.41 (br s, IH), 6.05 (br s, IH), 5.44 (s, IH), 4.69—4.47 (m, 2H), 4.35 (brt, J = 7.3 Hz, 4H), 3.77-3.63 (m, IH), 3.6-3.39 (m, 3H), 3.25-3.11 (m, 3H), 3.02 (s, 3H), 2.62-2.47 (m, 2H), 2.46-2.30 (m, IH), 2.25-2.00 (m, 2H), 1.83-1.55 (m, 4H), 1.40 (d,/=5.9 Hz, 3H).
LCMS (ESI) m/z 587.15 [M + Hf, = 1.86 min.
HPLC (min), purity %: 2.61, 94%.
Intermediate 128
337
H
H
NaHCO3
MeCN, H2O
(5)-2-methylpiperiizine (12 mg, 0.12 mmol) and sodium bicarbonate (20.0 mg, 0.24 mmol) were added to a solution of intermediate 56 (60 mg, 0.12 mmol) in acetonitrile (0.60 mL) and water (0.60 mL) and the reaction mixture was stirred at room temperature. After 4 h, the reaction mixture was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 128 (51.0 mg, 63%) as a white solid trifluoroacetate salt. LCMS (ESI) miz 566.13 [M + H]+, tR = 1.90 min.
Compound 155
HN—I
HCI L-*
Et3N, MeOH
To a solution of intermediate 128 (51 mg, 75 pmol) in MeOH (1.20 mL) was added azetidine hydrochloride (112 mg, 1.20 mmol) and triethylamine (335 pL, 2.40 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 7 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude
338 residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 155 (24.7 mg, 77 %) as a white solid trifluoroacetate salt.
'H NMR (CD3OD, 400MHz): d 7.50 (br s, 2H), 7.42 (br s, 1H), 6.05 (br s, 1H), 5.44 (s, 1H), 5.12-4.77 (m, 1H), 4.6SM.42 (m, 1H), 4.33 (br t, J = 7.3 Hz, 4H), 3.77-3.63 (m, 1H), 3.63 3.37 (m, 4H), 3.14-2.95 (m, 2H), 3.02 (s, 3H), 2.62-2.47 (m, 2H), 2.46-2.30 (m, 1H), 2.25-2.00 (m,2H), 1.83-1.55 (m, 4H), 1.41 (brs,3H).
LCMS (ESI) m/z 587.14 [M + H]+, tR = 1.87 min.
HPLC tR (min), purity %: 2.60, 99%.
Intermediate 129
tert-butyl-l,4-diazepane-l“Carboxylate (24 mg, 0.12 mmol) and sodium bicarbonate (20.0 mg, 0.24 mmol) were added to a solution of intermediate 56 (60 mg, 0.12 mmol) in acetonitrile (0.60 mL) and water (0.60 mL) and the reaction mixture was stirred at room temperature. After 5 h, the reaction mixture was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 129 (64.0 mg, 80%) as a white solid tri fluoroacetate salt.
LCMS (ESI) m/z 666.14 [M + H]+, lR = 3.06 min.
Compound 156
339
HN-i
HCI *
Et3N, MeOH; TFA
To a solution of intermediate 129 (64.0 mg, 0.10 mmol) in MeOH (1.20 mL) was added azetidine hydrochloride (112 mg, 1.20 mmol) and triethylamine (335 pL, 2.40 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 7 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier). Trifluoroacetic acid (1 mL) was added at room temperature. After 20 min, the resulting mixture was concentrated to afford compound 156 (17.2 mg, 24 %) as a white solid tri fluoroacetate salt.
*H NMR (CDjOD, 400MHz): 7.58-7.43 (m, 2H), 7.38 (br s, IH), 6.02 (br s, IH), 5.16 (s, IH), 4.42-4.25 (m, 6H), 3.85 (br s, 2H)„ 3.68 (br s, 2H), 3.49-3.41 (in, 2H), 3.19-3.01 (m, IH), 3.07 (s, 3H), 2.57 (quint, J = 7.7 Hz, 2H), 2.39 (quint, J = (m, 4H).
LCMS (ESI) m/z 587. i 1 [M + H]+, lR = 1.63 min. HPLC Zr (min), purity %: 2.53, 98%.
Intermediate 130 .7 Hz, 2H), 2.26-2.04 (m, 3H), 1.86-1.53
340
To a solution of intermediate 72 (100.0 mg, 0.35 mmol) in MeOH (1.74 mL) was added (5)-tert-butyl pyrrolidîn-3-ylcarbamate (648 mg, 3.48 mmol) and tri ethylamine (970 pL, 6.96 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 4 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford intermediate 130 (169 mg, 95%) as an orange solid. LCMS (ESI) m/z 401.23 [M + H]+, iR = 1.86 min.
Compound 157
To a solution of intermediate 130 (20.0 mg, 0.05 mmol) in di chloromethane (500 pL) was added tri ethylamine (28 pl, 0.20 mmol) followed by 3-methylbenzoyl chloride (7 pL, 50 pmol) and the reaction mixture was stirred at room temperature under and argon atmosphere. After 2 h, the reaction mixture was concentrated under reduced pressure and the crude residue was purified via SiO2 column chromatography (12 g SiO2 Combiflash HP Gold Column, ΟΙ 00% ethyl acetate/hexanes). Tri fluoroacetic acid (1 mL) was added at room temperature. After 20 min, the resulting mixture was concentrated to afford compound 157 (16.8 mg, 63 %) as a grey solid trifluoroacetate salt.
'H NMR (CD3OD, 400MHz): d 8.29 (s, 1H), 7.44-7.17 (m, 4H), 6.06 (br s, 1H), 5.07 (br s, 1H), 4.57 (br s, 1H), 4.06-3.93 (m, 3H), 3.92-3.76 (m, 2H), 3.62 (br s, 1H), 3.13 (br s, 1H),3.OO (br s, 1H), 2.53-2.23 (m, 6H), 2.21-2.07 (m, 1H), 2.02-1.80 (m, 1H), 1.56 (m, 4H).
LCMS (ESI) m/z 419.16 [M + H]1, ZR = 1.89 min.
HPLC (min), purity %: 2.99, 97%.
/?z = 0.20 (20% methanol/CH2Cl2).
341
Compound 158
TFA
To a solution of intermediate 130 (20.0 mg, 0.05 mmol) in dichloromethane (500 pL) was added triethylamine (28 pl, 0.20 mmol) followed by 2-methylbenzoyl chloride (7 pL, 50 pmol) and the reaction mixture was stirred at room temperature under and argon atmosphere. After 2.5 h, the reaction mixture was concentrated under reduced pressure and the crude residue was purified via SiO2 column chromatography (12 g SiO2 Combiflash HP Gold Column, ΟΙ 00% ethyl acetate/hexanes). Tri fluoroacetic acid (1 mL) was added at room temperature. After 20 min, the resulting mixture was concentrated to afford compound 158 (24.6 mg, 92 %) as a grey solid tri fluoroacetate salt.
‘H NMR (CDjOD, 400MHz): d 8.29 (br s, IH), 7.38-7.16 (m, 4H), 6.13 (br dd, 7 = 11.2, 4.1 Hz, IH), 4.67 (br t, 7= 15.5 Hz, IH), 4.06-3.93 (m, 4H), 3.91-3.75 (m, 3H), 3.26-2.99 (m, 2H), 2.57-2.36 (m, 6H), 2.20-2.09 (m, IH), 1.99-1.82 (m, IH), 1.79-1.44 (m, 4H).
LCMS (ESI) miz 419.17 [M + H]+, tR = 1.86 min.
HPLC iR (min), purity %: 2.96, 98%.
Rf= 0.20 (20% methanol/CH2Cl2).
342
Intermediate 131
2-(trifluoromethyl)piperazine (18.5 mg, 0.12 mmol) and sodium bicarbonate (20.0 mg,
0.24 mmol) were added to a solution of intermediate 56 (60 mg, 0.12 mmol) in acetonitrile (0.60 mL) and water (0.60 mL) and the reaction mixture was stirred at room temperature. After 20 h, 10 the reaction mixture was purified by preparatory HPLC (5-100% MeCN/HiO, 0.1% trifluoroacetic acid modifier) to afford intermediate 131 (31.1 mg, 35%) as a white solid trifluoroacetate salt.
LCMS (ESI) m/z 620.09 [M + H]+, lR = 2.83 min.
Compound 159
HN—1
HCI 1—I
Et3N, MeOH
To a solution of intermediate 131 (31.1 mg, 50 pmol) in MeOH (1.00 mL) was added azetidine hydrochloride (23 mg, 0.25 mmol) and triethylamine (70 pL, 0.5 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 20 h, the reaction mixture was
343 allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 159 (17.4 mg, 46 %) as a white solid tri fluoroacetate salt.
*H NMR (CD3OD, 400MHz): d 7.49 (br s, 2H), 7.40 (br s, IH), 6.03 (br s, IH), 5.36 (s, IH), 5.02-4.89 (m, IH), 4.65^.46 (m, 2H), 4.35 (brt, J= 7.5 Hz, 4H), 4.23-4.00 (m, 2H), 3.93-3.76 (m, 2H), 3.23-3.09 (m, 2H), 3.03 (br s, 3H), 2.55 (quint, J = 7.9 Hz, 2H), 2.49-2.29 (m, IH), 2.26-1.95 (m, 2H), 1.82- 1.53 (m, 4H).
LCMS (ESI) m/z 641.12 [M + H]+, tR = 2.44 min.
HPLC (min), purity %: 3.16, 98%.
Compound 160
HO
HATU (85.8 mg, 0.23 mmol) was added to a solution of 3,5-dimethylbenzoic acid (21.7 mg, 0.21 mmol) in DMF (1.00 mL), and the reaction mixture was stirred at room temperature. After 30 min, intermediate 130 (75 mg, 0.19 mmol) was added followed by the addition of tri ethylamine (39.3 pL, 0.28 mmol), and the reaction mixture was stirred at room temperature. After 17 h, the reaction mixture was purified via preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier). Trifluoroacetic acid (1 mL) was added at room temperature. After 30 min, the resulting mixture was concentrated to afford compound 160 (88.8 mg, 87 %) as a white solid trifluoroacetate salt.
*H NMR (CD3OD, 400MHz): d 8.28 (s, IH), 7.19-7.02 (m, 3H), 6.05 (br s, IH), 5.07 (br s,
IH), 4.55 (br s, IH), 4.06-3.91 (m, 3H), 3.91-3.78 (m, 2H), 3.68-3.55 (m, IH), 3.25-3.09 (m,
IH), 3.07-2.91 (m, IH), 2.41 (s, 3H), 2.38-2.21 (m, 6H), 2.20-2.09 (m, IH), 2.00-1.81 (m, IH),
1.78-1.48 (m,4H).
344
LCMS (ESI) m!z 433.12 [M + H]+, ZR = 1.93 min.
HPLC (min), purity %: 3.20, 94%.
Compound 161
HATU (85.8 mg, 0.23 mmol) was added to a solution of 2,5-dimethylbenzoic acid (21.7 mg, 0.21 mmol) in DMF (1.00 mL), and the reaction mixture was stirred at room temperature. After 30 min, intermediate 130 (75 mg, 0.19 mmol) was added followed by the addition of triethylamine (39.3 pL. 0.28 mmol), and the reaction mixture was stirred at room temperature. After 17 h, the reaction mixture was purified via preparatory HPLC (5-100% MeCN/H2O, 0.1% tri fluoroacetic acid modifier). Trifluoroacetic acid (1 mL) was added at room temperature. After 30 min, the resulting mixture was concentrated to afford compound 161 (45 mg, 44 %) as a white solid trifluoroacetate salt.
]H NMR (CD3OD, 400MHz): d 8.28 (s, IH), 7.21-7.01 (m, 3H), 6.05 (br s, IH), 5.13-4.97 (m, IH), 4.65—4.45 (m, IH), 3.98 (app q, J = 8.5 Hz, 3H) , 3.91-3.76 (m, 2H), 3.67-3.53 (m, IH), 3.25-2.89 (m, 2H), 2.57-2.20 (m, 9H), 2.21-2.09 (m, IH), 1.98-1.79 (m, IH), 1.79-1.45 (m, 4H).
LCMS (ESI) m!z 433.14 [M + H]+, iR = 1.90 min.
HPLC tR (min), purity %: 3.10, 98%.
Intermediate 132
345
(R)-2-(fluoromethyl)piperazine (20.0 mg, 0.12 mmol) and sodium bicarbonate (20.0 mg, 0.24 mmol) were added to a solution of intermediate 56 (60 mg, 0.12 mmol) in acetonitrile (0.60 mL) and water (0.60 mL) and the reaction mixture was stirred at room temperature. After 22 h, the reaction mixture was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford intermediate 132 (79.1 mg, 95%) as a white solid trifluoroacetate salt.
LCMS (ESI) m/z 584.05 [M + H]+, tR = 1.96 min.
Compound 162
HN—I
HCI *
Et3N, MeOH
To a solution of intermediate 132 (79.1 mg, 0.11 mmol) in MeOH (1.00 mL) was added azetidine hydrochloride (71.1 mg, 0.76 mmol) and triethylamine (1.06 mL, 7.60 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 17 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude
346 residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 162 (20.3 mg, 25 %) as a white solid tri fluoroacetate salt.
*H NMR (CD3OD, 400MHz): d 7.50 (br s, 2H), 7.43 (br s, IH), 6.15-5.93 (m, IH), 5.48 (s, IH), 4.81^1.66 (m, 3H), 4.63—4.48 (m, IH), 4.31 (br s, 4H), 4.04-3.85 (m, IH), 3.69-3.36 (m, 7H), 3.00 (br s, 3H), 2.54 (quint, J = 8.3 Hz, 2H), 2.45-2.27 (m, IH), 2.24-2.04 (m, IH), 1.851.46 (m, 4H).
LCMS (ESI) m/z 605.38 [M + H]+, zR = 1.88 min.
HPLC ZR (min), purity %: 2.63, 97%.
Intermediate 133
(25',6/?)-2,6-dimethylpiperazine (20.0 mg, 0.12 mmol) and sodium bicarbonate (20.0 mg, 0.24 mmol) were added to a solution of intermediate 56 (60 mg, 0.12 mmol) in acetonitrile (0.60 mL) and water (0.60 mL) and the reaction mixture was stirred at room temperature. After 16 h, the reaction mixture was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford intermediate 133 (75.0 mg, 90%) as a white solid tri fluoroacetate salt.
LCMS (ESI) miz 580.35 [M + H]+, tR = 1.93 min.
Compound 163
347
HN—I
HCl '—I
Et3N, MeOH
To a solution of intermediate 133 (75.0 mg, 0.11 mmol) in MeOH (1.00 mL) was added azetidine hydrochloride (71.1 mg, 0.76 mmol) and triethylamine (0.17 mL, 1.20 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 16 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 163 (41.1 mg, 52%) as a white solid trifluoroacetate salt.
'H NMR (CD3OD, 400MHz): d 7.49 (br s, 2H), 7.41 (br s, 1H), 6.31-6.12 (m, 1H), 6.11-5.94 (m, 1H), 5.46 (s, 1H), 5.08^1.90 (m, 1H), 4.79-4.61 (m, 1H), 4.59-4.43 (m, 1H), 4.36 (br s, 4H), 3.79-3.61 (m, 2H), 3.24-2.91 (m, 6H), 2.56 (quint, J= 5.6 Hz, 2H), 2.45-2.27 (m, 1H), 2.252.04 (m, 1H), 1.88-1.52 (m, 4H), 1.41 (br s, 6H).
LCMS (ESI) mlz 601.42 [M + H]+, tR = 1.85 min.
HPLC tR (min), purity %: 2.69, 98%.
Rf= 0.45 (10% methanol/CH2Cl2).
Compound 164
Dissolved intermediate 56 ((S)-N-(4-chloro-2-(2-(5,7-dichloropyrazolo[l,5-a]pyrimidin-2yl)piperidine-l-carbonyl)phenyl)methanesulfonamide) (lOOmg, in MeCN (l.5mL). Added ethyl 4-(1,3-dioxoisoindolin-2-yl)pyrrolidine-3-carboxyl ate (114mg) and NEt3 to adjust the pH to >9. Stirred for 15 min at RT followed by the addition of azetidine (1ml) and stirring at RT for 5h.
Volatiles were removed and the residue dissolved in THF (3 ml) and hydrazine (I ml). The solution was heated to reflux for 2 h. Volatiles were removed and the product purified by preparative HPLC to give compound 164 (40 mg, 40% yield).
Ethyl 4-(1,3-dioxoisoindolin-2-yl)pyrrolidine-3-carboxylate was prepared according to WO2005/77918 Al.
LCMS (ESI) m/z 656.19 [M + H]+, tR = 1.87 min.
Compound 165
349
Dissolved intermediate 56 ((S)-N-(4-chloro-2-(2-(5,7-dichloropyrazolo[l,5-a]pyrimidin-2yl)piperidine-l-carbonyl)phenyl)methanesulfonamide) (200mg) in MeCN (l.5mL). Added Nmethylpiperazine (65mg) and NEt3 to adjust the pH to >9. Stirred for 15 min at RT followed by the addition of azetidine (Iml) and stirring at RT for 5h.. Volatiles were removed and the 10 product purified by preparative HPLC to give compound 165 (18.2 mg, -20% yield).
LCMS (ESI) m/z 587.4 [M + H]+, tR = 1.6 min.
'H-NMR (CD3OD, 400 MHz): ÔD 7.76 (bs, 2H), 7.69 (bs, IH), 6.03 (bs, IH), 6.23 (bs, IH), 6.16 (bs, IH), 5.63 (s, IH), 5.15 (bs, IH), 4.36-4.31 (m, 4H), 3.84 (bs, 2H), 3.68 (bs, 2H), 3.29 15 (bs, 2H), 3.29 (bs, 2H), 3.13 (bs, IH), 2.71-2.62 (m, 7H), 1.95 (bs, 2H), 1.80 (bs, 2H), 1.53 (bs, 2H).
Compound 166
350
Dissolved intermediate 56 ((S)-N-(4-chloro-2-(2-(5,7-dichloropyrazolo[l,5-a]pyrimidin-2yl)piperidine-I-carbonyl)phenyl)methanesulfonaniide) (270mg) in MeCN (1.5mL). Added N-2fluoroethyl-piperazine (92mg) and NEt3 to adjust the pH to >9. Stirred for 55 min at RT followed by the addition of azetidine (1ml) and stirring at RT for 5h. Volatiles were removed 10 and the product purified by preparative HPLC to give compound 166 (41 mg, 12% yield).
LCMS (ESI) m/z 619.24 [M + H]+, tR = 1.83 min.
Compound 167
35l
Dissolved intermediate 73 (150mg) in MeCN (l.5mL). Added ethyl 4-(l,3-dioxoisoindolin-2yl)pyrrolidine-3-carboxylate (200mg) and NEt3 to adjust the pH to >9. Stirred for 1 h at 70 C, Volatiles were removed and the product purified by preparative HPLC to give phthalate protected intermediate (20 mg). Deprotection was accomplished by stirring in 0.2 M hydrazine in MeOH at RT for 4h. Volatiles were removed and the product purified by preparative HPLC to give compound 167 (12.9 mg, 7%)
LCMS (ESI) m/z 562.2 [M + H]+, tR = 2.18 min.
Intermediate 134
5-Bromo-2-(methylsulfonamido)benzoic acid (66 mg, 0.22 mmol) in DMF (1 mL) was treated with HATU (100 mg, 0.26 mmol) and stirred for 2 h. The solution was treated with intermediate 72 (50 mg, 0.17 mmol) and triethylamine (61 pL, 0.44 mmol) and stirred overnight. The solution was diluted with EtOAc (50 mL) and washed with H2O (3x10 mL) and saturated NaCl (10 mL). The solution was dried (MgSO4) and afford intermediate 134 which was used without further purification.
Compound 168
352
Intermediate 134 (50 mg, 0.17 mmol) in MeOH (2 mL) was treated with 3-hydroxyazetidine (190 mg, 1.7 mmol) and triethylamine (485 pL, 3.5 mmol) and stirred at 70 °C for 18 h. The solution was concentrated and treated to preparatory RP-HPLC (5-100% MeCN/HîO, 0.1% trifluoroacetic acid modifier) to afford compound 168 (20 mg, 98%) as a white solid: 'H NMR (CD3OD, 400MHz): d 8.66 (br s, 1H), 7.60 (m, 4H), 7.43 (t, / = 8.8 Hz, 1H), 6.11 (br s, 1H), 4.61 (br s, 2H), 3.32 (m, 1H), 3.04 (br s, 3H), 2.39 (app d, / = 12.8 Hz, 1H), 2.26 (s, 3H), 2.06 (m, 2H), 1.55 (m, 2H), 1.25 (m, 2H), 1.18 (m, 1H).
LC-MS (ESI) m/z 563 [M + H]+, /R = 2.37 min.
HPLC Ir (min): 3.86.
Compound 169
Intermediate 173 (6.5 g, 15.3 mmol) in MeOH (150 mL) was treated with 3-(S)-Bocaminopyrrolidine (7.1 g, 38.2 mmol) and triethylamine (21 mL, 153 mmol) and stirred at 70 °C for 18 h. The solution was concentrated and suspended in EtOAc (200 mL). The solution was washed with H2O (100 mL) and saturated NaCl solution (100 mL) and dried (MgSO4). The concentrated solids (-500 mg) were suspended in DCM (1.75 mL), treated with 4 N HCl/dioxane (150 pL), and stirred for 10 min. The suspension was concentrated, resuspended in MeOH (2 mL), and treated to a 40 g SiO2 Combiflash HP Gold column (0-100% NH4OH/H2O gradient) to afford compound 169 (400 mg, 97%) as a white solid:
H NMR (CD3OD, 400MHz): d 8.28 (s, 1H), 7.45 (br m, 1H), 7.26 (br m, 1H), 7.22 (br m, 2H), 6.06 (s, 1H), 5.94 (s, 1H), 4.00 (m 3H), 3.85 (m, 2H), 3.31 (m, 1H), 3.30 (m, 1H), 3.01 (m, 1H), 2.42 (s, 3H), 2.20 (s, 3H), 2.12 (s, 3H), 1.93 (br m, 2H), 1.53 (br m, 3H), 1.42 (m, 2H).
LC-MS (ESI) m/z 476 [M + H]+, tR = 1.66 min.
HPLC rR: 2.99 min.
353
Compound 170
Compound 92 (50 mg, 0.1 mmol) in DCM (1 mL) was treated with Dess—Martin periodinane (123 mg, 0.29 mmol) and stirred for 3 h. The solution was concentrated and treated to preparatory RP-HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 170 (10 mg, 20%) as a white solid.
’H NMR (CD3OD, 400MHz): d 8.59 (s, IH), 8.23 (s, IH), 7.55 (app d, J= 7.7 Hz IH), 7.18 (br d, J= 7.6 Hz, 2H), 7.10 (s, IH), 6.01 (br s, IH), 4.35 (app d, J = 7.6 Hz, 3H), 4.30 (app d, J = 7.6 Hz, 3H), 3.19 (m, 1H),2.9O (s, 3H), 2.15 (s, 3H), 1.95 (br s, 2H), 1.63 (br m, 3H), 1.45 (m, 2H).
LC-MS (ESI) mlz 518 [M + H]+, iR = 2.88 min.
HPLC tR: 4.78 min.
Compound 171
Compound 92 (25 mg, 0.05 mmol) in DCM (1 mL) was treated with (5)-proline (8 mg, 0.053 mmol), EDCI (20 mg, 0.11 mmol), and DMAP (3 mg, 0.025 mmol) and stirred for 3 h. The solution was concentrated and treated to preparatory RP-HPLC (5--100% MeCN/H2O, 0.1 % tri fluoroacetic acid modifier) to afford compound 171 (20 mg, 66%) as a white solid:
354 'H NMR (CD3OD, 400MHz): d 8.61 (br s, IH), 8.35 (br s, ÎH), 7.65 (br s, ÎH), 7.43 (br m, 3H), 6.05 (br m, 2H), 5.51 (br m, 2H), 4.75 (br m, 3H), 4.61 (br m, 2H), 4.37 (br m, 3H), 4.14 (br m, 2H), 3.43 (m, 3H), 2.98 (s, 3H), 2.45 (m, 2H), 2.25 (s, 3H), 2.16 (m, 2H), 2.05 (m, 2H), 1.76 (br s, 2H), 1.55 (br m, 3H), 1.23 (m, 2H).
LC-MS (ESI) miz 617 [M + H]+, iR = 1.82 min.
HPLC tR: 3.61 min.
Compound 92 (50 mg, 0.10 mmol) in DCM (2 mL) was treated with glycine (8 mg, 0.11 mmol), EDCI (40 mg, 0.22 mmol), and DMAP (6 mg, 0.05 mmol) and stirred for 3 h. The solution was concentrated and treated to preparatory RP-HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 172 (36 mg, 65%) as a white solid: lH NMR (CD3OD, 400MHz): d 8.63 (br s, 1H), 8.38 (br s, 1 H), 7.64 (m, 1H), 7.47 (m, 1H), 7.42 (s, 2H), 6.14 (, m, 2H), 5.45 (m, 1H), 4.70 (m, 2H), 4.32 (m, 2H), 3.94 (s, 3H), 3.23 (m, 1H), 2.99 (s, 2H), 2.22 (s, 3H), 2.01 (m, 1H), 1.70 (m, 2H), 1.54 (m, 2H).
LC-MS (ESI) mlz 577 [M + H]+, ZR = 1.84 min.
HPLC rR: 3.47 min.
Compound 173
355
\
Intermediate 56 (105 mg, 0.21 mmol) in MeOH (2 mL) was treated with NaHCO3 (175 mg, 2.1 mmol) and 1-methyl-1,4-diazepane (23 pL, 0.20 mmol) and stirred for 3 h. The solution was filtered and concentrated, then suspended in MeOH (2 mL) and treated with azetidine*HCl (100 mg, 1.0 mmol) and triethylamine (300 pL, 2.1 mmol). The solution is stirred at 70 °C for 18 h, then concentrated and treated to preparatory RP-HPLC (5-100% MeCN/H2O, 0.1% tri fluoroacetic acid modifier) to afford compound 173 (11 mg, 9%) as a white solid.
LC-MS (ESI) m/z 602 [M + H]+, tR = 1.78 min. HPLC iR: 2.57 min. Intermediate 135
Ç \ /OH Mel, Cs2CO3 i
n b s X—N O
Boc Boc
jV-Boc-azepanc-2-carboxylic acid (5.03 g, 20.7 mmol) in THF (40 mL) was treated with Cs2CO3 (7.08 g, 21.7 mmol) and Mel (2.16 mL, 34.6 mmol) and stirred for 18 h. The solution was concentrated then diluted with EtOAc (50 mL) and washed with H2O (10 mL) and saturated NaCl (10 mL). The solution was dried (MgSO4) and afford intermediate 135 which was used without further purification:
356 'H NMR (CDCl3, 400MHz): d 4.57 (m, IH), 4.42 (m, IH), 3.97 (m, 1H), 3.81 (m, IH), 3.75 (s, 3H), 3.02 (m, IH), 2.90 (m, IH), 2.36 (m, 2H), 1.90 (m, IH), l.8O (m, 3H), I.53 (s, 9H), 1.34 (m, IH).
Intermediate 136
Boc
1. MeCN, BuLi
2. NH2NHz*AcOH
„h2
Boc
MeCN (2 mL, 38 mmol) in THF (30 mL) was cooled to -78 °C and treated with dropwise with BuLi (2.5 Μ, 8 mL, 20). The mixture was stirred for 30 min, and then treated dropwise with intermediate 135 (4.98 g, 19.4 mmol) in THF (30 mL) over 15 min. The mixture was stirred for I h, and then treated with AcOH (6 mL) in THF (30 mL). The mixture is concentrated then diluted with EtOAc (50 mL) and washed with H2O (10 mL) and saturated NaCl (10 mL). The solution was dried (MgSO4), concentrated, suspended in EtOH/H2O (3:1,60 mL) and treated with NH2NH2*AcOH (2.27 g, 24 mmol). The mixture was stirred overnight, concentrated, and then diluted with EtOAc (50 mL) and washed with H2O (10 mL) and saturated NaCl (10 mL). The solution was dried (MgSO4) and treated to a 80 g SiO2 Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford intermediate 136 (3.5 g, 65%) as a white solid:
LC-MS (ESI) m/z 281 [M + H]+, tR = 1.90 min.
HPLC tR: 3.10 min.
Intermediate 137
357
Intermediate 136 (1030 mg, 3.7 mmol) in DMF (12 mL) was treated with (£)-ethyl 3ethoxy-2-methylacrylate (958 mg, 5.5 mmol) and Cs2CO3 (1.8 g, 5.5 mmol), in THF (30 mL) over 15 min. The mixture was heated at 130 °C and stirred for 18 h. The mixture was concentrated, filtered, and treated to a 80 g SiO2 Combiflash HP Gold column (0-100% EtOAchexanes gradient) to afford intermediate 137 (525 mg, 41%) as a white solid:
LC-MS (ESI) m/z 347 [M + H]+, iR = 2.30 min.
HPLC tR: 4.12 min.
Intermediate 138
Intermediate 137 (550 mg, 1.6 mmol) in POCfi (6 mL) was heated at 100 °C and stirred for 3 h. The mixture was concentrated to afford intermediate 138 which was used without further purification.
Intermediate 139
5-Chloro-2-(methylsulfonamido)benzoic acid (258 mg, 1.03 mmol) in DMF (4 mL) was treated with HATU (453 mg, 1.19 mmol) and stirred for 2 h. The solution was treated with intermediate 138 (239 mg, 0.80 mmol) and triethylamine (277 pL, 2.0 mmol) and stirred overnight. The solution was diluted with EtOAc (50 mL) and washed with H2O (3><10 mL) and
358 saturated NaCl (10 mL), The solution was dried (MgSO4) and treated to a 24 g Si CL Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford intermediate 139 (120 mg, 30%) as a white solid.
Compound 174
Intermediate 139 (25 mg, 0.05 mmol) in MeOH (1 mL) was treated with 3-hydroxyazetidine (27 mg, 0.25 mmol) and triethylamine (70 pL, 0.50 mmol) stirred at 70 °C for 1 h. The solution was concentrated and treated to preparatory RP-HPLC (5-100% MeCN/HzO, 0.1% trifluoroacetic acid modifier) to afford compound 174 (11 mg, 41%) as a white solid:
‘H NMR (CD3OD, 400MHz): d 8.46 (app t, J = 7.7 Hz, 1 H), 8.13 (m, IH), 7.53 (m, 2H), 7.44 (m, IH), 7.23 (m, IH), 5.55 (m, IH), 3.85—».75 (complex m, 6H), 3.10 (app t, J = 16 Hz, IH), 2.84 (app d, 7=9.2 Hz, IH), 2.29 (m, lH),2.16(s, 3H), 1.80 (m, 3H), 1.26 (m, 2H).
LC-MS (ESI) m!z 534 [M + H]+, tR = 1.80 min.
HPLC tR: 2.82 min.
Compound 175
359
Used the same procedures as described for the preparation of compound 56. Isolated 175 as white powder (7.9mg, 22%).
'H NMR (400MHz, CD3OD): δ 7.55-7.38 (m, 3H), 6.35-6.02 (m, 1H), 5.18 (s, 1H), 4.45-4.25 (m, 6H), 3.67 (m, 2H), 3.26 (s, 3H), 3.20-2.95 (m, 11H), 2.57 (m, 2H), 2.35-2.10 (m, 2H), 1.851.65 (m, 4H).
LC/MS (m/z): 589.2 [M+H]+
Intermediate 140
Dissolved intermediate 39 (191 mg, 0.608 mmol) in EtOH (10 mL). Added diethyl methyl malonate (207uL, 1.22 mmol) and 21wt% NaOEt in EtOH (454 pL, 1.217 mmol), and the reaction mixture was stirred at 90 °C for 4h. Added more diethyl methyl malonate (207uL, 1.22 mmol), and the reaction mixture was stirred at 90 °C for 16h. The reaction mixture was allowed to cool to room temperature. Added aqueous HCI to give pH of 3-4 and then concentrated under reduced pressure. Dissolved the resulting material with EtOAc and washed with saturated aqueous NaCl solution. Dried organic over anhydrous Na^SCfi and concentrated
360 under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% tri fluoroacetic acid modifier) to afford intermediate 140 (115 mg, 48 %). LC/MS (m/z): 397.0 [M+H]+
Compound 176
Mixed intermediate 140 with 4N HCI in dioxane (3mL) and stirred for 30mins. Concentrated under reduced pressure to give solid. Mixed residue with POC13 (5mL) and stirred at 80 °C for 16h. Concentrated under reduced pressure. Dissolved residue in ACN and stirred in 15 an ice bath. Added small amount of MeOH and stirred for 15mins. Concentrated under reduced pressure. Dissolved residue in MeOH and stirred in an ice bath. Added Zinc powder (lOOmg). Stirred for 30mins. Added HOAc (50uL) and stirred for 30mins. Filtered off solid and washed with MeOH. Concentrated under reduced pressure. Dissolved in anhydrous THF and added NaHCO3 solid. Added 5-chloro-2-(methylsulfonamido)benzoyl chloride (50mg) and stirred for 20 2h. Filtered and concentrated filtrate under reduced pressure. Purified with preparative HPLC.
Dissolved material in MeOH (ImL). Added (S)-3-(Boc-amino)pyrrolidine (60mg) and TEA (lOOuL). Stirred at 70 °C for 3h. Concentrated under reduced pressure. Dissolved in EtOAc and washed with 5% aqueous citric acid solution. Dried organic over anhydrous Na2SO4 and concentrated under reduced pressure. Purified with preparative HPLC.
Dissolved material in 4N HCI in dioxane (2mL) and stirred for 30mins. Concentrated under reduced pressure and purified with preparative HPLC to afford compound 176 (1.3mg, 0.6%).
'H NMR (400MHz, CD3OD): d 8.57-8.35 (m, 1 H), 7.75-7.46 (m, 3H), 7.25-6.90 (m, 4H), 6.30 (m, IH), 5.95-5.70 (m, IH), 5.25-5.13 (m, IH), 4.41-4.25 (m, 1H), 3.92-3.70 (m, 4H), 3.55-3.45 (m, IH ), 3.05-2.98 (m, 3H), 2.42-2.35 (m, 4H), 2.18-2.05 (m, IH).
LC/MS (m/z): 580.3 [M + Hf
36l
Intermediate 141
Intermediate 136 (1010 mg, 3.6 mmol) in EtOH (10 mL) was treated with dimethyl malonate (825 pL, 7.2 mmol) and NaOEt (21% in EtOH, 2.69 mL, 7.2 mmol). The solution was heated to 80 °C for 18 h then treated with AcOH (825 pL, 14.4 mmol). The solution was concentrated and diluted with EtOAc (100 mL). The solution was washed with washed with H2O (10 mL) and saturated NaCl (10 mL). The solution was dried (MgSO4) and treated to an 80 g SiO2 Combiflash HP Gold column (0-100% FtOAc-hexanes gradient) to afford intermediate
141 (670 mg, 54%) as a white solid:
LC-MS (ESI) m/z 349 [M + H]+, ZR = 2.17 min.
HPLC ZR: 3.54 min.
Intermediate 142
Intermediate 141 (550 mg, 1.6 mmol) was treated with POC13 (6 mL) and the solution was heated to 80 °C for 3 h. The solution is concentrated to afford intermediate 142 as a black oil which was used without further purification.
Intermediate 143
362
NaHCO3l MeOH
Intermediate 142 (246 mg, 0.69 mmol) in THF (20 mL) was treated with NaHCOj (1.44 g, 17.2 mmol) and morpholine (62 pL, 0.71 mmol). The solution was stirred for 18 h then filtered and concentrated. The mixture was treated to a 40 g SiCL Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford intermediate 143 as a white solid:
LC-MS (ESI) m!z 567 [M + H]+, ZR = 2.58 min.
Intermediate 144
Intermediate 143 (231 mg, 0.69 mmol) in DCM (7 mL) was treated with TEA (201 pL, 1.44 mmol) and 5-chloro-2-(methylsulfonamido)benzoyl chloride (193 mg, 0.72 mmol). The solution was stirred for 18 h and concentrated. The mixture was treated to a 40 g SiO2 Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford intermediate 144 as a white solid:
LC-MS (ESI) mlz 567 [M + H]+, fR = 2.58 min.
Compound 177
363
Intermediate 144 (33 mg, 0.06 mmol) in MeOH (1 mL) was treated with TEA (100 pL, 0.6 mmol) and azetidine’HCl (27 mg, 0.29 mmol). The solution was stirred at 70 °C for 18 h and concentrated. The mixture was treated to preparatory RP-HPLC (5-100% MeCN/HjO, 0.1% tri fluoroacetic acid modifier) to afford compound 177 (23 mg, 69%) as a white solid:
*H NMR (CD3OD, 400MHz): d 7.48 (d, J= 8.4 Hz, IH), 7.43 (m, 2H), 7.34 (s, IH), 6.14 (s, IH), 5.65 (m, IH), 5.17 (app d, J =9.2 Hz, 1H),4.67 (m, IH), 4.28 (m, 7 H), 3.87 (m, 2H), 3.81 (m, 6H), 3.60 (m, 2H), 3.40 (m, 2H), 3.17 (m, IH), 3.13 (app t, J= 12.4 Hz, IH), 2.97 (s, IH), 2.71 (s, 3H), 2.37 (br m, 5H), 1.34-1.94 (brm, 12H).
LC-MS (ESI) m/z 589 [M + H]+, rR = 2.21 min.
HPLC iR (min): 3.61.
Intermediate 144 (50 mg, 0.09 mmol) in MeOH (1 mL) was treated with TEA (125 pL, 0.9 mmol) and BOC-azetidine*HCl (76 mg, 0.4 mmol). The solution was stirred at 70 °C for 2 h and concentrated. The solids are treated with 4 N HCl/dioxanes (2 mL) and stirred for 30 min.
C
364
The mixture was concentrated and treated to preparatory RP-HPLC (5-100% MeCN/H2O, 0,1 % trifluoroacetic acid modifier) to afford compound 178 (21 mg, 40%) as a white solid:
'H NMR (CD3OD, 400MHz): d 7.53 (d, J = 8.4 Hz, 1H), 7.50 (m, 2H), 7.41 (s, 1H), 7.12 (br s, 1H), 6.21 (s, 1H), 5.95 (s, 1H), 5.77 (m, 1H), 5.40 (app d, J= 6.0 Hz, 1H), 4.80 (m, 1H), 4.60 (m, 4H), 4.45 (appd,J= 13.6 Hz, 1H),4.3O (m, 6H), 3.99 (m, 1H), 3.90 (m, 6H), 3.71 (m, 1H), 10 3.65 (m, 1H), 3.49 (m, 1H), 3.25 (app t, J = 11.6 Hz, 1H), 3.03 (s, 1H), 2.74 (s, 3H), 2.50 (m,
1H), 2.40 (m, 1H), 1.43-1.98 (br m, 12H).
LC-MS (ESI) miz 604 [M + H]+, /R = 1.70 min. HPLC ZR (min): 3.08.
Intermediate 145
BS, H2O
DMSO 0 °C to ft Br
OH (+/-)
A solution of tert-butyl 2,5-dihydro-lH-pyrrole-l-carboxylate (955 mg, 5.64 mmol) in 7 mL of DMSO and 0.3 mL of water was cooled to 0 °C. NBS (1.51 g, 8.44 mmol) was added 20 slowly over eight minutes and then reaction mixture was warmed to room temperature. After four hours, mixture was poured into 100 mL of ice water and extracted with ethyl acetate (2x70 mL). Combined organics were washed with 100 mL of water and 100 mL of brine, then dried (MgSCM, filtered, and concentrated under reduced pressure to yield intermediate 145 (1.48 g, 99%) as a yellow film, which was used in the next step without further purification.
'H NMR (CDCI3,400MHz): d 4.46 (m, lH),4.15(m, 1H),4.O2 (dd, J = 5.2Hz, 13 Hz), 3.81 (m, 2H), 3.40 (m, 1H), 1.46 (s, 9H)
Intermediate 146
365
(+/-)
To a solution of intermediate 145 (467 mg, 1.75 mmol) in 7 mL of methanol at 0 °C, was slowly added a 1.0 N aqueous solution of Na 011 (2.4 mL, 2.4 mmol). Reaction mixture was warmed to room temperature and stirred overnight. Methanol was then concentrated under reduced pressure and 20 mL of water was added. Aqueous was extracted with ethyl acetate (3x25 mL) and combined organics were washed with 50 mL of brine, then dried (MgSOq), filtered, and concentrated under reduced pressure to yield intermediate 146 (1.48 g, 99%) as a colorless oil, which was used in the next step without further purification.
’H NMR (CDCh, 400MHz): d 3.80 (d, J = 12.8 Hz, IH), 3.73 (d, J = 12.8 Hz), 3.65 (d, J = 3.2 Hz, 2H), 3.31 (d, J = 4.8 Hz, IH), 3.28 (d, J = 4.8 Hz, IH), 1.43 (s, 9H)
Intermediate 147
γ-° Et2AI(CN),
N Toluene, rt o
(+/-)
A solution of diethylaluminum cyanide in toluene (1.0 M, 3.3 mL, 3.3 mmol) was added slowly to a solution of intermediate 146 (298 mg, 1.61 mmol) in 9 mL of toluene at room temperature. After stirring overnight, reaction mixture was quenched carefully (caution: exothermic) by slow addition of 1.0 N solution of NaOH (aq) and then diluted with 15 mL of water. Aqueous was extracted with ethyl acetate (2x60 mL) and combined organics were washed with water (2x60mL) and 60 mL of brine, then dried (MgSOq), filtered, and concentrated under reduced pressure to yield intermediate 147 (314 mg, 85%) as a light yellow oil, which was used in the next step without further purification.
366 ’H NMR (CDClj, 400MHz): d 4.63 (m, IH), 3.80-3.61 (m, 3H), 3.36 (m, IH), 3.05 (m, IH),
2.64 (br s, IH), 1.47 {s, 9H)
Compound 179
Trifluoroacetic acid (3.6 mL, 47.6 mmol) was added to a solution of tert-butyl 3-cyano4-hydroxypyrrolidine-l-carboxylate (287 mg, 1.36 mmol) in 30 mL of dichloromethane. After stirring overnight, reaction mixture was concentrated under reduced pressure and dried in vacuo for 2 hours yielding a brown film. This was combined with intermediate 73 (320 mg, 0.664 mmol) and solids were taken up in 24 mL of anhydrous methanol. To this mixture was added triethylamine (0.28 mL, 2.01 mmol) and mixture was heated at 75 °C overnight. After cooling to room temperature, reaction mixture was concentrated under reduced pressure and purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 179 (mixture of 2 trans isomers) (200 mg, 45%) as a white solid, trifluoroacetic acid salt, after lyophilization.
'H-NMR (DMSO, 400 MHz): ÔD 9.22 (s, IH) 8.53 (s, IH), 7.50 (m, 2H), 7.41 (m, IH), 6.15 (s, IH), 5.94 (m, 2H), 4.51 (m, IH), 3.98 (m, 3H), 3.86 (m, IH), 3.52 (m, IH), 3.22 (m, 2H), 3.05 (m, IH), 3.03 (s, 3H), 2.31 (s, 3H), 1.89 (m, IH), 1.68-1.22 (m, 4H).
LCMS m/z [M+H]+ C^sH^gClNvO^S requires: 558.16. Found 558.36. HPLC Tr (min), purity %: 6.54, 95% ~ 1:1 mixture of diastereomers.
367
Intermediate 73
TEA, MeOH, 75°C
A dioxane solution of commercially available (+/-) cis and trans tert-butyl 3-cyano-4hydroxypyrrolidine-1-carboxylate (129 mg, 0.87 mmol) and 4.2 mL of 4N HCI in dioxane was stirred for eighteen hours. After removal of the solvent by concentration under reduced pressure, resulting residue was treated with intermediate 73 (41.4 mg, 0.0858 mmol) and tri ethylamine (0.23 mL, 1.66 mmol) in accordance with the previous example of compound 179. Purification with prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 180 (mixture of isomers) (32 mg, 55%) as a white solid, trifluoroacetic acid salt, after lyophilization.
1 H-NMR (DMSO, 400 MHz): ÔD 9.22 (s, 1H) 8.53 (s, 1H), 7.52-7.41 (m, 3H), 6.15 (s, 1H),
5.96 (m, 1H), 4.49 (m, 1H), 3.98 (m, 2H), 3.86 (m, 2H), 3.49 (m, 3H), 3.20 (m, 1H), 3.08 (m, 1H), 3.03 (s, 3H), 2.36 (s, 3H), 1.86 (m, 1H), 1.77-1.25 (m, 4H).
LCMS m/z [M+H]+ C25H2SCIN7O4S requires: 558.16. Found 558.35.
HPLC Tr (min), purity %: 6.45, 6.58, 99% as a mixture of four diastereomers.
Intermediate 148
Intermediate 148
368
Tert-butyldimethylsilyl chloride (783 mg, 5.19 mmol) was added to a solution of (+/-) cis and trans tert-butyl 3-cyano-4-hydroxypyrrolidine-1-carboxylate (l.00 g, 4.72 mmol) and imidazole (390 mg, 5.73 mmol) in 5 mL of DMF at room temperature. After stirring overnight, TLC indicated near complete consumption of starting material. Reaction mixture was poured into 50 mL of I : I water/brine and extracted with ethyl acetate (3x40 mL). Combined organics were washed with 100 mL of water then 100 mL of brine, dried (Na2SO4), filtered and concentrated under reduced pressure. Residue was purified by silica gel column chromatography (0-40% ethyl acetate in hexanes) to yield the desired (+/-) cis-isomer intermediate 148 as a white solid (664 mg, 43%) and the (+/-) trans isomer as a clear oil side product (778 mg, 51%), (W02006 066896 A2) 'H-NMR of cis (+/-) isomer (CDC13, 400 MHz); ÔÜ 4.48 (m, IH), 3.73 (m, IH), 3.65 (m, IH), 3.51-3.27 (m,2H), 3.00 (m, IH), 1.46 (s,9H), 0.92 (s, 9H), 0.17 (s, 3H), 0.13 (s, 3H).
Intermediate 149
Trifluoroacetic acid (3.6 mL, 47.6 mmol) was added to a solution of intermediate 148 isomers (620 mg, 1.90 mmol) in 40 mL of di chloromethane. After stirring four hours, reaction mixture was concentrated under reduced pressure and dried in vacuo for 2 hours yielding intermediate 149 as a clear oil (mixture of isomers) (633 mg, 98%), which was used in the next step without further purification.
’H-NMR (CDCI3,400 MHz); δΠ 9.65 (br s, IH), 9.12 (brs, IH), 4.72 (in, IH), 3.83 (m, IH), 3.69 (m, IH), 3.47 (m, IH), 3.37-3.31 (m, 2H), 0.93 (s, 9H), 0.22 (s, 3H), 0.17 (s, 3H).
Intermediate 150
369
Following the procedure of compound 179, beginning with intermediate 149 (367 mg, 0.761 mmol) and intermediate 73 (620 mg, 1.82 mmol) in 24 mLof anhydrous THF, intermediate 150 was recovered after silica gel column chromatography (15-50% ethyl acetate in hexanes) as a white solid (289 mg, 57%, mixture of two isomers shown)
LCMS m/z [M+H]+ C3]H42ClN7O4SSi requires: 672.25. Found 672.46
Compound 181
+ TBAF, THF, rt
370
A solution TBAF in THF (1.0 M, 0.6 mL, 0.6 mmol) was added slowly to a solution of intermediate 150 (258 mg, 0.384 mmol) in 5 mL of THF at room temperature. After stirring overnight, reaction mixture was concentrated under reduced pressure and residue was purified by silica gel column chromatography (15-75% ethyl acetate in hexanes) to yield compound 181 as a white solid (+/- cis isomers shown) (98 mg, 46%) ’H-NMR (DMSO, 400 MHz): δα 9.22 (s, 1H), 8.52 (m, 1H), 7.53-7.39 (m, 3H), 6.14 (s, 1H),
5.95 (m, 1H), 4.48 (m, 1H), 4.01 (m, 2H), 3.86 (m, 2H), 3.61-3.27 (m, 3H), 3.19 (m, 1H), 3.04 (m, 1H), 3.02 (s, 3H), 2.30 (s,3H), 1.83 (m, 1H), 1.70-1.22 (m, 4H).
LCMS m/z [M+H]+ C25H28CIN7O4S requires: 558.16. Found 558.35. HPLC Tr (min), purity %: 99% as a mixture of two diastereomers
Intermediate 151
NaN3, Dioxane N H20,100 °C
OH '3 (+/-)
Sodium azide (281 mg, 4.32 mmol) was added to a solution of intermediate 146 (276 mg, 1.49 mmol) in 6 mL of dioxane and 1 mL of water at room temperature. Mixture was heated at 100 °C overnight. After cooling to room temperature, mixture was further cooled to 0 °C and quenched with 10 mL of water. Mixture was extracted with ethyl acetate (3x30 mL) and combined organics were washed with 50 mL of brine, then dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 151 (318 mg, 85%) as a clear yellow oil, which was used in the next step without further purification.
‘H NMR (CDCI3,400MHz): d4.24(m, lH),3.92(m, 1H), 3.69 (m, 1H), 3.60 (m, 1H), 3.37 (m, 2H), 2.46 (br s, 1H), 1.46 (s, 9H)
Compound 182
37l
TFA, DCM. rt (carry crude)
Intermediate 73
TEA, MeOH, 75aC
Trifluoroacetic acid (3,3 mL, 42.7 mmol) was added to a solution of intermediate 151 (270 mg, 1.18 mmol) in 25 mL of dichloromethane. After stirring overnight, reaction mixture was concentrated under reduced pressure and dried in vacuo for 2 hours yielding a brown film. This was combined with intermediate 73 (230 mg, 0.477 mmol) and solids were taken up in 14 mL of anhydrous methanol. To this mixture was added triethylamine (0.33 mL, 2.36 mmol) and mixture was heated at 75 °C overnight. After cooling to room temperature, reaction mixture was concentrated under reduced pressure and purified by silica gel column chromatography (1580% Ethyl Acetate in Hexanes) to yield compound 182 (222 mg, 82%) as a white solid and mixture of 2 trans isomers.
‘H-NMR (DMSO, 400 MHz): ÔD 9.23 (s, IH) 8.50 (s, IH), 7.54-7.30 (m, 3H), 6.12 (s, IH),
5.95 (m, IH), 5.63 (d, IH), 4.17 (m, IH), 4.09 (m, IH), 4.00-3.83 (m, 2H), 3.60 (m, IH), 3.51 (m, IH), 3.21 (m, IH), 3.08 (m, 1H),3.O4 (s, 3H), 2.32 (m, IH), 2.31 (s, 3H), 1.86 (m, IH),
1.55-1.15 (m,4H).
LCMS m/z [M+H]+ C24H28CIN9O4S requires: 574.17. Found 574.45.
HPLC Tr (min), purity %; 6.67, 99%, --1:1 mixture of diastereomers.
Compound 183
372
Triphenylphosphine (201 mg, 0.767 mmol) was added to a solution of compound 182 in 9 mL of THF at room temperature. After 2 hours, 0.5 mL of water was added and mixture was heated at 65°C overnight. After cooling to room temperature, solvents were concentrated under reduced pressure and remaining residue was purified by prep HPLC (10-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 183 (mixture of trans isomers) as a white solid, trifluoroacetic acid salt (35 mg, 82%), after lyophilization.
'H-NMR (DMSO, 400 MHz): δα 9.23 (s, IH), 8.53 (s, IH), 8.10 (s, 3H), 7.56-7.37 (m, 3H), 6.14 (s, IH), 5.96 (m, IH), 4.27 (m, 1H),4.O5 (m, lH),3.94(m, IH), 3.69-3.56 (m, IH), 3.21 (m, IH), 3.04-3.02 (m, 2H), 3.03 (s, 3H), 2.33 (s, IH), 2.32(s, 3H), 1.87 (m, IH), 1.68-1.21 (m, 4H).
LCMS m/z [M+H]+ C24H28CIN9O4S requires: 548.18. Found 548.16 HPLC Tr (min), purity %: 5.22, 99%, ~1:1 mixture of diastereomers.
Intermediate 152
373
Methanesulfonyl chloride (0.08 mL, 1.04 mmol) was added to a solution of intermediate 151 (200 mg, 0.876 mmol) and triethylamine (0.16 mL, 1.14 mmol) in 8 mL of dichloromethane at 0°C. After wanning to room temperature, reaction mixture was stirred overnight and then quenched with 15 mL of water. Mixture was separated and aqueous was extracted with ethyl acetate (3x25 mL). Combined organics were washed with 50 mL of water and brine, then dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 152 (244 mg, 91%) as a brown oil, which was used in the next step without further purification.
1 H-NMR (CDC13, 400 MHz): 4.96 (m, IH), 4.25 (m, IH), 3.80-3.45 (m, 4H), 3.09 (s, 3H),
1.47 (s, 9H)
Intermediate 153
KOAc, DMF
75-90 °C
Potassium acetate (165 mg, 1.68 mmol) was added to a solution of intermediate 152 (240 mg, 0.784 mmol) in 6 mL of DMF at room temperature. Mixture was heated at 75 °C overnight. LC/MS analysis indicated ~ 20% displacement to azido acetate. Additional potassium acetate (920 mg) was added and mixture was heated at 90 °C overnight. Mixture was poured into 50 mL of 1:1 water/brine and aqueous was extracted with ethyl acetate (3x35 mL). Combined organics were washed with 50 mL of brine, then dried (MgSO4), filtered, and concentrated under reduced pressure to yield a brown film. Film was dissolved in a 1:1:1 mixture of methanol/THF/water and LiOH-H2O (80 mg, 1.91 mmol) was added at room temperature. After stirring eighteen hours, mixture was quenched with sat. NH4C1 (aq5 and extracted with ethyl
374 acetate (3x20 mL). Combined organics were washed with 30 mL of water and brine, then dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 153 (179 mg, 50%) as a brown oil in ~1:1 mixture with 152, which was used in the next step without further purification.
‘H-NMR (CDC13, 400 MHz): δΠ 4.35 (m, 1H),4.O2 (m, IH), 3.55-3.33 (m, 4H), 2.13 (br s, IH), 1.46 (s, 9H)
Compound 184
1.1
Following the procedure for the synthesis of compound 182, starting with intermediate 153 (166 mg, 0.727 mmol, 50% purity) then intermediate 73 (117 mg, 0.243 mmol) and triethylamine (0.3 mL, 2.17 mmol), compound 184 was recovered as a white solid (100 mg, 73%) after silica gel chromatography (20-70% ethyl acetate in hexanes).
’H-NMR (DMSO, 400 MHz); δ□ 9.22 (s, lH)8.49(s, IH), 7.55-7.38 (m, 3H), 6.11 (s, IH),
5.95 (m, IH), 5.74 (d, 1H),4.41 (m, lH),4.04(m, lH),3.84(m, IH), 3.60 (m, IH), 3.21 (m, IH), 3.05 (m, IH), 3.03 (s, 3H), 2.33 (s, 3H), 2.32 (m, 2H), 1.87 (m, IH), 1.71-1.22 (m, 5H) LCMS m/z [M+H]+ C24H28C1N9O4S requires: 574.17. Found 574.15
HPLC Tr (min), purity %: 6.57, 90%, ~1:1 mixture of diastereomers.
c
375
Compound 185
Following the procedure for the synthesis of compound 185, starting with compound 184 (90 mg, 0.157 mmol), compound 185 was synthesized as a white solid trifluoroacetic acid salt 10 (73 mg, 70%) after lyophilization.
*H-NMR (DMSO, 400 MHz): δΠ 9.23 (s, IH) 8.52 (m, IH), 8.17 (s, 3H), 7.54-7.35 (m, 3H), 6.13 (s, IH), 5.94 (m, IH), 4.39 (m, IH), 3.96-3.80 (m, 2H), 3.79-3.61 (m, 3H), 3.21 (m, IH), 3.04 (m, IH), 3.03 (s, 3H), 2.35 (s, 3H), 1.87 (m, IH), 1.72-1.22 (m, 4H).
LCMS m/z [Μ+Η]+ C24H28CIN9O4S requires: 548.18. Found 548.15
HPLC Tr (min), purity %: 5.22, 99%, -1:1 mixture of diastereomers.
Intermediate 154
376
Following the synthesis of intermediate 152, beginning with intermediate 147 (175 mg, 0.829 mmol), intermediate 154 was synthesized as a yellow film (240 mg, 98%) and used in the next step without further purification 'H-NMR (CDCh, 400 MHz): ÔD 5.41 (m, IH), 3.92 (m, JH), 3.80 (m, 2H), 3.67 (m, IH), 3.44 (m, IH), 3.12 (s, 3Η), 1.47 (s,9H).
Intermediate 155
A mixture of intermediate 154 (300 mg, 1.03 mmol) and sodium azide (108 mg, 1.66 mmol) in 3 mL of DMF was heated at 57 °C overnight. After cooling to room temperature, reaction mixture was quenched with 30 mL of cold water and extracted with ethyl acetate (3x30 mL). Combined organics were washed with water (2x50 mL) and brine (1x500 mL), dried (MgSCU), filtered and concentrated to yield intermediate 155 as a yellow creamy solid (190 mg, 95%) that was used in the next step without further purification.
'H-NMR (CDCl3,400 MHz): ÔD 6.65 (tn, IH), 4.30 (m, 4H), 1.48 (s, 9H).
Intermediate 156
Liquid ammonia (5 mL) was added at -78°C to intermediate 155 (119 mg, 0.611 mmol) in a bomb apparatus. Mixture was heated at 80 °C under pressure overnight. After cooling to room temperature, reaction mixture was indicated as complete by LC/MS. Mixture was evaporated and residue was dissolved in 6 mL of THF. Diisopropylethylamine (0.15 mL, 0.733
377 mmol) and CBz-chloride (0.100 mL, 0.68 mmol) were then added and mixture stirred at room temperature overnight. Solvents were then removed under reduced pressure and residue was dissolved in ethyl acetate and washed with water and brine. Organics were dried (MgSO4), filtered and concentrated under reduced pressure. Residue was then purified by silica gel column chromatography (0-100% ethyl acetate in hexanes) to yield intermediate 156 as a clear film (158 mg, 73%) (mixture of isomers).
‘H-NMR (CDCh, 400 MHz): ÔÜ 7.41-7.28 (m,5H),5.21 (s, 1H), 5.11 (s, 2H), 4.71 (brs, 1H), 4.40 (m, 1H), 3.78-3.57 (m, 3H), 3.42-3.18 (m, 2H), 1.45 (s, 9H).
Intermediate 157
Following the synthesis of compound 182, beginning with intermediate 156 (100 mg, 0.289 mmol) then intermediate 73 (92 mg, 0.191 mmol) and tri ethyl amine (0.081 mL, 0.578 mmol), intermediate 157 was recovered as a white film (25 mg, 19%) after silica gel chromatography (10-60% ethyl acetate in hexanes).
LCMS m/z [M+H]+ C33H35CIN8O5S requires: 691.21. Found 691.15.
Compound 186
378
A mixture of intermediate 157 (25 mg, 0.036 mmol) and 10% palladium on carbon (5 mg, 0.0047 mmol) in 2 mL of ethanol and 0.9 mL of ethyl acetate was hydrogenated under an atmosphere of hydrogen for 3 hours. LC/MS indicated <3% conversion. Hydrogen was removed and mixture was concentrated under reduced pressure. Residue was taken up in 6 mL of 1:1 ethyl acetate/ethanol and fresh 10% palladium on carbon (76 mg, 0.071 mmol) was added. Mixture was hydrogenated under an atmosphere of hydrogen for 2 hours. Hydrogen was removed and mixture was filtered over celite, washing with ethanol. Filtrate was concentrated and remaining residue was purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% tri fluoroacetic acid)) to yield compound 186 as a white solid, trifluoroacetic acid salt (13 mg, 54%), after lyophilization.
’H-NMR (DMSO, 400 MHz): ÔÜ 9.23 (s, IH) 8.53 (s, IH), 7.52 (m, 2H), 7.42 (m, IH), 6.15 (s, IH), 5.97 (s, IH), 3.96 (m, IH), 3.85 (m, 3H), 3.50 (m, IH), 3.21 (m, IH), 3.06 (m, IH), 3.04 (s, 3H), 2.37 (s, 3H), 2.33 (m, 2H), 2.20 (m, IH), 1.91(m, IH), 1.67-1.27 (m, 4H).
LCMS m/z [M+Hp C25H29C1N8O3S requires: 557.18. Found 557.07.
HPLC Tr (min), purity 5.56, 99%:
Intermediate 158
EDCI, DMAP
CH2CI2, rt
Compound 92 (306 mg, 0.590 mmol) and DMAP (44.1 mg, 0.361 mmol) were added to a solution of EDCI (235 mg, 1.23 mmol) and L-Valine (134 mg, 0.617 mmol) in 7 mL of di chloromethane at room temperature. After stirring overnight, reaction mixture was concentrated and submitted to silica gel chromatography to yield intermediate 158 (320 mg, 76%).
LCMS m/z [M+H]+ C33H44CIN7O7S requires: 718.27. Found 718.52.
Compound 187
A solution of hydrogen chloride (4N, 6 mL, 24 mmol) was added to a solution of intermediate 158 (315 mg, 0.439 mmol) in 28 mL of dioxane. After stirring overnight, reaction mixture was concentrated to yield compound 187 as a white solid HCI salt (259 mg, 90%) ’H-NMR (DMSO, 400 MHz): ÔD 9.19 (s, IH), 8.60 (s, 3H), 8.51 (s, IH), 7.53-7.38 (m, 3H), 6.17 (s, IH), 5.95 (m, IH), 5.37 (m, IH), 4.61 (m, IH), 4.23 (m, 2H), 3.92 (m, IH), 3.66 (m, 2H), 3.48 (m, 2H), 3.20 (m, 1H),3.O3 (s, 3H), 2.34 (m, 1H),2.21 (m, 1H),2.15 (s, 3H), 1.87 (m, 1H), 1.65-1.20 (m, 4H), 0.99 (m, 6H), 0.86 (m, 1H).
LCMS m/z [M+H]+ C28H36C1N7O5S requires: 618.22. Found 618.41.
HPLC Tr (min), purity %: 5.74, 85%
380
Intermediate 159
Cl\
oxalyl chloride
DMF, CH2CI21 rt /=\
VT N's
_<s Ο H
0
DMF (0.070 mL, 0.908 mmol) was added slowly to a suspension of 5-methyL2(methylsulfonamido)benzoic acid (1.01 g, 4.59 mmol) and oxalyl chloride (1.6 mL, 18.3 mmol) in 11 mL of anhydrous dichloromethane. After 3 hours, reaction mixture was concentrated and dried in-vacuo to yield intermediate 159 as a yellow solid (987 mg, 90%) which was used in the next step without further purification.
’H-NMR (CDC13,400 MHz): δΠ 10.2 (s, IH), 7.92 (s, IH), 7.64 (m, IH), 7.39 (m, IH), 3.03 (s, 3H), 2.35 (s, 3H).
Intermediate 160
HCf
Tri ethylamine (0.58 mL, 4.16 mmol) was added slowly to a mixture of intermediate 159 (479 mg, 2.01 mmol) and intermediate 72 (573 mg, 2.00 mmol) in 10 mL of dichloromethane under argon at 0 °C. After 3 hours, LC/MS indicated full conversion to desired product. Reaction mixture was concentrated and dried in-vacuo to yield intermediate 160 as a yellow solid (924 mg, 92%) that was used in the next steps without further purification.
LCMS m/z [M+H]+ C2iH24CIN5O3S requires: 462.13. Found 462.32.
381
Compound 188
Triethylamine (0.367 mL, 2.65 mmol) was added to a mixture of intermediate 160 (70 mg, 0.152 mmol) and (R)-pyrrolidine-3-carbonitrile hydrochloride (175 mg, 1.32 mmol) in 8 mL of methanol at room temperature. After heating at 70 °C overnight, reaction mixture was cooled to room temperature and concentrated under reduced pressure. The remaining residue was purified by prep HPLC (15-100% Acetonitrile (with 0.1% tri fluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 188 as a white solid, tri fluoroacetic acid salt (58.9 mg, 61%), after lyophilization.
*H-NMR(DMSO, 400 ΜΗζ):δϋ 9.01 (s, IH) 8.53 (s, IH), 7.39 (m, IH), 7.25 (m, lH),7.17(s, IH), 6.13 (s, IH), 5.97 (m, IH), 3.92 (m, IH), 3.84-3.70 (m, 3H), 3.47 (m, IH), 3.20 (m, IH), 3.04 (m, IH), 2.95 (s, 3H), 2.31 (s, 3H), 2.30-2.13 (m, 6H), 1.84 (m, IH), 1.61 (m, IH), 1.571.22 (m, 3H).
LCMS m/z [M+H]+ C26H3iClN7O3S requires: 522.22. Found 522.37
HPLC Tr (min), purity %: 6.77, 99%
Compound 189
382
Following the procedure of compound 188, using intermediate 160 (75 mg, 0.163 mmol), compound 189 was recovered as a white solid, trifluoroacetic acid salt (61 mg, 63%) after lyophilization.
’H-NMR (DMSO, 400 MHz): δα 9.03 (s, IH), 8.46 (s, IH), 7.42-7.15 (m, 3H), 6.05 (s, IH),
5.95 (s, IH), 4.21 (m, 3H), 3.43 (m, lH),3.22(m, lH),3.02(m, 1H),2.95 (s, 3H), 2.32 (s, 3H),
2.28 (m, 2H), 2.20 (m, IH), 2.14 (s, 3H), 1.85(m, IH), 1.69-1.21 (m, 4H).
LCMS m/z [M+H]+ C24H30ClN6O3S requires: 483.21. Found 483.45.
HPLC Tr (min), purity %: 5.63, 97%
Intermediate 161
Following the procedure of compound 188, intermediate 161 was recovered as a white solid (81 mg, 82%) after silica gel column chromatography (10-60% Ethyl Acetate/Hexanes). LCMS m/z [M+H]+ C3oH4jC1N705S requires: 612.29. Found 612.22.
Compound 190
Trifluoroacetic acid (0.35 mL, 4.58 mmol) was added to a solution of intermediate 161 (79 mg, 0.129 mmol) in 5 mL of dichloromethane. After stirring overnight, reaction mixture
383 was concentrated under reduced pressure and dried in-vacuo for 3 hours to yield compound 190 as an off white solid (76.6 mg, 95%), trifluoroacetic acid salt.
‘H-NMR (DMSO, 400 MHz): ÔD 9.02 (s, 1H) 8.53 (s, 1H), 8.01 (s, 3H), 7.39 (m, 1H), 7.25 (m, lH),7.19(m, 1H), 6.11 (s, 1H), 5.97 (m,lH), 3.85 (m, 4H), 3.24 (m, lH),3.03(m, lH),2.95(s, 3H), 2.33 (s, 3H), 2.32 (s, 3H), 2.29 (m, 3H), 2.05-1.81 (m, 2H), 1.67-1.22 (m, 4H).
LCMS m/z [M+H]+ CîsHjîCINtO^S requires: 512.24. Found 512.20
HPLC Tr (min), purity %: 5.10, 99%
Intermediate 162
Following the procedure of compound 188, intermediate 162 was recovered as a white solid (92 mg, 98%) after silica gel column chromatography.
LCMS m/z [M+H]+ QyH^ClN .LLS requires: 598.27. Found 598.21.
Compound 191
Following the procedure of compound 190, after three hours, compound 191 was recovered as an off-white solid (88 mg, 97%), tri fluoroacetic acid salt.
'H-NMR (DMSO, 400 MHz): ÔD 8.97 (s, 1H) 8.53 (s, 1H), 8.31 (s, 2H), 7.38 (m, 2H), 7.25 (m, 2H),7.17(s, 1H), 6.16(s, 1H), 5.98 (m, 1H), 4.47 (m, lH),4.16(m, 1H), 3.21 (m, JH), 3.04
384 (m, IH), 3.03 (s, 3H), 2.36 (m, 1H), 2.32 (s, 3H), 2.23 (m, 1H), 2.15 (s, 3H), 1.86 (m, 1H), 1.621.21 (m, 4H).
LCMS m/z [M+H]+ C24H31CIN7O3S requires: 498.22, Found 498.13.
HPLC Tr (min), purity %: 5.03, 99%
Compound 192 1· HN^/>—OH
HATU, TEA DMF, rt
Tri ethyl amine (10.0 mL, 76.6 mmol) was added to a mixture of azetidin-3-ol hydrochloride (4.2 g, 38.3 mmol) and intermediate 72 (1.1 g, 3.83 mmol) in 5 mL of anhydrous methanol at room temperature. Reaction mixture was heated to 70 °C for 2 hours, after which LC/MS indicated reaction was complete. Solvent was concentrated under reduced pressure and remaining residue was suspended in dichloromethane and filtered. Processed was repeated two times and filtrate was concentrated to yield a solid. Solid was taken up in a minimal amount of dichloromethane and stirred overnight. Resulting precipitate was filtered to isolate (5)-1-(6methyl-2-(piperidin-2-yl)pyrazolo[l,5-a]pyrimidin-5-yl)azetidin-3-olas a pale solid (LCMS m/z [M+H]+ C15H2iN5O requires: 288.17. Found 288.20).
HATU (88 mg, 0.231 mmol) was added to a solution of 5-amino-2(methylsulfonamido)benzoic acid (47 mg, 0.204 mmol) in 3 mL of DMF. After 2 hours, above intermediate (55 mg, 0.203 mmol) and triethylamine (0.060 mL, 0.433 mmol) were added sequentially and reaction mixture stirred at room temperature overnight. Mixture was then poured into 20 mL of H2O and 10 mL brine and extracted three times with 30 mL of ethyl acetate. The combined organic layers were washed with 60 mL of 1:1 water:brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was
385 purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 192 (41 mg, 46%) as a white solid, tri fluoroacetic acid salt, after lyophilization.
lH-NMR (DMSO, 400 MHz): ÔD 8.84 (s, 1H) 8.44 (m, 1H), 7.24-7.11 (m, 2H), 6.82 (m, 1H),
6.74 (s, 2H), 6.08 (s, 1H), 5.93 (d, 1H), 4.77 (m, 1H), 4.50 (m, 1H), 4.39 (m, 2H), 3.94 (m, 2H), 3.21 (m, 1H), 3.02 (m, 1H), 2.89 (s, 3H), 2.33 (m, 1H),2.13 (s, 3H), 1.82 (m, 1H), 1.65-1.11 (m, 4H).
LCMS m/z [M+H]+ C23H29CIN7O4S requires: 500.20. Found 500.17.
HPLC Tr (min), purity %: 4.09, 88%
Compound 193
DMF, rt
Morpholine intermediate (prepared in first step of morpholine intermediate 65 synthesis) ( 1.0 g, 3.11 mmol) was taken up in 15 mL of ethanol and placed in a sealed reaction tube. Azetidine (2.1 mL, 31.1 mmol) was added and tube was sealed and heated at 80 °C for two hours. Solvents were removed under reduced pressure and residue was purified by silica gel column chromatography (20-50% methanol in ethyl acetate) to yield (S)-4-(5-(azetidin-l-yI)-2(piperidin-2-yl)pyrazolo[l,5-a]pyrimidin-7-yl)morpholine as a solid (850 mg, 80%).
LCMS m/z [M+H]+ Cjg^fiNfiO requires: 343.22. Found 343.30
Following the procedure of compound 192, using intermediate above ((S)-4-(5-(azctidinl-yI)-2-(piperidin-2-yl)pyrazolo[l,5-a]pyrimidin-7-yl)morpholinc), (50 mg, 0.146 mmol), compound 193 was recovered as an off-white solid (41 mg, 42%), tri fluoroacetic acid salt.
386 *H-NMR (DMSO, 400 MHz): δΠ 8.71 (s, 1H), 7.09 (m, 1H), 6.72 (m, 1H), 6.58 (m, 1H), 6.07 (s, 1H), 5.90 (m, 1H), 5.34 (s, 2H), 4.13 (m, 4H), 3.75 (m, 7H), 3.40 (m, 1H), 3.08 (m, 1H), 2.92 (s, 3H), 2.34 (m, 2H),2.09 (m, 1H), 1.81 (m, 1H), 1.69-1.28 (m, 4H).
LCMS m/z [M+H]+ CyJLiCINALS requires: 555.24. Found 555.24.
HPLC Tr (min), purity %: 4.30, 96%
Compound 194
Morpholine intermediate (prepared in first step of morpholine intermediate 65 synthesis) (1.0 g, 3.11 mmol) was taken up in 15 mL of ethanol and placed in a sealed reaction tube. Azetidine (2.1 mL, 31.1 mmol) was added and tube was sealed and heated at 80 °C for two hours. Solvents were removed under reduced pressure and residue was purified by silica gel column chromatography (20-50% methanol in ethyl acetate) to yield (S)-4-(5-(azetidin-l-y])-2(piperidin-2-yl)pyrazolo[l,5-a]pyrimidin-7-yl)morpholine as a solid (850 mg, 80%).
LCMS m/z [M+H]+ C]8H26N6O requires: 343.22. Found 343.30
Following the procedure of compound 192, using intermediate above (46 mg, 0.134 mmol), compound 194 was recovered as an off-white solid (45 mg, 50%), trifluoroacetic acid salt.
'H-NMR (DMSO, 400 MHz): δΠ 9.02 (s, 1H), 7.29 (m, 2H), 7.09 (m, 1H), 6.10 (s, 1H), 5.92 (m, 1H), 5.35 (s, 1H), 4.17 (m, 4H), 3.77 (m, 6H), 3.37 (m, 1H), 3.12 (m, 1H), 2.99 (s, 3H), 2.37 (m, 2H), 2.32 (m, 3H), 2.18 (m, 1H), 1.89 (m, 1H), 1.65-1.32 (m, 4H).
LCMS m/z [M+H]~ C27H35CIN7O4S requires: 554.24. Found 554.23.
HPLC Tr (min), purity %: 5.34, 98%
387
Compound 195
Following the procedure of compound 188, starting from intermediate 73, compound
195 was recovered as a tan solid, trifluoroacetic acid salt (31 mg, 67%) after washing the residue with water.
]H-NMR (DMSO, 400 MHz): ÔÜ 9.22 (s, IH), 8.53 (s, IH), 7.55-7.27 (m, 3H) 6.15 (s, IH), 5.96 (m, IH), 3.93 (m, IH), 3.85-3.71 (m, 3H), 3.49 (m, IH), 3.21 (m, IH), 3.05 (m, IH), 3.03 (s, 3H), 2.34 (m, IH), 2.32 (s, 3H), 2.17 (m, IH), 1.87(m, IH), 1.66-1.20 (m, 5H).
LCMS m/z [M+H]+ C25H28C1N7O3S requires: 542.17. Found 542.14.
HPLC Tr (min), purity %: 7.16, 92%
Compound 196
Following the procedure of compound 188, starting from intermediate 73 compound 196 was recovered as a white solid, trifluoroacetic acid salt (45 mg, 82%) after lyophilization. lH-NMR (DMSO, 400 MHz): ÔD 9.20 (s, IH) 8.55 (s, IH), 7.52-7.38 (m, 3H), 6.18 (s, IH), 5.95 (d, IH), 4.60 (m, 2H), 4.06 (m, 2H), 3.85 (m, 2H), 3.20 (m, IH), 3.04 (s, 3H), 2.46-2.39 (m, 2H), 2.38 (s, 3H), 2.29 (m, IH), 1.67-1.20 (m, 4H).
LCMS m/z [M+H]-1 C24H27C1F2N6O3S requires: 553.15. Found 553.13.
388
HPLC Tr (min), purity %: 7.96, 99%
Compound 197
HCI
OH
TEA, MeOH, 70°C
Following the procedure of compound 188, starting from intermediate 73, compound 197 was recovered as a white solid, trifluoroacetic acid salt (37.5 mg, 66%) after lyophilization. ’H-NMR (DMSO, 400 MHz): ÔÜ 9.25 (s, IH), 8.47 (s, IH), 7.54-7.35 (m, 3H), 6.06 (s, IH), 5.96 (m, IH), 3.98 (m, 2H), 5.00 (br s, IH), 3.86 (m, 2H), 3.49 (m, 2H), 3.19 (m, IH), 3.08 (m, IH), 3.04 (s, 3H), 2.35 (m, IH), 2.32 (s, 3H), 1.85 (m, IH), 1.66-1.27 (m, 4H).
LCMS m/z [M+H]+ C24H29CIN6O5S requires: 549.16. Found 549.10.
HPLC Tr (min), purity %: 5.30, 98%
Following the procedure of compound 188, starting from intermediate 73, compound 198 was recovered as a white solid, trifluoroacetic acid salt (20.4 mg, 46%) after lyophilization. 'H-NMR (DMSO, 400 MHz): ÔD 9.25 (s, IH) 8.44 (s, IH), 7.50 (m, 2H), 7.41 (m, IH), 6.05 (s, IH), 5.94 (m, IH), 3.85-3.38 (m, 5H),3.17(m, IH), 3.04 (m, 1H),3.O2 (s, 3H), 2.35 (m, IH), 2.32 (s,5H), 1.98-1.80 (m,2H), 1.67-1.59 (m, 3H), 1.55-1.22 (m, 3H).
LCMS m/z [M+HJ* C25H3jClN6O4S requires: 547.18. Found 547.17.
HPLC Tr (min), purity %: 5.78, 92%
Following the procedure of compound 188, starting from intermediate 73, compound
199 was recovered as a white solid, trifluoroacetic acid salt (34 mg, 56%) after lyophilization.
‘H-NMR (DMSO, 400 MHz): ÔD 9.25 (s, 1H),8.69 (m, 1H),8.6O (m, IH), 8.53 (m, 1H),8.49 (m, IH), 7.55-7.37 (m, 3H), 6.08 (s, IH), 5.94 (m, IH), 4.09 (m, IH), 3.89-3.72 (m, 3H), 3.70 (m, IH), 3.19 (m, IH), 3.04 (m, IH), 3.03 (s, 3H), 2.35-2.30 (m, 2H), 2.34 (s, 3H), 2.16 (m, IH),
1.80 (m, IH), 1.66-1.23 (m, 4H).
LCMS m/z [M+H]+ C28H3]C1N8O3S requires: 595.19. Found 595.20.
HPLC Tr (min), purity %: 6.64, 99%
Compound 200
Following the procedure of compound 188, starting from intermediate 73, compound
200 was recovered as a yellow solid film, trifluoroacetic acid salt (11 mg, 13%) after lyophilization.
'H-NMR (DMSO, 400 MHz): δα 9.23 (s, 1H)8.53 (s, IH), 7.52 (m, 2H), 7.42 (m, IH), 6.15 (s, lH),5.97(s, IH), 3.96 (m, IH), 3.85 (m, 3H), 3.50 (m, 1H), 3.21 (m, IH), 3.06 (in, IH), 3.04 (s, 3H), 2.37 (s, 3H), 2.33 (m, 2H), 2.20 (m, IH), 1.91(m, IH), 1.67-1.27 (m, 4H).
LCMS m/z [M+H]+ C25H28C1N7O3S requires: 542.17. Found 542.11.
390
HPLC Tr (min), purity %: 7.44, 97%
Intermediate 163
Following the procedure of compound 188, starting from intermediate 73, intermediate
163 was recovered as a white solid (79 mg, 89%) after silica gel chromatography (10-50% ethyl acetate in hexanes).
LCMS m/z [M+H]+ C3iH40ClN7O5S requires: 658.25. Found 658.22.
Compound 201
Following the procedure of compound 190, beginning with intermediate 163 (78 mg, 0.118 mmol), compound 201 was recovered as a white solid, tri fluoroacetic acid salt (76 mg, 96%) after drying in-vacuo.
'Η-NMR (DMSO, 400 MHz): ÔD 9.24 (s, IH) 8.51 (s, IH), 8.09 (s, 3Η), 7.53-7.37 (m, 3H),
6.12 (s, 1H), 5.94(s, IH), 4.14 (m, 1H),4.O1 (m, IH), 3.91 (m, IH), 3.42 (m, 2H), 3. 3.21 (m, IH), 3.04 (m, IH), 3.02 (s, 3H), 2.35 (m, IH), 2.32 (s, 3H), 1.84 (m, IH), 1.65-1.22 (m, 4H), 1.02 (τη, IH), 0.78 (m, 3H).
LCMS m/z [M * H]+ C26H32CIN7O3S requires: 557.20. Found 557.15.
HPLC Tr (min), purity %: 5.60, 99%
391
Intermediate 164
Following the procedure of compound 188, starting from intermediate 73, intermediate 164 was recovered as a white solid tri fluoroacetic acid salt (79 mg, 89%) after prep HPLC (15100% Acetonitrile (with 0.1% tri fluoroacetic acid) in water (with 0.1% trifluoroacetic acid)). LCMS m/z [M+H]+ C29l L8C1N7O5S requires: 632.23. Found 632.52.
Compound 202
Following the procedure of compound 190, using intermediate 164, compound 202 was recovered as a white solid, trifluoroacetic acid salt (69 mg, 98%) after drying in-vacuo. ’H-NMR (DMSO, 400 MHz): δΠ 9.24 (s, IH) 8.52 (s, IH), 8.08 (s, 3H), 7.55-7.38 (m, 3H),
6.13 (s, IH), 5.95 (m, IH), 3.90 (m, 2H), 3.81-3.60 (m, 2H), 3.21 (m, IH), 3.04-3.00 (m, IH), 3.03 (s, 3H), 2.39-2.13 (m, 2H), 2.33 (s, 3H), 2.08-1.80 (m, 2H), 1.69-1.21 (m, 5H).
LCMS m/z [M+H]r C24H30CIN7O3S requires: 532.18. Found 532.42.
HPLC Tr (min), purity %: 5.28, 98%
Intermediate 165
392
Following the procedure of compound 188, starting from intermediate 73, intermediate
165 was recovered as a white solid (75 mg, 82%) after silica gel chromatography (5-60% ethyl acetate in hexanes).
LCMS m/z [M+H]+ C30H40CIN7O5S requires: 646.25. Found 646.17.
Compound 203
Following the procedure of compound 190, starting from intermediate 165, compound 203 was recovered as an off white solid, tri fluoroacetic acid salt (72 mg, 97%) after drying invacuo.
’H-NMR (DMSO, 400 MHz): ÔD 9.23 (s, IH) 8.58 (s, IH), 7.71 (s, 3H), 7.53-7.30 (m, 3H),
6.13 (s, IH), 5.98 (d, IH), 4.52 (m, IH), 3.81-3.43 (m, 5H), 3.21 (m, IH), 3.06 (m, IH), 3.04 (s, 3H), 2.36 (m, IH), 2.33 (s, 3H), 2.05-1.71 (m, 4H), 1.67-1.20 (m, 4H).
LCMS m/z [M+H]+ C25H32CIN7O3S requires: 546.20. Found 546.10.
HPLC Tr (min), purity %: 5.88, 99%
Compound 204
393
Following the procedure of compound 188, starting from intermediate 73, compound 204 was recovered as a white solid, trifluoroacetic acid salt (51 mg, 96%) after lyophilization. 'H-NMR (DMSO, 400 MHz): ÔD 9.23 (s, IH) 8.53 (s, IH), 7.52 (m, 2H), 7.42 (m, IH), 6.15 (s, IH), 5.97 (s, IH), 3.96 (m, IH), 3.85 (m, 3H), 3.50 (m, IH), 3.21 (m, IH), 3.06 (m, IH), 3.04 (s, 3H), 2.37 (s, 3H), 2.33 (m, 2H), 2.20 (m, IH), 1.91(m, IH), 1.67-1.27 (m, 4H), 1.06 (s, 3H). LCMS m/z [M+H]+ C25H3]C1N6O3S requires: 531.19. Found 531.14.
HPLC Tr (min), purity %: 6.74, 98%
Compound 205
Following the procedure of compound 188, starting from intermediate 73, compound 205 was recovered as a white solid, tri fluoroacetic acid salt (61 mg, 72%) after lyophilization. 'H-NMR (DMSO, 400 MHz): δΠ 9.22 (s, IH) 8.53 (d, IH), 7.52-7.36 (m, 3H), 6.13 (s, IH), 5.96 (m, IH), 4.58 (m, IH), 4.04 (m, IH), 3.83 (m, 2H), 3.62 (m, IH), 3.20 (m, IH), 3.04 (m, IH), 3.03 (s, 3H), 2.37 (m, 2H), 2.32 (s, 3H), 2.04 (m, IH), 1.86 (m, IH), 1.61 (m, IH), 1.49 (s, 3H), 1.47 (m, 2H)
LCMS m/z [M+H]+ C26H30CIN7O3S requires: 556.18. Found 556.45.
HPLC Tr (min), purity %: 7.29, 99%
394
Compound 206
Following the procedure of compound 188, starting from intermediate 73, compound 206 was recovered as a white solid, trifluoroacetic acid salt (80 mg, 89%) after lyophilization. *H-NMR (DMSO, 400 MHz): δα 9.41 (s, IH), 9.23 (s, IH) 8.58 (s, IH), 7.54-7.35 (m, 3H), 6.17 (s, IH), 5.97 (m, IH), 4.65 (m, IH), 3.85-3.58 (m, 5H), 3.33 (m, IH), 3.23 (m, 2H), 3.11 (m, IH), 3.04 (s, 3H), 2.36 (m, IH), 2.32 (s, 3H), 2.16 (m, IH), 2.04-1.73 (m, 9H), 1.63 (m, IH), 1.52-1.21 (m,3H).
LCMS m/z [M+H]+ C-glLsCIN-OjS requires: 600.24. Found 600.16
HPLC Tr (min), purity %: 6.35, 98%
Compound 207
Following the procedure of compound 188, starting from intermediate 73, compound 207 was recovered as a white solid, trifluoroacetic acid salt (37 mg, 85%) after lyophilization. JH-NMR (DMSO, 400 MHz): ÔO 9.25 (s, IH), 8.48 (d, IH), 7.50 (m, 2H), 7.41 (m, IH), 7.31 (m, 4H), 7.23 (m, IH), 6.08 (s, IH), 5.94 (m, IH), 4.09 (m, IH), 3.80 (m, 2H), 3.68 (m, IH), 3.42 (in, IH), 3.21 (m, IH), 3.05 (m, lH),3.04(s, 3H), 2.34 (s, 3H), 2.31 (m, 2H), 1.98-1.81 (m, 2H), 1.61 (m, IH), 1.57-1.25 (m, 3H).
LCMS m/z [M+H]+ CsoHbCINôOsS requires: 593.20. Found 593.37.
395
HPLC Tr (min), purity %: 7.77, 99%
Compound 208
Following the procedure of compound 188, starting from intermediate 73, compound 208 was recovered as a white solid, trifluoroacetic acid salt (49 mg, 84%) after lyophilization. ‘H-NMR (DMSO, 400 MHz): ÔÛ 9.24 (s, 1H), 8.48 (d, 1H), 7.50 (m, 2H), 7.42 (m, 1H), 7.27 (m, 2H), 6.94 (m, 3H), 6.06 (s, 1H), 5.94 (m, 1H), 5.09 (m, 1H), 4.11-3.62 (m, 3H), 3.19 (m, 1H), 3.05 (m, 1H), 3.04 (s, 3H), 2.34 (s, 3H), 2.31 (m, 1H), 1.86 (m, 3H), 1.91(m, 1H), 1.621.23 (m, 4H).
LCMS m/z [M+H]+ C30H33ClN6O4S requires: 609.20. Found 609.16.
HPLC Tr (min), purity %: 7.99, 99%
Compound 209
Following the procedure of compound 188, starting from intermediate 73, compound 209 was recovered as a white solid, trifluoroacetic acid salt (36 mg, 63%) after lyophilization. ‘H-NMR (DMSO, 400 MHz): 5D 9.24 (s, 1H) 8.64 (d, lH),8.49(d, 1H), 8.01 (m, 1H), 7.62 (m, 1H), 7.55-7.40 (m, 3H), 6.08 (s, 1H), 5.94 (m, 1H), 4.35 (m, 2H), 4.09 (m, 2H), 3.92-3.81
396 (m, 3H), 3.69 (m, IH), 3.10 (m, IH), 3.06 (m, IH), 3.03 (s, 3H), 2.35 (m, IH), 2.34 (s, 3H), 2.15 (m, IH), 1.81 (m, IH), 1.65-1.22 (m, 3H).
LCMS m/z [M+H]+ C29H32CIN7O3S requires: 594.20. Found 594.14.
HPLC Tr (min), purity %: 5.86, 98%
Compound 210
Following the procedure of compound 188, starting from intermediate 73, compound 210 was recovered as a white solid (67 mg, 86%) after silica gel column chromatography (15-90% ethyl acetate in hexanes).
'H-NMR (DMSO, 400 MHz): ÔU 9.26 (s, IH) 8.49 (s, IH), 7.55-7.30 (m, 3H), 6.08 (s, IH), 5.96 (s, IH), 4.66 (m, 1H),4.41 (m, 1H),3.72 (m, lH),3.54(m, 2H),3.34(m, 1H),3.18 (m, IH), 3.03 (s, 3H), 2.36 (m, lH),2.32(s, 3H), 1.97-1.86 (m, 5H), 1.74 (m, IH), 1.62-1.27 (m, 4H).
LCMS m/z [M+H]+ C25H31CIN6O4S requires: 547.18. Found 547.11.
HPLC Tr (min), purity %: 6.22, 99%
Intermediate 166
397
Following the procedure of compound 188, starting from intermediate 73, intermediate
166 was recovered as a white solid (87 mg, 81%) after silica gel chromatography (20-100% ethyl acetate/hexanes).
LCMS m/z [M+H]+ C^HviClN-Of.S requires: 662.24. Found 662.19.
Compound 211
Following the procedure of compound 190, beginning with intermediate 166 (85 mg, 0.128 mmol), compound 211 was recovered as a pink solid, trifluoroacetic acid salt (48 mg, 55%) after drying in-vacuo.
'H-NMR (DMSO, 400 MHz): δΠ 9.22 (s, IH) 8.59 (s, IH), 8.06 (s, 3H), 7.54-7.38 (m, 3H), 6.14 (s, IH), 5.97 (m, IH), 4.53 (m, IH), 3.81 (m, 3H), 3.61 (m, IH), 3.49 (m, 2H), 3.21 (m, IH), 3.06 (m, IH), 3.04 (s, 3H), 2.41-2.35 (m, 2H), 2.31 (s, 3H), 1.97-1.87 (m, 2H), 1.65-1.21 (m,4H).
LCMS m/z [M+H]+ C25H32ON7O4S requires: 562.19. Found 562.17.
HPLC Tr (min), purity %: 5.38, 95%
Compound 212
Following the procedure of compound 188, starting from intermediate 73, compound 212 was recovered as a white solid, trifluoroacetic acid salt (35 mg, 59%) after lyophilization. ’H-NMR (DMSO, 400 MHz): ÔD 9.19 (s, IH) 8.50 (d, IH), 8.37 (d, IH), 8.32 (d, IH), 7.547.38 (m, 4H), 6.15 (s, IH), 5.96 (m, IH), 4.72 (m, 3H), 4.23 (m, 3H), 3.21 (m, IH), 3.05 (m, IH), 3.03 (s, 3H), 2.33 (m, IH), 2.16 (s, 3H), 1.87 (m, IH), 1.67-1.18 (m, 4H).
LCMS m/z [M+H]+ C28H30CIN7O4S requires: 596.18. Found 596.14.
HPLC Tr (min), purity %: 5.87, 99%
Compound 213
Following the procedure of compound 188, beginning with intermediate 73 (62 mg, 0.129 mmol), compound 213 was recovered as a white solid, trifluoroacetic acid salt (45 mg, 54%) after lyophilization.
‘H-NMR (DMSO, 400 MHz): δα 9.20 (s, IH) 8.43 (s, IH), 7.53-7.37 (m, 3H), 6.08 (s, IH), 5.93 (m, IH), 4.24 (m, 2H), 3.99 (m,2H), 3.57 (m, 2H), 3.19 (m, IH), 3.05 (m, IH), 3.02 (s, 3H), 2.73 (m, IH), 2.31 (m, IH), 2,14 (s, 3H),2.12(m, IH), 1.87 (m, IH), 1.65-1.22 (m, 4H) LCMS m/z [M+H]+ C24H29C1N6O4S requires: 533.17. Found 533.14.
HPLC Tr (min), purity %: 5.45, 99%
Intermediate 167
399
Following the procedure of compound 188, starting from intermediate 73, intermediate
167 was recovered as a white solid, (84 mg, 93%) after silica gel chromatography (10-90% ethyl acetate in hexanes).
LCMS m/z [M+HJ* C29H38CIN7O5S requires: 632.23. Found 632.13.
Following the procedure of compound 190, beginning with intermediate 167 (80 mg, 0.127 mmol), compound 214 was recovered as a white solid, trifluoroacetic acid salt (80 mg, 98%) after drying in-vacuo.
'H-NMR (DMSO, 400 MHz): δϋ 9.21 (s, 1H) 8.46 (s, 1H),7.8O (s, 3H), 7.52-7.31 (m, 3H), 6.11 (s, 1H), 5.95 (m, 1H), 4.93 (m, 2H), 4.30 (m, 2H), 4.02 (m, 2H), 3.20 (m, 1H), 3.11 (m, 2H), 3.03 (s, 3H), 2.88 (m, 1H), 2.32 (m, 1H), 2.14 (s, 3H), 1.86 (m, 1H), 1.71-1.22 (m, 4H). LCMS m/z [M+H]+ C24H30CIN7O3S requires: 532.18. Found 532.09.
HPLC Tr (min), purity %: 5.15, 99%
Compound 215
400
Following the procedure of compound 188, starting from intermediate 73, compound 215 was recovered as a white solid, trifluoroacetic acid salt (64 mg, 73%) after lyophilization. 'H-NMR (DMSO, 400 MHz): δϋ 9.17 (s, 1H)8.67 (s, IH), 7.52-7.37 (m, 3H),6.35 (s, IH),
5.99 (m, IH), 3.48 (m, 2H), 3.21-3.08 (m, 4H), 3.04 (s, 3H), 2.38 (m, IH), 2.21 (s, 3H), 1.99 (m, 2H), 1.88(m, 3H), 1.63-1.22 (m, 5H).
LCMS m/z [M+H]+ C26H30CIN7O3S requires: 556.18. Found 556.45.
HPLC Tr (min), purity %: 7.60, 97%
Intermediate 168
Following the procedure of compound 188, starting from intermediate 73, intermediate 168 was recovered as a white solid, tri fluoroacetic acid salt (86 mg, 88%) after lyophilization. LCMS m/z [M+H]+ C30H4ÜCIN7O5S requires: 646.25. Found 646.46.
Compound 216
401
Following the procedure of compound 187, beginning with intermediate 168 (78 mg, 0.120 mmol), compound 216 was recovered as a white solid, hydrochloric acid salt (68 mg, 97%) ’H-NMR (DMSO, 400 MHz): δα 9.18 (s, IH) 8.67 (s, IH), 8.25 (s, 3Η), 7.55-7.38 (m, 3H), 6.32 (s, IH), 5.98 (m, IH), 3.79 (m, 2H), 3.65 (m, 0.5H), 3.46 (m, 0.5H), 3.22 (m, 2H), 3.04 (s, 3H), 2.89 (m, 2H),2.36 (m, 1H),2.21 (s, 3H), 2.01 (m, 2H), 1.88 (m, IH), 1.75-1.27 (m, 6H). LCMS m/z [M+H]+ C25H32CIN7O3S requires: 546.20. Found 546.41
HPLC Tr (min), purity %: 5.50, 98%
Compound 217
Following the procedure of compound 188, beginning with intermediate 73 (61.2 mg, 0.131 mmol), compound 217 was recovered as a white solid, tri fluoroacetic acid salt (69 mg, 80%) after lyophilization.
’H-NMR (DMSO, 400 MHz): δα 9.19 (s, IH), 8.63 (s, IH), 7.54-7.37 (m, 3H), 6.29 (s, IH), 5.98 (m, IH), 3.65 (m, 2H), 3.49 (m, IH), 3.21 (m, IH), 3.05 (m, IH), 3.04 (s, 3H), 2.87 (m, IH), 2.70 (m, IH), 2.37 (m, IH), 2.21 (s, 3H), 2.20 (m, IH), 1.94-1.77 (m, 3H), 1.72-1.25 (m, 6H).
LCMS m/z [M+Hf C25H3iClN6O4S requires: 547.18. Found 547.40.
HPLC Tr (min), purity %: 6.78, 99%
402
Compound 218
Following the procedure of compound 188, starting from intermediate 73, compound 218 was recovered as a white solid, trifluoroacetic acid salt (58 mg, 67%) after lyophilization. ‘H-NMR (DMSO, 400 MHz): δ□ 9.14 (s, IH) 8.59 (s, IH), 7.49-7.32 (m, 3H), 6.25 (s, IH), 5.94 (m, IH), 4.85 (br s, IH), 3.64 (m, IH), 3.52 (m, 2H), 3.16 (m, IH), 2.99 (s, 3H), 2.97-2.85 (m, 2H), 2.37 (s, 3 H), 2.31 (m, IH), 2.16 (s, 3H), 1.79 (m, 3H), 1.62-1.18 (m, 4H).
LCMS m/z [M+H]+ C25H3iClN6O4S requires: 547.18. Found 547.45.
HPLC Tr (min), purity %: 6.53, 99%
Intermediate 169
~7\
2- Amino-5-chlorobenzoic acid (82 mg, 0.48 mmol), HATU (228mg, 0.6 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added the intermediate 130 (120 mg, 0.3 mmol) and triethylamine (0.17 ml). The reaction was stirred under nitrogen for 2 hours. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 169. (Yield 134mg, 81 %).
LCMS m/z [M+H]+ C28H36C1N7O3 requires: 554.26. Found 554.18
403
HPLC Tr (min), purity %: 2.00,98%
Intermediate 170
Intermediate 169 (40mg, 0.072mmol) was dissolved in pyridine (2 ml). Then cyclopropane carboxylic acid chloride (9.1mg, 0.087 mmol) was added to the above solution. The reaction was stirred under nitrogen for 2 hours. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 170. (Yield 25mg, 64 %).
LCMS m/z [M+H]+ C32H4oC1N704 requires: 622.28. Found 622.06
HPLC Tr (min), purity %: 2.83, 98%
Compound 219
Intermediate 170 (25mg, 0.04mmol) was dissolved in DCM (0.2 ml). Then phosphoric acid (7.9mg, 0.08 mmol) was added to the above solution. The reaction was stirred under nitrogen for 5 mins. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 219. (Yield 6mg, 24 %).
404 *H-NMR (CD3OD, 400 MHz): ÔD 8.19 (s, 1Η), 7.34 (bs, 2H), 5.93-5.82 (m, 2H), 5.39 (s, 1H), 3.91-3.89 (m, 4H), 3.80-3.69 (m, 3H), 2.36 (s, 3H), 2.06-1.84 (m, 4H), 1.73-1.48 (m, 5H), 0.880.80 (m, 4H).
LCMS m/z [M+H]+ C27H32CIN7O2 requires: 522.23. Found 522.08
HPLC Tr (min), purity %: 2.02, 98%
Intermediate 171
Ο
Pyridine
Intermediate 169 (40mg, 0.072mmol) was dissolved in pyridine (2 ml). Then methyl chloroformate (328mg, 3.48 mmol) was added to the above solution. The reaction was stirred under nitrogen overnight. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 171. (Yield 31mg, 79 %).
LCMS m/z [M+H]+ C30H38CIN7O5 requires: 612.26. Found 612.08
HPLC Tr (min), purity %: 2.96, 98%
Compound 220
h3po4
DCM
C
405
Intermediate 171 (30mg, O.OSmmoI) was dissolved in DCM (0.2 ml). Then phosphoric acid (9.6mg, 0.1 mmol) was added to the above solution. The reaction was stirred under nitrogen for 5 mins. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 220. (Yield 16mg, 53 %).
*H-NMR (CD3OD, 400 MHz): δα 8.31-8.21 (m, 1H), 7.33-7.28 (m, 2H), 5.98-5.85 (m, 2H), 10 3.92-3.88 (m, 4H), 3.77-3.73 (m, 3H), 3.68 (s, 3H), 2.36 (s, 3H), 2.09-2.07 (m, 1H), 1.90 (bs,
1H), 1.64-1.44 (m,5H).
LCMS m/z [M+H]+ C25H3oClN703 requires: 512.21. Found 512.14
HPLC Tr (min), purity %: 2.24,98%
Intermediate 172
2- Amino-5-methylbenzoic acid (316 mg, 2.09 mmol), HATU (992mg, 2.61 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added intermediate 72 (500 mg, 1.74 mmol) and triethylamine (0.7 ml). The reaction was stirred under nitrogen for 2 hours. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 172. (Yield 320mg, 42 %). LCMS m/z [M+H]+ C20H22C!bLO requires: 384.15. Found 383.99
HPLC Tr (min), purity %: 2.00, 98%
Intermediate 173
Intermediate 172 (320mg, 0.84mmol) was dissolved in pyridine (2 ml). Then acetyl chloride (78mg, 1.0 mmol) was added to the above solution. The reaction was stirred under nitrogen for 30mins. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 173. (Yield 305mg, 86 %). LCMS m/z [M+H]+ C22H24CIN5O2 requires: 426.16. Found 425.89
HPLC Tr (min), purity %: 2.40, 98%
Compound 221
Intermediate 173 (35mg, 0.09mmol) was dissolved in MeOH (5 ml). Then 3hydroxyazetidine HCI salt (lOOmg, 0.9 mmol) and triethylamine (184mg, 1.82mmol) was added to the above solution. The reaction was heated at 70°C for Ih. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 221. (Yield 23mg, 65 %).
*H-NMR (CDjOD, 400 MHz): δθ 8.75-8.71 (m, IH), 8.13-7.96 (m, 2H), 7.22-7.05 (m, 2H), 6.20-6.13 (m, IH), 4.78-4.65 (m, IH), 4.52-4.43 (m, 2H), 4.18-4.05 (m, 2H), 2.43-2.25 (m, 4H), 2.18 (s, 3H), 2.16 (s, 3H), 2.05 (s, 3H), 1.75-1.23 (m, 5H)
LCMS m/z [M+H]+ C25H30ClN6O3 requires: 463.24. Found 463.03
HPLC Tr (min), purity %: 2.27, 98%
407
Intermediate 174
MeOH, Et3N, 70°C
NHBoc
Intermediate 173 (30mg, 0.06mmol) was dissolved in MeOH (2 ml). Then 3-bocaminoazetidine (llmg, 0.18 mmol) and triethylamine (60 ul) was added to the above solution. The reaction was heated at 70°C for lh. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide intermediate 174. (Yield 30mg, 75 %). LCMS m/z [M+H]+ C/0H39N7O4 requires: 562.31. Found 562.16
HPLC Tr (min), purity %: 2.27,98%
Intermediate 174 (10mg, 0.018mmol) was dissolved in DCM (0.2 ml). Then phosphoric acid (3.6mg, 0.036 mmol) was added to the above solution. The reaction was stirred under nitrogen for 5 mins. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 222. (Yield 3.5mg, 43 %).
‘H-NMR (CD3OD, 400 MHz): δΠ 8.72 (bs, IH), 7.30-7.25 (m, 3H), 6.03 (s, IH), 4.63-4.32 (m, 3H), 3.55-3.42 (m, IH), 3.22-3.13 (m, IH), 2.39 (s, 3H), 2.34-1.92 (m, 4H), 2.17 (s, 3H), 2.14 (s,3H), 1.73-1.56 (m, 5H)
LCMS m/z [M+H]+ C/sILiNO? requires: 462.25. Found 462.14
HPLC Tr (min), purity %: 2.24, 98%
Intermediate 175
2- Amino-5-chlorobenzoic acid (343 mg, 2.0 mmol), HATU (1.22g, 3.2 mmol) were dissolved in anhydrous DMF (5 ml). After activation for 1 hour, to the above solution was added intermediate 72 (400 mg, 1.6 mmol) and triethylamine (0.9 ml). The reaction was stirred under nitrogen for 2 hours. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 175. (Yield 320mg, 42 %). LCMS m/z [M+H]+ C19H19CI2N5O requires: 404.10. Found 403.99
HPLC Tr (min), purity %: 2.56, 98%
Intermediate 175 (30mg, 0.07mmol) was dissolved in pyridine (2 ml). Then acetyl chloride (8.7mg, 0.11 mmol) was added to the above solution. The reaction was stirred under nitrogen for 30mins. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 176. (Yield 25mg, 76 %). LCMS m/z [M+H]+ CbihLiCbNsCh requires: 446.11. Found 445.84
HPLC Tr (min), purity %: 2.43, 98%
409
Compound 223
The title compound was prepared in an analogous way as described for compound 222 but starting from intermediate 176 and using (S)-tert-butyl pyrrolidin-3-ylcarbamate.
'H-NMR (CD3OD, 400 MHz): 5Π 8.28 (bs, 2H), 7.48-7.45 (m, 2H), 6.05 (bs, IH), 4.03-3.85 (m, 2H), 3.84-3.59 (m, 2H), 3.42-3.18 (m, 2H), 2.43 (s, 3H), 2.14 (s, 3H), 2.01-1.94 (m, 2H), 1.71-1.56 (m, 4H), 1.46-1.31 (m, 3H).
LCMS m/z [M+H]+ C25H3oClN702 requires: 496.21. Found 496.08
HPLC Tr (min), purity %; 2.14, 98%
Compound 224
Intermediate 176 (25mg, 0.06mmol) was dissolved in MeOH (5 ml). Then 3hydroxyazetidine HC1 salt (12mg, 0.11 mmol) and triethylamine (24mg, 0.24mmol) was added to the above solution. The reaction was heated at 70°C for Ih. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 224. (Yield 23mg, 85 %).
'H-NMR (CD3OD, 400 MHz): ÔD 8.19 (s, IH), 7.45-7.38 (m, 2H), 6.04-5.94 (m, 2H), 4.67-4.64 (m, IH), 4.52 (t, J = 7.2 Hz, 2H), 4.09 (dd, J = 4.0, 9.6 Hz, 2H), 3.43-3.02 (m, 3H), 2.43-2.20 (m, 1H),2.24 (s, 3H), 2.14 (s, 3H), 1.96 (bs, 3H), 1.55-1.54 (τη, 4H)
410
LCMS m/z [M+H]+ C24H27C1N6O3 requires: 483.18. Found 483.05
HPLC Tr (min), purity %: 2.30, 98%
Intermediate 177
2- Amîno-5-methyIbenzoic acid (84 mg, 0.56 mmol), HATU (266mg, 0.7 mmol) were dissolved in anhydrous DMF (5 ml). After activation for 1 hour, to the above solution was added intermediate 72 (100 mg, 0.35 mmol) and tri ethylamine (0.2 ml). The reaction was stirred under nitrogen for 2 hours. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 177. (Yield 42mg, 36%). LCMS m/z [M+H]+ C20H22CIN5O requires: 384.87. Found 384.80
HPLC Tr (min), purity %: 2.76, 98%
Intermediate 178
Intermediate 177 (42mg, O.llmmol) was dissolved in azetidine (1 ml). The reaction was heated at 70°C for lh. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide intermediate 178. (Yield 40mg, 91 %).
LCMS m/z [M+H]+ C23H28N6O requires: 405.23. Found 405.15
HPLC Tr (min), purity %: 2.40, 98%
4ll
Intermediate 178 (30mg, 0.07mmol) was dissolved in pyridine (2 ml). Then methanesulfonyl chloride (171mg, 1.5 mmol) was added to the above solution. The reaction was stirred under nitrogen for 30mins. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide compound 225. (Yield 1 lmg, 32 %).
‘H-NMR (CD3OD, 400 MHz): δα 9.38 (s, 0.5H), 8.62 (s, 0.5H), 7.48 (d, J = 7.2 Hz, 0.5H), 7.40-7.21 (m, 2H), 7.05 (d, J = 7.2 Hz, 0.5H), 6.22 (d, J = 4.0 Hz, 0.5H), 6.03 (s, 0.5H), 4.384.25 (m, IH), 3.38-3.21 (m, 2H), 2.40-2.25 (m, 3H), 2.35 (s, 3H), 2.19 (s, 3H), 2.12-1.85 (m, 5H), 1.48-1.21 (m,4H)
LCMS m/z [M+H]+ C24H30N6O3S requires: 483.21. Found 483.13
HPLC Tr (min), purity %: 2.79, 98%
Compound 226
HCI
Dioxane
Intermediate 58 (80mg, 0.21mmol) was dissolved in dioxane (2 ml), and then HCI (0.1 ml) was added. The reaction mixture was stirred at RT for 30mins. Solvents were removed by
412 rotary evaporation and the residue was added to the DMF (3 ml) solution of 5-chloro-2methanesulfonamidobenzoic acid (72mg, 0.29mmol), HATU (138 mg, 0.36 mmol). To the above reaction mixture was added triethylamine (O.l ml). The reaction was stirred at RT for lh. The reaction was quenched with brine (5 ml) and extracted with EtOAc (20 ml). Organic solvent was evaporated and dissolved in THF (2 ml). Then 1-boc-piperazine (18mg, 0.09 mmol) was added to the above solution. The reaction was stirred under nitrogen overnight. Solvents were removed by rotary evaporation. The residue was purified with preparative HPLC to provide compound 226. (Yield 32mg, 23 %).
‘H-NMR (CD3OD, 400 MHz): ÔO 7.50 (bs, 1H),7.28 (bs, 2H), 6.14 (bs, IH), 5.95 (s, 1H),3.6O3.41 (m, 7H), 2.98-2.85 (m, 3H), 2.22 (bs, IH), 1.92-1.85 (m, 2H), 1.66-1.48 (m, 4H), 1.41 (s, 9H), 1.17 (s, 3H), 1.04-0.78 (m, 5H).
LCMS m/z [M+H]+ C31H40CIN7O5S requires: 658.25. Found 658.15
HPLC Tr (min), purity %: 2.93, 98%
Intermediate 179
NHBoc
Cl
Intermediate 56 (30mg, 0.06mmoi) was dissolved in THF (2 ml). Then (S)-3-(Bocamino)pyrrolidine (12mg, 0.06 mmol) was added to the above solution. The reaction was stirred under nitrogen for lh. Solvents were removed by rotary evaporation. The residue was purified with combi flash column to provide intermediate 179 (Yield 35mg, 90 %).
LCMS m/z [M+H]+ C28H35CI2N7O5S requires: 652.18. Found 652.01
HPLC Tr (min), purity %: 2.90, 98%
413
Compound 227
Ο
HN—1
THF
Intermediate 179 (25mg, 0.04mmol) was dissolved in THF (2 ml). Then azetidine (0.5ml) was added to the above solution. The reaction was heated at 70°C for lh. To the above solution was added HC1 (0.5ml), the reaction mixture was heated at 50° for lOmins. The reaction was quenched with NaHCO3 (5 ml) and extracted with EtOAc (20 ml). Organic solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 227. (Yield 17mg, 17 %).
’H-NMR (CD3OD, 400 MHz): δθ 7.39-7.37 (m, IH), 7.25-7.21 (m, 2H), 6.89-6.88 (m, IH), 4.13-6.05 (m, IH), 4.80-3.88 (m, 5H), 3.58-3.31 (m, 2H), 2.77 (s, 3H), 2.41-2.26 (m, 2H), 2.242.20(m, 2H), 1.88-1.68 (m, 4H), 1.68-1.48 (m,6H).
LCMS m/z [M+H]+ C26H33C1N8O3S requires: 573.21. Found 573.22
HPLC Tr (min), purity %: 2.10, 98%
Intermediate 180
NHBoc
H
THF
414
Intermediate 56 (30mg, 0.06mmol) was dissolved in THF (2 ml). Then 4-(N-Bocamino)piperidine (12mg, 0.06 mmol) was added to the above solution. The reaction was stirred under nitrogen for lh. To the reaction mixture was added azetidine (0.5 ml) and was stirred overnight at RT. Solvents were removed by rotary evaporation. The residue was purified with combi flash column to provide intermediate 180 (Yield 25mg, 62 %).
LCMS m/z [M+H]+ C32H43CIN8O5S requires: 687.28. Found 687.17 HPLC Tr (min), purity %: 2.78, 98%
Compound 228
The title compound 228 was prepared in an analogous way as described for compound 224 starting from intermediate 66.
*H-NMR (CD3OD, 400 MHz): ÔD 7.55 (bs, 2H), 7.31-7.20 (m, 2H), 6.24-6.13 (m, 1H), 3.943.60 (m, 6H), 3.29-3.14 (m, 3H), 2.97-2.85 (m, 5H), 2.39 (s, 3H), 2.20 (bs, 2H), 1.93 (bs, 2H), 1.68-1.42 (m, 5H)
LCMS m/z [M+H]+ C28H33CIN8O4S requires: 613.20. Found 613.18
HPLC Tr (min), purity %: 2.55, 98%
Compound 229
415
The title compound 229 was prepared in an analogous way as described for intermediate 180 starting from intermediate 56 and intermediate 147. Intermediate 147 is first BOC deprotected as described in the preparation of compound 179.
'H-NMR (CD3OD, 400 MHz): δθ 7.85 (bs, 2H), 7.38-7.20 (m, 2H), 6.32-6.17 (m, IH), 4.544.42 (m, 4H), 4.24-4.10 (m, 2H), 3.85-3.65 (m, 4H), 2.45 (s, 3H), 2.25 (bs, 2H), 1.98 (bs, 2H), 1.76-1.62 (m, 5H)
LCMS m/z [M+H]+ C26H31CIN10O4S requires: 615.19. Found 615.10
HPLC Tr (min), purity %: 2.85, 98%
Compound 230
416
Compound 229 isomer mixture (35mg, 0.057mmol) was dissolved in THF (2 ml). Then to the above solution was added triphenyl phosphine (22mg, 0.085mmol), the reaction mixture was stirred at RT for 3h. Then to the above solution was added water (1ml) and heated at 75° overnight. The solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 230 as a mixture of trans isomers. (Yield 18.0mg, 54 %).
*H-NMR (CD3OD, 400 MHz): 60 7.83 (bs, 2H), 7.35-7.22 (m, 2H), 6.41-6.24 (m, 1H), 4.354.32 (m, 4H), 4.21-4.11 (m, 2H), 3.80-3.62 (m, 4H), 2.48 (s, 3H), 2.21 (bs, 2H), 1.90 (bs, 2H), 1.74-1.60 (m,5H)
LCMS m/z [M+H]+ C26H33CIN8O4S requires: 589.20. Found 589.18
HPLC Tr (min), purity %: 2.07, 98%
Compound 231
417
The title compound 231 was prepared in an analogous way as described for compound 220 from intermediate 73 and commercially available (R)-tert-butyl piperidin-3-ylcarbamate. ’H-NMR (CD3OD, 400 MHz): δα 8.82 (bs, 1H), 7.65-7.42 (m, 3H), 6.25 (s, 1H), 6.21-6.13 (m, 1H), 3.82-3.78 (m, 1H), 3.56-3.43 (m, 3H), 3.28-2.95 (m, 2H), 2.92 (s, 3H), 2.35 (s, 3H), 2.181.95 (m, 3H), 1.83-1.62 (m, 5H), 1.38-1.15 (m, 4H)
LCMS m/z [M+H]+ C25H32CIN7O3S requires: 546.20. Found 546.20
HPLC Tr (min), purity %: 2.41, 98%
The title compound 232 was prepared in an analogous way as described for compound 231 starting from intermediate 73 and (R)-tert-butyl pyrrolidin-3-ylcarbamate.
'H-NMR (CD3OD, 400 MHz): d 8.62 (s, 1H) 8.52 (s, 1H), 7.65-7.40 (m, 4H), 6.13 (s, 1H), 6.05-5.95 (m, 1H), 3.95-3.86 (m, 2H), 3.81-3.60 (in, 2H), 3.58 (bs, 1H), 3.04-3.00 (m, 1H), 2.98 (s, 3H), 2.39-2.13 (m, 2H),2.33 (s, 3H), 2.07-1.85 (m, 2H), 1.68-1.48 (m, 5H).
LCMS m/z [M+H]+ C24H30CIN7O3S requires: 532.18. Found 532.18
HPLC Tr (min), purity %: 2.59, 98%
Compound 233
418
Intermediate 180 (lOmg, 0.015mmol) was dissolved in THF (2 ml). Then to the above solution was added HCI (0.5ml), the reaction mixture was heated at 50° for lOmins. The reaction was quenched with NaHCO3 (5 ml) and extracted with EtOAc (20 ml). Organic solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 233. (Yield 8.0mg, 94 %).
‘H-NMR (CD3OD, 400 MHz): δύ 7.36-7.23 (m, 3H), 5.96-5.89 (m, 2H), 5.18 (s, 1H),4.19 (d, J = 10.8 Hz, 2H), 4.04-3.95 (m, 4H), 3.26-3.21 (m, IH), 2.91-2.83 (m, 3H), 2.84 (s, 3H), 2.342.30 (m, 3H), 2.13 (bs, IH), 1.97-1.91 (m, 3H), 1.60-1.38 (m, 6H).
LCMS m/z [M+H]+ C27H35CIN8O3S requires: 587.22. Found 587.24 HPLC Tr (min), purity %: 2.07, 98%
Intermediate 181
419
Boc-aminoacetic acid (15 mg, 0.08 mmol), HATU (38mg, O.l mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added compound 45 (30 mg, 0.05 mmol) and triethylamine (0.1 ml). The reaction was stirred under nitrogen for 2 hours. Solvents were removed by rotary evaporation. The residue was purified with silica gel column chromatography to provide intermediate 181. (Yield 16mg, 42 %).
LCMS m/z [M+H]+ C20H22ClN5O requires: 729.29. Found 729.17
HPLC Tr (min), purity %: 2.86, 98%
Compound 234
Intermediate 181 (lOmg, 0.014mmol) was dissolved in THF (2 ml). Then to the above solution was added HCI (0.5ml), the reaction mixture was stirred at RT overnight. The reaction was quenched with NaHCO3 (5 ml) and extracted with EtOAc (20 ml). Organic solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 234. (Yield 7.7mg, 90 %).
'H-NMR (CD3OD, 400 MHz): ÔD 7.41-7.32 (m, 4H), 6.20-5.95 (m, IH), 4.32 (t, J = 6.4 Hz, 4H), 3.96-3.79 (m, 8H), 3.66 (bs, 2H), 2.96 (s, 3H), 2.48 (bs, 2H), 2.25-1.9l(m, 4H), 1.66-1.59 (m, 5H).
LCMS m/z [M+Hf Cj^CllS^S requires: 629.23 Found 629.18
HPLC Tr (min), purity %: 1.87, 98%
420
OH
Intermediate 73 (50mg, O.lmmol) was dissolved in MeOH (2 ml). Then 2-(2aminoethylamino)ethanol (1 Img, 0.11 mmol) was added to the above solution. The reaction was heated at 70°C overnight. Solvents were removed by rotary evaporation. The residue was purified with preparatory HPLC to provide compound 235. (Yield 37mg, 64 %).
’H-NMR (CD3OD, 400 MHz): δΠ 8.55-8.30 (m, IH), 7.45-7.27 (m, 2H), 6.10-5.96 (m, 2H), 4.88-3.34 (m, 4H), 3.09-2.70 (m, 5H), 2.47-2.31 (m, 2H), 2.13 (s, 3H), 2.13-1.53 (m, 6H) LCMS m/z [M+H]+ C24H32C1N7O4S requires: 550.19. Found 550.15
HPLC Tr (min), purity %: 2.17,98%
Compound 236
HATU (81 mg, 0.213 mmol) was added to a solution of 5-methyl-2(methylsulfonamido)benzoic acid (42.3 mg, 0.184 mmol) in 4.5 mL of anhydrous DMF at room temperature. After 45 min of stirring, intermediate 81 (55 mg, 0.130 mmol) was added followed immediately by triethylamine (0.09 mL, 0.641 mmol). Reaction mixture stirred at room temperature overnight under argon. Mixture was then poured into 50 mL of H2O and extracted three times with 50 mL of ethyl acetate. The combined organic layers were washed with 100
421 mL Brine, dried (MgSO4), filtered, and concentrated under reduced pressure leaving a residue. Product was purified by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 236 (67.2 mg, 81%) as a white solid, tri fluoroacetate salt, after lyophilization.
1 H-NMR (DMSO, 400 MHz): ÔD 9.08 (s, IH) 7.32-7.16 (m, 3H), 6.48 (s, 1H),6.O4 (s, IH), 4.91-4.65 (m, 4H), 3.60 (s, 3H), 3.58 (m, IH), 3.38 (m, IH), 3.12 (m, IH), 3.01 (s, 3H), 2.91 (m, IH), 2.52 (m, IH), 2.33 (m, 2H), 2.21 (s, 3H), 2.18 (m, IH), 1.94 (m, IH), 1.72 (s, 3H), 1.631.40 (m, 5H).
LCMS m/z [M+H]+ CV'HxN/OiS requires: 525.26. Found 525.41
HPLC Tr (min), purity %: 5.85,99%
Compound 237
HATU ¢85.8 mg, 0.226 mmol) was added to a solution of 2-(2-bromophenyl)-2-(tertbutoxycarbonylamino)acetic acid (97.8 mg, 0.296 mmol) in 3.0 mL of anhydrous DMF at room temperature. After two hours of stirring, intermediate 31 (75 mg, 0.228 mmol) was added followed immediately by triethylamine (0.11 mL, 0.798 mmol). Reaction mixture stirred at room temperature overnight under argon. Mixture was then added directly to purification by prep HPLC (15-100% Acetonitrile (with 0.1% trifluoroacetic acid) in water (with 0.1% trifluoroacetic acid)) to yield compound 237 (73 mg, 47%) as a off white solid, trifluoroacetic acid salt, after lyophilization.
422 !H-NMR (DMSO, 400 MHz): δΠ 7.61 (m, IH), 7.37 (m, 2H), 7.25 (m, IH), 6.87 (m, IH), 4.37 (m, IH), 3.66 (tn, IH), 3.13-2.99 (m, IH), 2.64 (s, 3H), 2.58 (m, 2H), 2.40 (m, lH),2.09(m, IH), 1.77-1.42 (m, 3H), 1.38 (s, 9H), 1.12 (m, 3H), 1.00 (m, 4H).
LCMS m/z [M+Hp C2gH34BrN5O3 requires: 568.18. Found 568.36.
HPLC Tr (min), purity %: 7.95, 99% as mixture of two diastereomers.
Compound 238
Following the procedure for compound 237, beginning with 2-(tertbutoxycarbonylamino)-2-(3-chlorophenyl)acetic acid (56.6 mg, 0.198 mmol), compound 238 was recovered as a tan solid (47 mg, 48%), trfluoroacetic acid salt after lyophilization.
‘H-NMR (DMSO, 400 MHz): ÔD 7.51-7.34 (m, 4H), 6.85 (m, IH), 6.03 (m, 0.5H), 5.89 (m, 0.5H), 5.78-5.57 (m, IH), 4.33 (m, IH), 3.87 (m, IH), 2.61 (m, IH), 2.51 (s, 3H), 2.42-2.25 (m, IH), 2.08 (m, IH), 1.63-1.40 (m, 2H), 1.37 (s, 9H), 1.29-1.17 (m, 3H), 1.09-0.92 (m, 4H).
LCMS m/z [M+Hp C2gH34ClN5O3 requires: 524.24. Found 524.40.
HPLC Tr (min), purity %: 8.01, 8.07, 99% as mixture of two diastereomers.
Compound 239
423
Following the procedure for compound 237, beginning with (R)-2-(dimethylamino)-2phenylacetic acid (35 mg, 0.195 mmol) and THF as solvent, compound 239 was recovered as a white solid trifluoroacetic acid salt mixture of diastereomers (40 mg, 50%), after lyophilization. JH-NMR (DMSO, 400 MHz): ÔD 10.1 (s, IH), 7.51-7.36 (m, 5H), 6.81 (m, IH), 6.68 (m, IH), 6.35 (m, IH), 5.84 (m, IH), 5.79-5.49 (m, 2H), 5.05 (m, 0.5H), 4.30 (m, 0.5H), 3.57 (m, 0.5H), 3.05 (m, 0.5H), 2.87 (m, 3H), 2.38 (s, 6H), 2.31-2.20 (m,4H), 2.04 (m, IH), 1.55-1.13 (m, 4H), 1.03-0.75 (m, 4H).
LCMS m/z [M+H]+ C25H31N5O requires: 418.25. Found 418.43.
HPLC Tr (min), purity %: 5.49, 98% as mixture of two diastereomers.
Intermediate 182
HzSO4, MeOH
A solution of (R)-2-amino-2-phenylpropanoic acid (304 mg, 1.84 mmol) and 0.7 mL of concentrated H2SO4 in 6.5 mL of anhydrous methanol was heated overnight. After cooling to room temperature, methanol was concentrated under reduced pressure. Residue was taken up in 40 mL of water and added to a separatory funnel. Solid sodium carbonate was added slowly until gas evolution ceased (pH 9-10). Aqueous layer was extracted with ethyl acetate (3x50 mL). The combined organic layers were washed with 100 mL sat. NaHCO3(aq) and 100 mL of Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 182 (225 mg, 68%) as a oily residue that was used in the next step without further purification.
424 'H-NMR (DMSO, 400 MHz): ÔÜ 7.44 (m, 2H), 7.30 (m, 2H), 7.22 (m, 1H), 3.58 (s, 3H), 2.36 (s, 2H), 1.50 (s,3H)
Intermediate 183
MeSOjCI, pyr.
CH2CI2i rt
To a solution of intermediate 182 (225 mg, 1.25 mmol) and pyridine (0.30 mL, 3.75 mmol) in 4 mL of anhydrous CH2CL2, was added slowly methane sulfonylchloride (0.15 mL, 1.91 mmol). After stirring overnight, reaction mixture was quenched with 30 mL of IN HCI (aq> Aqueous mixture was extracted with ethyl acetate (3x30 mL) and combined organic layers were washed with IN HCI (aq) and then brine. Organics were dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 183 (312 mg, 97%) as a yellow-green oily residue that was used in the next step without further purification.
LCMS m/z [M+H]+ CnHisNO4S requires: 258.08. Found 258.31
Intermediate 184
LrOH-H2O.
THF, MeOH,H2O, rt
Lithium hydroxide monohydrate (507 mg, 12.1 mmol) was added to a solution of intermediate 183 (310 mg, 1.2 mmol) in 15 mL of 1:1:1 THF:Me0H:H2O at room temperature. Reaction mixture was stirred overnight and then was acidified with 40 mL of IN HCI (aq) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed 100 mL of Brine, separated, dried (MgSO4), filtered, and concentrated under reduced pressure to yield intermediate 184 as a oily residue (285 mg, 98%).
'H-NMR (DMSO, 400 MHz): ÔU 13.1 (s, 1H), 7.50 (m, 2H), 7.39 (m, 2H), 7.31 (m, 1H),2.8O (s, 3H), 1.86 (s,3H).
Compound 240
Following the procedure for compound 237, beginning with a DMF solution of 31 (0.1 M, 2 mL, 0.2 mmol), compound 240 was recovered as an off white solid (6.2 mg, 7% ), trfluoroacetic acid salt after lyophilization.
LCMS m/z [M+H]+ C25H31N5O3S requires: 482.21. Found 482.41.
HPLC Tr (min), purity %: 7.16, 87%.
Compound 241
Compound 243 (37 mg, 0.10 mmol) in pyridine (1.5 mL) was treated with methanesulfonyl chloride (200 pL, 2.2 mmol) and stirred for 18 h. The mixture was treated to preparatory RP HI’LC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 241 (35 mg, 80%) as a white solid:
'H NMR (CD3OD, 400MHz, data for both isomers): d 7.53 (m, 1H), 7.44 (m, 5H), 6.75 (s, 1H), 6.66 (s, 1H), 6.44 (s, 1H), 5.65 (br s, 1H), 5.63 (s, 1H), 5.22 (br s, 1H), 4.54 (m 1H), 3.89 (m, 1H), 3.78 (m, 1H), 2.98 (m, 1H), 2.83 (s, 3H), 2.80 (s, 3H), 2.73 (s, 3H), 2.61 (s, 3H), 2.42 (m, 1H), 1.56 (m, 4H), 1.35 (m, 1H), 1.15 (m, 6H).
LC-MS (ESI) m!z 468 [M + H]+, ZR = 2.54 min.
HPLC ZR (isomer A): 4.52 min; ZR (isomer B): 4.58 min
Compound 242
426
Λ'-Boc-DL-phenylglycinc (49 mg, 0.20 mmol) and HATU (86 mg, 0.23 mmol) in DMF (5 mL) were stirred for 1 h. Intermediate 31 (38 mg, 0.15 mmol) and triethylamine (52 pL, 0.38 mmol) were added and the solution was stirred for 18 h. The solution was diluted with EtOAc (50 mL) and washed with saturated NaHCXL (20 mL) and dried (MgSCU). The mixture was treated to a 12 g SiO2 Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford Compound 242 (57 mg, 78%) as a white solid: LC-MS (ESI) m/z 490 [M + H]+, tR = 2.88 min.
HPLC tR (isomer A): 5.37 min; iR (isomer B): 5.45 min.
Compound 243
Compound 242 (53 mg, 0.11 mmol) was treated with 4 N HCl/dioxane (3 mL) and stirred for 18 h to afford compound 243 (42 mg, >99%) as a white solid:
LC-MS (ESI) m/z 390 [M + H]+, tR = 1.71 min.
HPLC 3.33 min (isomers unresolved).
Compound 244
427
To a solution of compound 92 (300 mg, 0.578 mmol) in THF at 0 oC was added POCI3 (500 mg, 3.27 mmol) and TEA (410 mg, 4.06 mmol). The reaction mixture was stirred at 0 oC for 0.5 h, and quenched with triethylammonium bicarbonate buffer (IM). The mixture was concentrated and purified by HPLC to give the compound 244 (370 mg, contained abouti eq of TFA, 90%).
'H NMR (400 MHz, CDC13): δ 9.05 (brs), 8.72 (s), 8.53 (s), 7.62 (d, J = 8 Hz), 7.36 (d, J = 8 Hz), 7.3 (s), 7.26 (s), 6.27 (s),6.09 (s), 5.23(brs), 5.06 (brs), 4.81 (brs), 3.33 (m),3.13 (m), 3.03 (s), 2.91 (s), 2.28 (s), 1.98 (m), 1.71 (m), 1.54 (m), 1.31 (m). 31P NMR ¢400 MHz, CDC13): δ 2.198. MS = 519.2 (M-phosphate) (627.2, when quenched with MeOH to give the methyl ester, MS = 627.2 (M+l), 625.2 (M-l)), tR = 2.93 min (3.17 min for SM).
Compound 245
Intermediate 6 (50 mg, 0.156 mmol), HATU (76mg, 0.203 mmol), 2-amino-3,6dichlorobenzoic acid (39 mg, 0.187 mmol) and triethylamine (0.1 mL) were dissolved in anhydrous DMF (1 ml). After 1 hour, MP-Carbonate resin (100 mg) was added to the above solution and the reaction vial was put on a shaker overnight. The reaction mixture was then filtered and acetyl chloride (14.6 mg, 0.187mmol) was added. The reaction was stirred for 10
428 mins. The reaction mixture was filtered and purified by prep HPLC to provide compound 245. (Yield 34mg, 35 %).
LCMS m/z [M+H]+ C22H23CI2N5O3 requires: 476.12. Found 476.15
HPLC Tr (min), purity %: 2.19, 98%
Compound 246
HO
Cl
2-amino-5-methyl-3-chlorobenzoic acid (20 mg, 0.069 mmol), HATU (53 mg, 0.087 mmol) were dissolved in anhydrous DMF (2 ml). After activation for 1 hour, to the above solution was added intermediate 82 (bis-HCl salt, 32 mg, 0.058 mmol) and triethylamine (0.1 ml). The reaction was stirred under nitrogen for 2 hours. Solvents were removed by rotary evaporation. The residue was dissolved in pyridine (1 ml). To the above solution was added acetyl chloride (5.4 mg, 0.070 mmol). The reaction was stirred at RT for 4h. Solvents were removed by rotary evaporation and the residue was purified with silica gel column chromatography to provide compound 246. (Yield 18 mg, 51 %).
LCMS m/z [M+H]+ C25H31CIN6O2 requires: 483.22. Found 483.14
HPLC Tr (min), purity %: 2.93, 98%
Compound 247
429
The title compound 247 was prepared in an analogous way as described for compound 67 from intermediate 56.
LCMS m/z [M+H]+ C25H32QN7O5S requires: 578.19. Found 578.24
HPLC Tr (min), purity %: 2.24, 98%
Compound 248
The title compound 248 was prepared in an analogous way as described for compound 227 from intermediate 176.
LCMS m/z [M+H]+ C24H28CIN7O2 requires: 482.20. Found 482.24
HPLC Tr (min), purity %: 2.35, 98%
Compound 249
C
430
The title compound 249 was prepared in an analogous way as described for compound 220 starting from intermediate 171.
LCMS m/z [M+H]+ C27H34CIN7O3 requires: 540.24. Found 540.31
HPLC Tr (min), purity %: 2.68, 98%
Intermediate 185
Pyridine, 70°C
Compound 182 (64 mg, 0.11 mmol) was dissolved in pyridine (2 ml). Then tosyl chloride (690 mg, 3.6 mmol) was added to the above solution. The reaction was heated at 70°C overnight. Solvents were removed by rotary evaporation. The residue was purified with combi flash column to provide intermediate 185 as a mixture of isomers (Yield 30mg, 37 %).
431
LCMS m/z [M+H]+ CîiE^CINqOôSs requires: 728.18. Found 728.13
HPLC Tr (min), purity %: 2.88, 98%
Intermediate 186
TBAF
THF, reflux
Intermediate 185 (30 mg, 0.04 mmol) was dissolved in THF (2 ml). Then 1.0 M TBAF in THF (0.25 ml) was added to the above solution. The reaction was heated refluxed overnight. The reaction was diluted with EtOAc (20 ml) and washed with brine (10 ml), organic solvents were removed by rotary evaporation. The residue was purified with combi flash column to provide intermediate 186. (Yield 5mg, 21 %).
LCMS m/z [M+H]+ C24H27CIFN9O3S2 requires: 576.16. Found 576.13
HPLC Tr (min), purity %: 2.85, 98%
Compound 250
432
Intermediate 186 (5 mg, 0.009 mmol) was dissolved in THF (2 ml). Then triphenyl phosphine (3.4 mg, 0.013 mmol) was added to the above solution. The reaction was stirred at RT overnight. Then H2O (1 ml) was added the above solution and heated at 75° overnight. Solvents were removed by rotary evaporation. The residue was purified with prep HPLC to provide compound 250. (Yield 1 mg, 21 %).
LCMS m/z [M+H]+ C24H29C1FN7O3S2 requires: 550.17. Found 550.26
HPLC Tr (min), purity %: 2.52, 98% (+)-cis Intermediate 187
4-Trifluoromethylpicolinic acid (4.5 g, 23.5 mmol) in EtOH/H2O (1:1, 80 mL) was treated with PtO2 (2 g) and placed under H2 (60 psi). The mixture was shaken for 72 h then filtered over Celite. The Celite was washed with H2O (3 x 10 mL) and EtOH (3 x 10 mL). The solution was concentrated to afford (±)-intermediate 187 (4.6 g) which was used without further purification.
‘H NMR (CD3OD, 400 MHz): d 3.50 (m, 3H), 3.05 (t, J= 13.5 Hz, IH), 2.68 (m, IH), 2.53 (d, J = 13.8 Hz, IH), 2.07 (d, J= 18.8 Hz), 1.75 (m, 2H).
19F NMR (CD3OD, 377 MHz): d -76.1.
433 (±)-Intermediate 187 (4.6 g, 23.5 mmol) in 1,4-dioxane (250 mL) was treated with 1 N NaOH (70 mL) and CbzCI (5.0 mL, 35.3 mmol). The solution was stirred for 18 h then concentrated and suspended in EtOAc (100 mL). The solution was acidified with 1 N HC1 then dried (MgSO4) to afford (±)-Intermediate 188 which was used without further purification.
(±)-Intermediate 188 (7.8 g, 23.5 mmol) in MeOH (100 mL) was treated with SOC12 (4.3 mL, 58.8 mmol) at 0 °C and stirred for 18 h with warming to room temperature. . The solution was concentrated then treated to a 120 g SiO2 Combiflash HP Gold column (0-100% EtOAchexanes gradient) to afford (+)-Intermediate 189 (6.1 g, 75% over 3 steps) as a white solid: *H NMR (CDClj, 400 MHz): d 7.35 (m 5H), 5.15 (m, 2H), 4.47 (t, J= 8.8 Hz, 1H), 3.70 (s, 3H), 3.52 (brm, IH), 2.37 (m, IH), 2.28 (m, 4H), 1.90 (m, IH), 1.77 (m, IH).
19F NMR (CD3OD, 377 MHz): d-72.4.
LC-MS (ESI) m/z 346 [M + H]+, ZR = 2.53 min.
(±)-cis/(±)-trans Intermediate 190
F3c f3c
/ \ Z OH NaOMe / \ p~
tn - tn
H CBz
(+)-Intermediate 189 (6.1 g, 17.6 mmol) in MeOH (100 mL) was treated with NaOMe (400 ; 1T.) and stirred for 4 days. The solution was diluted with EtOAc (50 mL) and washed with 1 N HC1 (2 x 50 mL) and saturated NaCl (50 mL). The solution was dried (MgSO4) and then treated to a 120 g SiO2 Combiflash HP Gold column (0-50% EtOAc-hexanes gradient) to afford a (+)-cis/(±)-trans mixture of Intermediate 190 (5.2 g, 85%) as a white solid.
(±)-Intermediate 191
MeCN (2.4 mL, 45 mmol) in THF (20 mL) was cooled to -78 °C and treated dropwise with NaHMDS (1.0 M în THF, 30 mL, 30 mmol) over 30 min. The solution was warmed to -45 °C and stirred for 30 min. The mixture was cooled to -78 °C and (+)-cis/(+)-trans Intermediate 190 (5.2 g, 15 mmol) in THF (20 mL) was added dropwise over 30 min. The solution was wanned to 45 °C and stirred for 3 h. The solution is treated with AcOH (5.1 mL, 90 mmol) in THF (20 mL) and warmed. The solution is diluted with EtOAc (100 mL) and washed with saturated NaCl (2 x 50 mL). The solution is dried (MgSO4) and concentrated. The solid is dissolved in EtOH (50 mL) and treated with N2H4*HOAc (1.66 g, 18 mmol) and heated at 100 °C for 18 h. The solution is concentrated and treated to a 120 g SiO2 Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford faster eluting (±)-isomer A (2.8 g, 51%) as a white solid and slower eluting (+)-isomer B (0.96 g, 17%) as a white solid (data for (±)-isomer A):
LC-MS (ESI) m/z 369 [M + H]+, fR = 2.22 min.
HPLC Zr (min): 4.07.
(+)-Isomer A from the above separation (2.8 g, 7.6 mmol) in EtOH (70 mL) was treated with ethyl 2-methylacetoacetate (3.3 mL, 23 mmol) and HOAc (4.4 mL, 76 mmol) stirred at 80 °C for 18 h. The solution was concentrated and treated to a 120 g SiO2 Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford (+)-intermediate 191 (2.7 g, 80%) as a white solid:
LC-MS (ESI) m/z 449 [M + Hf, ZR = 2.34 min.
HPLC tR (min): 4.76.
435 ill-intermediate 192
(±)-Intermedîate 191 (390 mg, 0.87 mmol) in EtOH (10 mL) was treated with 10% Pd/C (40 mg) and placed under a H2 atmosphere. The mixture is stirred for 18 h then filtered and concentrated to afford (±)-Intermediate 192 as a white solid which was used without further purification:
LC-MS (ESI) m/z 315 [M + H]+, iR = 1.29 min.
HPLC ZR (min): 2.73.
(+)-Compound 251
5-Methyl-2-(methylsulfonamido)benzoic acid (90 mg, 0.37 mmol) in DMF (1.5 mL) was treated with HATU (165 mg, 0.43 mmol) and stirred for 2 h. The solution was treated with intermediate 192 (91 mg, 0.29 mmol) in DMF (1.5 mL) and A'-methylmorpholine (125 pL, 0.87 mmol) and stirred for 18 h. The solution was concentrated and treated to preparatory RP-HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford (±)-Compound 251 (14 mg, 9%) as a white solid:
'H NMR (CD3OD, 400 MHz): d 7.30 (m, 3H), 6.25 (m, 1H), 6.13 (brm, 1H), 3.63 (m, 1H), 3.43 (m, 1H), 3.06 (s, 3H), 2.70 (m, 1H), 3.65 (m, 1H), 2.38 (s, 6H), 2.25 (br s, 1H), 2.09 (s, 3H), 2.01 (m, 1H), 1.75 (m,2H).
19F NMR (CDjOD, 377 MHz): d -76.
LC-MS (ESI) m/z 524 [M - H]+, ZR = 2.01 min.
436
HPLC iR: 4.17 min.
Intermediate 193
Hexahydropyridazine dihydrochloride (15.9 mg, 0.10 mmol) and sodium bicarbonate (16.8 mg, 0.20 mmol) were added to a solution of intermediate 56 (50 mg, 0.10 mmol) in acetonitrile (0.50 mL) and water (0.50 mL) and the reaction mixture was stirred at room temperature. After 2 h, the reaction mixture was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% tri fluoroacetic acid modifier) to afford intermediate 193 (52 mg, 78%) as a white solid trifluoroacetate salt.
LCMS (ESI) m!z 552.40 [M + H]+, tR = 2.99 min.
HPLC (min), purity %: 4.93, 99%.
Rf= 0.68 (EtOAc).
Compound 252
437
To a solution of intermediate 193 (52.0 mg, 0.09 mmol) in MeOH (1.90 mL) was added azetidine hydrochloride (88.0 mg, 0.94 mmol) and triethylamine (262 pL, 1.88 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 25 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 252 (12.0 mg, 18 %) as a white solid tri fluoroacetate salt. 'HNMR (CD3OD, 400MHz): d 7.48 (br s, 2H), 7.35 (br s, IH), 6.18 (br s, IH), 6.03 (br s, IH), 5.76 (s, IH), 4.74 (br s, 2H), 4.30 (t,/= 7.7 Hz, 4H), 3.48 (br s, IH), 3.26-3.18 (m, IH), 3.142.99 (m, 5H), 2.54 (quint, /= 7.7 Hz, 2H), 2.45-2.28 (m, IH), 2.28-1.98 (m, 2H), 1.97-1.85 (m, 2H), 1.82-1.49 (m, 5H).
LCMS (ESI) m/z 574.46 [M + H]+, rR = 2.18 min.
HPLC rR (min), purity %: 3.80, 99%.
Rf= 0.50 (10% methanol/CH2CI2).
Intermediate 194
H
NaHCO3
MeCN, H2O
(R)-2-(difluoromethyl)piperazine (see W02004/112793 Al for synthesis, 19.0 mg, 0.12 mmol) and sodium bicarbonate (20.0 mg, 0.24 mmol) were added to a solution of intermediate 56 (60 mg, 0.12 mmol) in acetonitrile (0.60 mL) and water (0.60 mL) and the reaction mixture was stirred at room temperature. After 17 h, the reaction mixture was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford intermediate 194 (70.0 mg, 82%) as a white solid tri fluoroacetate salt.
LCMS (ESI) m!z 602.28 [M + H]+, tR = 2.41 min.
IO To a solution of intermediate 194 (70 mg, 0.1 mmol) in MeOH (0,60 mL) was added azetidine hydrochloride (56.0 mg, 0.60 mmol) and triethylamine (0.17 mL, 1.20 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 16 h, the reaction mixture was allowed to cool to room temperature and was concentrated under reduced pressure. The crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid 15 modifier) to afford compound 253 (18.5 mg, 26%) as a white solid trifluoroacetate salt.
'H NMR (CD3OD, 400MHz): d 7.49 (br s, 2H), 7.42 (br s, IH), 6.48-6.25 (m, IH), 6.22-5.92 (m, IH), 5.50 (s, IH), 4.62-4.40 (m, 2H), 4.35 (br s, 4H), 4.22^1.04 (m, IH), 3.69-3.34 (m, 7H), 3.01 (s, 3H), 2.56 (quint, J = 6.5 Hz, 2H), 2.46-2.05 (m, 2H), 1.85-1.50 (m, 4H).
LCMS (ESI) m/z 623.36 (M + H]+, /R = 2.05 min.
HPLC tR (min), purity %: 2.73, 99%.
Rf= 0.55 (10% methanol/CH2Cl2).
Compound 254
439
Trifluoromethanesulfonic acid (4 mL) was added to intermediate 197 (340 mg, 0.67 mmol) at room temperature. After 2 h, the resulting mixture was concentrated under reduced pressure. The resulting residue was dissolved into dichloromethane (5.65 mL) and triethylamine (330 μΐ, 2.37 mmol) followed by 5-chloro-2-(methylsulfonamido)benzoyl chloride (303 mg, 1.13 mmol) were added. The reaction mixture was stirred at room temperature under and argon atmosphere for 6 h, at which point the reaction mixture was directly purified via SiO2 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford compound 254 (171 mg, 49%) as a light yellow solid.
’H NMR (CD3OD, 400MHz): d 7.63-7.33 (m, 3H), 6.22 (s, IH), 6.15-5.90 (m, IH), 5.48 (s, IH), 5.08 (brd, J= 13.2 Hz, IH), 4.95 (d, 7=17.2 Hz, IH), 4.19 (t, 7= 7.5 Hz, 4H), 3.45 (br s, IH), 2.98 (s, 3H), 2.44 (quint, 7 =7.5 Hz, 2H), 2.37-2.15 (m, 2H), 2.09-1.96 (m, IH), 1.80-1.49 (m, 4H).
LCMS (ESI) m/z 519.36 [Μ + H]+, tR = 2.51 min.
HPLC îr (min), purity %: 3.16,99%.
Rz=0.50 (EtOAc).
Compound 255
440
HATU (19.0 mg, 50.0 pmol) was added to a solution of 4-ethylpicolinic acid (9.4 mg, 50 pmol) in acetonitrile (250 pL), and the reaction mixture was stirred at room temperature. After 30 min, intermediate 130 (20.0 mg, 50.0 pmol) was added followed by the addition of triethylamine (10 pL, 75 pmol), and the reaction mixture was stirred at room temperature. After 18 h, the reaction mixture was concentrated under reduced pressure and trifluoroacetic acid (250 pL) was added at room temperature. After 30 min, the resulting mixture was concentrated under reduced pressure, and the crude residue was purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 255 (22 mg, 81%) as a tan solid trifluoroacetate salt.
LCMS (ESI) m!z 409.38 [M + H]+, iR = 1.68 min.
HPLC tR (min), purity %: 2.27, 94%.
Rf= 0.10 (20% methanol/CH2Cl2).
Intermediate 195
TBSO
Doc
EtOH
Ethyl 4-(tert-butyldimethylsilyloxy)but-2-ynoate (Koppisch, A. T.; Blagg, B. S. J.; Poulter, C. D. Org. Lett. 2000, 2, 215-217., 500 mg, 2.19 mmol) was added to a solution of intermediate 4 (549 mg, 1.82 mmol) in ethanol (9.10 mL) at room temperature under an argon atmosphere, and the reaction mixture was heated to 80 °C. After 20 h, the reaction mixture was allowed to cool to room temperature and was partitioned between ethyl acetate (100 mL) and water (100 mL). The phases were separated, and the organic layer was washed with saturated sodium chloride solution (100 mL), was dried over Na2SO4, and was concentrated under reduced pressure. The resulting residue was purified via SiO2 column chromatography (24 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 195 (520 mg, 62%) as a light yellow oil.
441
LCMS (ESI) m/z 463.33 [M + H]+, tR = 2.76 min.
Rf= 0.20 (50% EtOAc/hexanes).
Intermediate 196
2,6-Lutidine
CH2CI2
Tf2O
Trifluoromethanesulfonic anhydride (228 pL, 1.36 mmol) was added slowly to a solution of intermediate 195 (522 mg, 1.13 mmol) and 2,6-lutidine (262 pL, 2.26 mmol) in di chloromethane (5.65 mL) at - 78 °C under an argon atmosphere. After 10 min, the reaction mixture was allowed to warm to room temperature. After 1 h, the reaction mixture was partitioned between ethyl acetate (100 mL) and saturated aqueous sodium bicarbonate solution (100 mL). The phases were separated, and the organic layer was washed with saturated sodium chloride solution (100 mL), was dried over Na2SC>4, and was concentrated under reduced pressure to afford intermediate 196 (680 mg, >100%) as a light yellow oil.
LCMS (ESI) m/z 595.41 [M + H]+, rR = 3.50 min.
Rf= 0.55 (25% EtOAc/hexanes).
Intermediate 197
To a solution of intermediate 196 (680 mg, 1.36 mmol) in tetrahydrofuran (5.65 mL) was added azetidine hydrochloride (528 mg, 5.65 mmol) and triethylamine (1.57 mL, 11.3 mmol) at room temperature, and the reaction mixture was heated to 70 °C. After 2.5 h, the reaction
442 mixture was allowed to cool to room temperature and was partitioned between ethyl acetate (100 mL) and saturated aqueous sodium bicarbonate solution (100 mL). The phases were separated, and the organic layer was washed with saturated sodium chloride solution (100 mL), was dried over Xa2SO4, and was concentrated under reduced pressure. The crude residue was purified via SiO2 column chromatography (24 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford intermediate 197 (340 mg, 60%) as a light yellow oil.
LCMS (ESI) m/z 502.5 [M + H]+, ZR = 3.47 min.
Compound 256
Tf2O, 2,6-Lutidine
CH2CI2; morpholine
Trifluoromethanesulfonic anhydride (18 pL, 0.11 mmol) was added slowly to a solution of compound 254 (56 mg, 0.11 mmol) and 2,6-lutidine (25 pL, 0.22 mmol) in di chloromethane (0.54 mL) at - 78 °C under an argon atmosphere. After 30 min, morpholine (94 pL, 1.10 mmol) was added and the reaction was allowed to warm to room temperature. After 2.5 h, the reaction mixture was concentrated under reduced pressure and the crude residue was purified via SiO2 column chromatography (40 g SiO2 Combiflash HP Gold Column, 0-100% ethyl acetate/hexanes) to afford compound 256 (17.5 mg, 28%) as a white solid.
lH NMR (CD3CN, 400MHz): d 7.87 (br s, IH), 7.65-7.38 (m, 3H), 6.22 (s, IH), 5.96 (br s, IH), 4.13 (t, J = 7.5 Hz, 4H), 4.06-3.90 (m, 2H), 3.70 (br s, 4H), 3.55-3.35 (m, IH), 2.94 (br s, 3H), 2.64 (br s, 4H), 2.39 (quint, J= 7.5 Hz, 2H), 2.32-2.08 (m, 2H), 2.01-1.89 (m, IH), 1.761.45 (m, 4H).
LCMS (ESI) m/z 588.35 [M + H]+, tR = 2.08 min.
HPLC /R (min), purity %: 3.12, 99%.
443
Rf= 0.20 (EtOAc).
Compound 257
was suspended in
Intermediate
ml). Two drops of bis(trimethylsilyl)acetamide was added and a clear solution was obtained. A solution of the acid sulphonamide (90 mg) and HATU (152 mg) in DMF (2 ml) was added and the pH adjusted to >9 with Et,-N. This solution was stirred for 2h, volatiles removed and purified by preparatory HPLC (5-100% MeCN/H2O, 0.1% trifluoroacetic acid modifier) to afford compound 257 (22 mg, 81%) as a colorless solid tri fluoroacetate salt.
’H-NMR (CDCfi, 300 MHz): SD 9.0 (s, br, 1H), 7.67-21 (m, 5H), 6.1 (s, 0.5H), 5.75 (s, 0.5H),
3.4-3.2 (3H), 2.2 (s, 3H), 2.05-1.2 (m, 12H).
LCMS m/z [M+H]+ C21H25N5O4S requires: 443.16. Found 444.04
HPLC tR (min), purity %: 2.198, 99%.
(±)-cis/(±)-trans Intermediate 198
NaOMe
Boe
The starting material (J&W PharmLab LLC, 9.0 g, 37 mmol) in MeOH (40 mL) was treated with NaOMe (10 mL, 44 mmol) and stirred for 4 days. The solution was concentrated and to afford (+)-cis/(±)-trans intermediate 198 which was used without further purification.
444 (±)-cis/(±)-trans Intermediate 199
(±)-cis/(+)-trans Intermediate 198 (9.0 g, 37 mmol) in MeOH (200 mL) was treated with
SOC12 (6.7 mL, 92 mmol) and stirred overnight. The solution was concentrated and to afford (+)-cis/(±)-trans Intermediate 199 which was used without further purification (±)-cis/(±)-trans Intermediate 200
CBzCI
(±)-cis/(±)-trans Intermediate 199 (2.9 g, 18 mmol) in dioxane (50 mL) was treated with 1 N NaOH (55 mL, 55 mmol) and CbzCI (3.9 mL, 28 mmol) and stirred overnight. The solution is concentrated and treated to a 120 g SÎO2 Combiflash HP Gold column (0-100% EtOAchexanes gradient) to afford (+)-cis/(+)-trans Intermediate 200 (3.6 g, 65%) as a white solid: LC-MS (ESI) m/z 278 [M + H]+, ZR = 2.27 min.
(±)-cis/(+)-trans Intermediate 201
(±)-cis/(+)-trans Intermediate 200 (3.6 g, 13 mmol) in MeOH (50 mL) was treated with SOC12 (2.4 mL, 33 mmol) and stirred overnight. The solution is concentrated and treated to a 120 g SiO2 Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford (±)cis/(+)-trans Intermediate 201 (3.1 g, 83%) as a white solid:
*H NMR (CDCI3, 400 MHz): d 7.38 (m, 5H), 5.15 (m, 2H), 4.51 (m, IH), 3.69 (br s, 3H), 3.45 (m, IH), 2.05 (m, 2H), 1.97 (m, 4H), 1.89 (m, IH), 1.38 (m, IH), 0.95 (m, 3H).
445 (±)-cis/(±)-trans Intermediate 202
1. MeCN, NaHMDS
2. N2H4*HOAc
MeCN (1.7 mL, 32 mmol) in THF (13 mL) was cooled to -78 °C and treated dropwise with NaHMDS (1.0 M in THF, 22 mL, 22 mmol) over 30 min. The solution was wanned to -45 °C and stirred for 30 min. The mixture was cooled to -78 °C and (+)-cis/(±)-trans Intermediate 201 (3.1 g, 11 mmol) in THF (12 mL) was added dropwise over 30 min. The solution was wanned to -45 °C and stirred for 3 h. The solution is treated with AcOH (3.8 mL, 66 mmol) in THF (20 mL) and warmed. The solution is diluted with EtOAc (100 mL) and washed with saturated NaCl (2 x 50 mL). The solution is dried (MgSO4) and concentrated. The solid is dissolved in EtOH (20 mL) and treated with N2H4*HOAc (1.2 g, 13 mmol) and heated at 100 °C for overnight. The solution is concentrated and treated to a 120 g SiO2 Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to afford (±)-cis/(±)-trans Intermediate 202 (3.4 g, >99%) as a white solid:
LC-MS (ESI) m!z 315 [M + H]+, rR = 1.93 min.
(±)-cis/(+)-trans Intermediate 203
(+)-cis/(±)-trans Intermediate 202 (3.4 g, 11 mmol) in EtOH (25 mL) was treated with ethyl 2-methylacetoacetate (4.7 mL, 33 mmol) and HOAc (6.2 mL, 108 mmol) stirred at 80 °C overnight. The solution was concentrated and treated to a 120 g SiO2 Combiflash HP Gold column (0-100% EtOAc-hexanes gradient) to (±)-cis/(±)-trans Intermediate 203 (1.5 g, 36%) as a white solid:
LC-MS (ESI) miz 395 [M + H]+, /R = 2.29 min.
HPLC iR (min): 4.50.
446
General Procedure for compounds 258-412
HATU, Et3N DMF, RT, 18 h
TFA
RT, 1 h
Intermediate 130 (20.0 mg, 0.05 mmol), a representative carboxylic acid (0.10 mmol), and HATU (21.0 mg, 0.06 mmol) were charged to a 2-mL reaction vial. Dimethylformamide (250 pL) and triethylamine (50.0 pL, 0.35 mmol) were added sequentially. After stirring at room temperature for 18 h, the reaction vial was transferred to Genevac and heated at 40 °C for h to remove most of solvent. Then, a solution of 1 N NaOH (500 pL) was added and the mixture was sonicated for 1 minute. Then, it was centrifuged and the resulting supernatant was drained. The remaining solid in the reaction vial was washed with H2O (1 mL x 6), and dried in Genevac at 40 °C for 2 h. Tri fluoroacetic acid (100 pL) and dichloromethane (100 pL) were added to the crude product and the reaction mixture was stirred at room temperature for 1 h. Then, the reaction vial was transferred to Genevac and heated at 40 °C for 2 h to remove solvent and most of tri fluoroacetic acid. The resulting crude product was diluted with MeOH:EtOAc (1:4, 1 mL) and loaded into the BCX column. Then, it was washed with MeOH:EtOAc (1:4, 3 x mL) to remove all non-basic by-products. The product was collected by eluting with 2N NH3 in MeOH:EtOAc (1:3, 3 mL), and concentrated under reduced pressure to afford the target compound in the table below.
447
Compound Structure MW calc MW measured
258 394.479 395.2
259 N-N;>“h0 k-Ny° é° 395.467 396.3
260 Ν'\λ-Ο <^N 406.494 407.4
261 n-n^/nQ Ù' 407.522 408.4
262 N-\* NO ζγ^ΛΝ N=Z 408.51 409.4
448
263 NH> Λ N- ^=N 408.51 409.4
264 N-\ * *O k^Ny° A 409.494 410.4
265 n-n(VnQ p/k^N NH’ kNy° c/V \=N 409.494 410.3
266 W-H-C YY<?“N ΧζΝγ° <A N \ 409.494 410.3
267 7'νγ5“Ο· ^Νγ° ά 410.544 411.3
449
268 ν'νΓ)-Ό. S^N w 411.532 412.3
269 o N=/ 411.532 412.3
270 /γ<ΛΝ NH, 0 N\ 411.532 412.3
271 N-\>-O ^Ny° N-S 412.52 413.3
272 n-n>~O k^Ny° Ck 419.533 420.4
ι
450
273 N-f/ u 419.533 420.4
274 dr 420.517 421.4
275 ν-\ΊηΟ /γίλ ότ 420.521 421.4
276 <^Νγ° ArNH: Ν^,Ν 421.509 422.4
277 ν-\)“Ό <^Νγ° σ' 422.508 423.4
451
278 n-n^AnQ] 422.537 423.6
279 ν-\7^“νΟ NH> <V N-N \ 422.537 423.4
280 N'\ + NO Nh2 A 422.537 423.4
281 n-nA^-n0 >γΑΛΝ ^Νγ° A n-n^ 422.537 423.4
282 ^γ^ΖΝ ^nh2 ArF 423.496 424.3
452
283 N-\ V if 423.521 424.4
284 N-\ * YD Νφ M 423.521 424.4
285 N-\ V^N0 k^Ny° n/S^· N—N X 423.525 424.4
286 n-n^-n0 ^y^LhK \s 424.571 425.3
287 N-\ NO LxNy° s^Y \=N 425.559 426.3
453
288 Λ k 425.559 426.3
289 N-^k-NQ 428.54 429.4
290 n-n^^-nQ] L^Ny° 9 N 430.516 431.4
291 N-\~ko ΓγίλΝ 'nh. u Œ 434.544 419.4
292 NNf Ÿ NO ί^Νγθ „A 434.544 435.4
454
293 φτ 434,544 435.4
294 Ν'Ν. ?~Ο /^ΑΛν ^'νη, U γ° ¢1. 434.544 435.4
295 n-*O-nQ ^η2 άο 1 434,544 435.4
296 k^Ny° ci 434,548 435.4
297 Ν-Νη-Ν^Ί -ν 434.548 435.4
455
298 \^Ny° φ 436.535 437.4
299 n-n^V <Ί kxNy° ξκ F 436.535 437.4
300 N-\ NO \=PJ 436.564 437.4
301 N-\ NO /y^N k^Ny° Æ 436.564 437.4
302 n-n^-nQ ζγίλΝ k^N 436.564 437.4
456
303 'H, ç'N' y=N 436.564 437.4
304 n-n^~^-nQ] ^ΑΛΝ ^nh2 438.598 439.3
305 nQ ^Ny° ÔL 439.951 440.3
306 N-\)“ nQ) ^>M~n nh2 ός 439.951 440.3
307 nh2 a 440.498 441.4
457
308 n-nA^O ΑΝγ° cr 440.57 441.3
309 Ν'Ν^-Ν0 ΑΝγ° Λ byN Cl 440.939 441.3
310 ΑΝγ° <rF F 441.486 442.3
311 ν'\~5Ό ^ΝΗζ ΑΝγ° nA ô 444.543 445.4
312 n-n^S-O /γΑ>Ν ΑΝγ° vf—N O 444.543 445.4
458
313 NH 444.583 445.4
314 N'\ \~Zl k^NsZy-CI 444.989 445.3
315 ν-ν^“νΟ vnh2 ^Ny° A v7 445.531 446.4
316 ζ-Νγ/'γ-'Ι,, 0° n.n· K ' N—-> x^*nh2 446.519 447.4
317 n'nc5^n0 00 446.555 447.4
459
318 LNy° Οφ 446.555 447.4
319 ,NH> k^Ny° a > 448.571 449.4
320 ^γΛ^~Ν NHz L-NyO oc 448.571 449.4
321 n-\~^“NO ?NH’ ^Ny° Ό I 448.571 449.4
322 n-n^-nQ k-Ny° V 448.571 449.4
460
323 ^h2 & 448,571 449.4
324 Ν-γ/^Ο LNy° Æ) 448.575 449.4
325 n-\ y~ I 450.543 451.4
326 n-n^-n0 NH> k^Ny° F 450.562 451.4
327 N-Nf3^NO· n\ H Ss> 450.569 451.4
461
328 n-\ ί^-ΝγΟ -τ 450.591 451.4
329 kxMy0 ;in 450.591 451.4
330 ^Νγ° ( ξτ° F 452.534 453.4
331 Ν'\~ /γίΛΝ ^ΝΗ, ί^Νγθ όζ 452.99 453.4
332 ν-\ΊηΟ /γίΛΝ ί^-Νγ·° ¢1. 452.99 453.4
462
333 ^Νγ° V CI 452.99 453.4
334 ν-ν/^νΠ /γΑΛΝ ^Νγ° cX 452.99 453.4
335 Ln γ° Λ 452.99 453.4
336 ν-\y~Ni] /γΑΛΝ ί^Νγ° Æ y™, ο 453.569 454.4
337 n'N^nQ ^γΑΛΝ ^Νγ° A 454.525 455.4
463
338 OXk ώ° u μ- ' N—> 454.578 455.4
339 NH> Xj ' 454.962 455.3
340 NH, k^Ny° Çk Cl 454.962 455.3
341 n-nXVnO Arcl ,N N 454.966 455.3
342 n~\ ^-NO LY„ 455.523 456.4
464
343 α/? κ 455.566 456.4
344 p p ( N—i X^*nh2 455.566 456.4
345 N-prO PNy° JX 455.95 456.3
346 N'Y^P'O ΧΝγ° ζ^ΟΗ F 456.497 457.3
347 N-Nf~PO nh2 kPy° A’ 456.953 457.3
465
348 n-\^- Ο ^Νγ° 456.982 457.4
349 /γΑ/“Ν ''ΝΗ= ^Νγ° œ 457.582 458.4
350 n'N^AnQ /γΛΛΝ Α-ΝγΟ 457.582 458.5
351 ί^ΝγΟ k Ν 457.582 458.4
352 Ν-γ”^— ΐγ} /γΐΛΝ Νγ° Œ N CI 457.941 458.3
466
353 k^NyO fù: 458.488 459.4
354 Ν· 458.517 459.4
355 kxNy° ά ~ >-f F 458.517 459.4
356 ν-νΤ^-'Ο ^NyO ό F 458.517 459.4
357 N-P>-N0 ρρΑΛΝ ''νη 2 k^NyO aD 458.57 4594
467
358 ν-νΧΑνΠ ΑΝγ° 459.558 460.3
359 ΟγΟ7 ώ° ύ ζ Ν-γ 459.558 460.4
360 ν-Ό-Ο ΗΝ>/ Ν \ Q 460.542 461.4
361 ρ1ΛΛΝ ^ΝΗζ ΑΝγ° 461.592 462.3
362 Ν-\ΐ>—A] ΑΝγ° \^s ο 461.592 462.4
L
468
363 ν-ν^-ν0 nVf 0 462.533 463.4
364 Ουό^° K X^* NH, 462.554 463.4
365 N-Nf^“NO ζ-γίλΝ ^NH, άο 462.598 463.4
366 ν-νΑ-ν0 /γΖλΝ ^nh, A N“N d 462.602 463.4
367 X^Ny° -io 462.602 463.4
469
368 Y N^ 2=N 464.618 465.5
369 bO 6d 464.636 465.4
370 /γΐΛΝ LNy0 ν'3 464.636 465.4
371 N'Nk~NO ’vnh2 <^Ny° O Wn °=< NH / 465.562 466.4
372 NNf +^N0 O-N « 467.534 468.4
470
373 ô° -J H' 468.58 469.4
374 Ν-\ ?” NO ^Νγ° Λ ! 468.989 469.4
375 Ν'\ # NQj ^ΛΛΝ ^νη2 φία 468.989 469.4
376 n-n^-nQ k^Ny° Λ I 468.989 469.4
377 Ν-\^—NC] ^-γΑ^Ν '/ΝΗ7 ά: I 468.989 469.4
471
378 OyF F 470.524 471.4
379 n-nY-nQ OY 470.524 471.4
380 n-nY-n0 k^NyO Ar F 470.98 471.4
381 N-'kTi1NO ^γΑΛΝ N- J ° w 471.009 471.4
382 n-nY-n0 ClyA|-\ 1=Ν 471.009 471.4
472
383 J- X zNHj 471.565 472.4
ν-\y r.>>- -< X znh2
384 CxN 471.569 472.4
Hf|z/
o
n-\y rV3- -< ^'ZNH?
385 k^N 471.569 472.5
Hhl'^s N=Z \=N O
N-yy -< X nh2
386 0 471.609 472.5
hn—y
N-w(y rv^N -< vnh2
387 ρ 472.515 473.4
473
388 ν-\)-ν0 u ' 472.557 473.4
389 Ν-\ ΝΟ kxNy° όγ \ ,Ν 472.557 473.4
390 Ν-\ YNQ) Υ-Νγ° φτα CI 473.408 473.2
391 n'nc5~o YxNyO Λ1 473.408 473.3
392 Ν'Υ~!ηΟ 'V kxNy° φχ Cl 473.408 473.3
474
393 ... à0 Μ Ζ Ν-η χ^*νη2 473.585 474,4
394 N'O-nQ ΝΗ, Ατ-ν Ν“Ν / Γ 473.585 474.4
395 kny° xr CT N 474.396 474.3
396 rNC?“O., 'NH2 k^Ny° n_o N 474.569 475.4
397 Ο Λ H HaI .·: > » -.Λ· JÇÏ Q nh2 474.573 475.4
475
398 n-O-nÛ HN^V— O F 475.572 476.4
399 Ν-\?-Ο An-^° A 476.503 477.4
400 pJAAN 'NH> ANy° F F 476.507 477.5
401 n-nA)- n0 Ρ^ΛΛν Ar'\> \=N |/F 476.507 477.4
402 γγΧ^Ν NH? N—N / 476.507 477.5
A'
476
403 ν-νΓα-Ο nxVf β 476.56 477.4
404 νη2 Ο 476.607 477.3
405 ν-ν)-/’') ^Νγ° A O-ipH Ο 479.585 480.4
406 Ν-Ν I 480.616 481.4
407 480.616 481.5
477
408 Ρ,ν 481.604 482.4
409 N<Q] ^ΛλΝ 481.604 482.4
410 n-n^-nQ 481.604 482.4
411 /γΛΧΝ 481.604 482.4
412 qccc 7=° O O Hi 404.5 405.4
478
Antiviral Activity
Another aspect of the invention relates to methods of inhibiting viral infections, comprising the step of treating a sample or subject suspected of needing such inhibition with a composition of the invention.
Within the context of the invention samples suspected of containing a virus include natural or man-made materials such as living organisms; tissue or cell cultures; biological samples such as biological material samples (blood, serum, urine, cerebrospinal fluid, tears, sputum, saliva, tissue samples, and the like); laboratory samples; food, water, or air samples; bioproduct samples such as extracts of cells, particularly recombinant cells synthesizing a desired glycoprotein; and the like. Typically the sample will be suspected of containing an organism which induces a viral infection, frequently a pathogenic organism such as a tumor virus. Samples can be contained in any medium including water and organic solvenfwater mixtures. Samples include living organisms such as humans, and manmade materials such as cell cultures.
If desired, the anti-virus activity of a compound of the invention after application of the composition can be observed by any method including direct and indirect methods of detecting such activity. Quantitative, qualitative, and semi-quantitative methods of determining such activity are all contemplated. Typically one of the screening methods described above are applied, however, any other method such as observation of the physiological properties of a living organism are also applicable.
The antiviral activity of a compound of the invention can be measured using standard screening protocols that are known. For example, the antiviral activity of a compound can be measured using the following general protocols.
Respiratory syncytial virus (RSV) antiviral activity and cytotoxicity assays
Anti-RSV activity
479
Antiviral activity against RSV was determined using an in vitro cytoprotection assay in Hep2 cells. In this assay, compounds inhibiting the virus replication exhibit cytoprotective effect against the virus-induced cell killing were quantified using a cell viability reagent. The method used was similar to methods previously described in published literature (Chapman et al., Antimicrob Agents Chemother. 2007,5/(9):3346-53.)
Hep2 cells were obtained from ATCC (Manassas, VI) and maintained in MEM media supplemented with 10% fetal bovine serum and penicillin/streptomycin. Cells were passaged twice a week and kept at subconfluent stage. Commercial stock of RSV strain A2 (Advanced Biotechnologies, Columbia, MD) was titered before compound testing to determine the appropriate dilution of the virus stock that generated desirable cytopathic effect in Hep2 cells.
For antiviral tests, Hep2 cells were seeded into 96-well plates 24 hours before the assay at a density of 3,000 cells/well. On a separate 96well plate, compounds to be tested were serially diluted in cell culture media. Eight concentrations in 3-fold serial dilution increments were prepared for each tested compound and 100 uL/well of each dilution was transferred in duplicate onto plates with seeded Hep2 cells. Subsequently, appropriate dilution of virus stock previously determined by titration was prepared in cell culture media and 100 uL/well was added to test plates containing cells and serially diluted compounds. Each plate included three wells of infected untreated cells and three wells of uninfected cells that served as 0% and 100% virus inhibition control, respectively. Following the infection with RSV, testing plates were incubated for 4 days in a tissue culture incubator. After the incubation, RSV-induced cytopathic effect was determined using a Cell TiterGlo reagent (Promega, Madison, WI) followed by a luminescence read-out. The percentage inhibition was calculated for each tested concentration relative to the 0% and 100% inhibition controls and the EC50 value for each compound was determined by non-linear regression as a concentration inhibiting the RSV-induced cytopathic effect by 50%. Ribavirin (purchased from Sigma, St. Louis, MO) was used as a positive control for antiviral activity.
Compounds were also tested for antiviral activity against RSV in Hep2 cells using a 384 well format. Compounds were diluted in DMSO using a 10-step serial dilution in 3-fold increments via automation in 4 adjacent replicates each. Eight compounds were tested per dilution plate. 0.4uL of diluted compounds were then stamped via Biomek into 384-well plates (Nunc 142761 or 164730 w/lid 264616) containing 20pLof media (Mediatech Inc. MEM
480 supplemented with Glutamine, 10% FBS and Pen/Strep). DMSO and a suitable positive control compound, such as 80 μΜ GS-329467 or 10 μΜ 427346 was used for the 100% and 0% cell killing controls, respectively.
Hep2 cells (1.0 x IO5 cells/ml) were prepared as above in batch to at least 40 mis excess of the number of sample plates (8 mis cell mix per plate) and infected with vendor supplied 10 (ABI) RSV strain A2 to arrive at an MOI of 1:1000 (virus:cell #) or 1:3000 (vol virus: cell vol).
Immediately after addition of virus, the RSV infected Hep2 cell suspension was added to each stamped 384-well plate at 20 μΐ per well using a uFlow dispenser, giving a final volume of 40 pL/well, each with 2000 infected cells. The plates were then incubated for 5 days at 37°C and 5% CO;. Following incubation, the plates were equilibrated to room temperature in a biosafety 15 cabinet hood for 1.5 hrs and 40μ L of Cell-Titer Gio viability reagent (Promega) was added to each well via uFlow. Following al 0-20 minute incubation, the plates were read using an EnVision or Victor Luminescence plate reader (Perkin-Elm er). The data was then uploaded and analyzed on the Bioinformatics portal under the RSV Cell Infectivity and 8-pIate EC50-Hep2384 or 8-plate EC50-Hep2-Envision protocols.
Multiple point data generated in the assay was analysed using Pipeline Pilot (Accelrys,
Inc., Version 7.0) to generate a dose response curve based on least squares fit to a 4-parameter curve. The generated formula for the curve was then used to calculate the % inhibition at a given concentration. The % inhibition reported in the table was then adjusted based on the normalization of the bottom and top of the curve % inhibition values to 0% and 100% respectively.
C
4SI
Representative activity for the compounds of Formula I-IX against RSV-induced cytopathic effects are shown in the Table below wherein A = EC50 of O.l-lOO nM, B = EC50 of 101-1000 nM, and C = EC50 of 1001-10,000 nM.
Compound # % inh @ luM % inh @ 0.5uM EC50/nM
1 34 70 B
2 46 36 B
3 70 40 B
4 99 66 B
5 79 66 B
6 99 96 A
7 98 93 A
8 94 81 B
9 63 49 B
10 99 94 A
11 99 98 A
12 90 64 B
13 97 91 A
14 98 96 A
15 42 30 B
16 97 89 A
17 97 75 B
18 89 94 B
19 84 67 B
20 53 7 C
21 10 4 C
22 99 95 A
23 100 94 A
24 25 11 C
25 96 92 A
26 99 95 A
27 63 35 B
28 95 73 B
29 100 100 A
30 99 B
31 99 65 A
32 99 A
33 98 A
34 91 A
35 96 A
36 90 A
37 100 A
38 3 >10000
482
39 100 A
40 100 A
41 95 A
42 100 A
43 100 A
44 100 A
45 100 A
46 100 A
47 100 A
48 99 A
49 98 A
50 100 A
51 98 A
52 100 A
53 98 A
54 100 A
55 100 A
56 100 A
57 100 A
58 99 A
59 100 A
60 100 A
61 100 A
62 100 A
63 98 A
64 98 A
65 100 A
66 99 A
67 100 A
68 100 A
69 100 A
70 99 A
71 95 A
72 98 A
73 99 A
74 100 A
75 100 A
76 100 A
77 100 A
78 98 A
79 100 A
80 100 A
81 100 A
82 100 A
483
83 98 A
84 100 A
85 100 A
86 99 A
87 84 B
88 98 A
89 100 A
90 99 A
91 100 A
92 100 A
93 100 A
94 100 A
95 100 A
96 97 A
97 100 A
98 98 A
99 99 A
100 96 A
101 100 A
102 98 A
103 98 A
104 100 A
105 100 A
106 100 A
107 100 A
108 100 A
109 100 A
110 100 A
111 95 A
112 97 A
113 100 A
114 100 A
115 100 A
116 98 A
117 99 A
118 99 A
119 98 A
120 100 A
121 97 A
122 99 A
123 99 A
124 100 A
125 100 A
126 100 A
484 c
127 99 A
128 98 A
129 100 A
130 100 A
131 100 A
132 97 A
133 96 A
134 98 A
135 100 A
136 100 A
137 100 A
138 100 A
139 99 A
140 100 A
141 95 A
142 100 A
143 100 A
144 99 A
145 99 A
146 99 A
147 98 A
148 100 A
149 98 A
150 97 A
151 99 A
152 100 A
153 100 A
154 100 A
155 100 A
156 100 A
157 100 A
158 100 A
159 100 A
160 100 A
161 100 A
162 100 A
163 100 A
164 100 A
165 100 A
166 100 A
167 100 A
168 100 A
169 100 A
170 100 A
485
171 100 A
172 100 A
173 100 A
174 100 A
175 100 A
176 100 A
177 99 A
178 100 A
179 100 A
180 100 A
181 100 A
182 87 A
183 100 A
184 100 A
185 100 A
186 100 A
187 100 A
188 100 A
189 100 A
190 100 A
191 100 A
192 100 A
193 100 A
194 100 A
195 100 A
196 100 A
197 100 A
198 95 A
199 89 A
200 95 A
201 64 B
202 100 A
203 86 B
204 98 A
205 91 A
206 99 A
207 96 A
208 95 A
209 88 B
210 81 B
211 100 A
212 88 B
213 99 A
214 100 A
486
215 99 A
216 100 A
217 89 B
218 72 B
219 100 A
220 100 A
221 100 A
222 100 A
223 100 A
224 100 A
225 100 A
226 100 A
227 100 A
228 100 A
229 100 A
230 100 A
231 98 A
232 100 A
233 100 A
234 100 A
235 99 A
236 98 A
237 99 A
238 100 B
239 36 B
240 71 B
241 99 A
242 72 B
243 95 B
244 88 A
245 92 A
246 98 A
247 94 A
248 100 A
249 86 A
250 90 A
251 73 B
252 92 A
253 88 A
254 90 A
255 96 A
256 87 A
257 93 A
258 100.0 A
487
259 28.0 C
260 99.0 A
261 81.0 B
262 100.0 A
263 99.0 A
264 53.0 B
265 100.0 A
266 100.0 A
267 99.0 A
268 76.0 B
269 90.0 A
270 82.0 B
271 97.0 A
272 100.0 A
273 100.0 A
274 100.0 A
275 100.0 A
276 90.0 B
277 98.0 A
278 99.0 A
279 63.0 B
280 60.0 B
281 37.0 B
282 100.0 A
283 99.8 A
284 97.8 A
285 100.0 A
286 100.0 A
287 n.d. C
288 100.0 A
289 100.0 A
290 993.0 A
291 88.0 A
292 59.0 B
293 64.0 B
294 14.0 C
295 97.0 A
296 49.0 B
297 95.0 A
298 21.0 B
299 n.d. n.d.
300 99.0 A
301 100.0 A
302 100.0 A
488
303 100.0 A
304 100.0 A
305 100.0 A
306 100.0 A
307 100.0 A
308 100.0 A
309 100.0 A
310 100.0 A
311 100.0 A
312 100.0 A
313 100.0 A
314 100.0 A
315 100.0 A
316 100.0 A
317 100.0 A
318 100.0 A
319 100.0 A
320 100.0 A
321 100.0 A
322 100.0 A
323 100.0 A
324 n.d. n.d.
325 98.0 A
326 100.0 A
327 100.0 A
328 99.0 A
329 98.0 A
330 68.0 B
331 99.0 A
332 100.0 A
333 99.0 A
334 100.0 A
335 99.0 A
336 78.0 B
337 n.d. n.d.
338 72.0 B
339 99.0 A
340 100.0 A
341 75.0 A
342 79.0 B
343 60.0 B
344 100.0 A
345 100.0 A
346 100.0 A
489 c
347 100.0 A
348 99.0 A
349 100.0 A
350 83.6 B
351 100.0 A
352 100.0 A
353 100.0 A
354 87.0 B
355 96.0 A
356 100.0 A
357 82.0 B
358 100.0 A
359 100.0 A
360 66.0 B
361 88.0 A
362 100.0 A
363 99.0 A
364 99.0 A
365 100.0 A
366 100.0 A
367 94.0 A
368 58.0 B
369 91.0 A
370 99.0 A
371 100.0 A
372 38.0 B
373 99.0 A
374 100.0 A
375 99.0 A
376 100.0 A
377 99.0 A
378 48.0 B
379 100.0 A
380 80.0 B
381 100.0 A
382 99.0 A
383 99.0 A
384 48.0 B
385 n.d. n.d.
386 97.0 A
387 77.0 B
388 100.0 A
389 98.0 A
390 86.0 B
490
391 99.0 A
392 95.0 A
393 99.0 A
394 100.0 A
395 100.0 A
396 99.0 A
397 3.0 C
398 99.0 A
399 100.0 A
400 100.0 A
401 100.0 A
402 99.0 A
403 100.0 A
404 100.0 A
405 99.0 A
406 98.0 A
407 92.0 A
408 59.0 B
409 99.0 A
410 n.d. C
411 95.0 B
412 100.0 A
(n.d. not determined)
Cytotoxicity
Cytotoxicity of tested compounds was determined in uninfected Hep2 cells in parallel with the antiviral activity using the cell viability reagent in a similar fashion as described before
IO for other cell types (Cihlar et al., Antimicrob Agents Chemother. 2008,52(2):655-65.). The same protocol as for the determination of antiviral activity was used for the measurement of compound cytotoxicity except that the cells were not infected with RSV. Instead, fresh cell culture media (100 uL/weh) without the virus was added to tested plates with cells and prediluted compounds. Cells were then incubated for 4 days followed by a cell viability test using CellTiter Gio reagent and a luminescence read-out. Untreated cell and cells treated with 50 ug/mL puromycin (Sigma, St. Louis, MO) were used as 100% and 0% cell viability control, respectively. The percent of cell viability was calculated for each tested compound concentration relative to the 0% and 100% controls and the CC50 value was determined by nonlinear regression as a compound concentration reducing the cell viability by 50%.
G
491
To test for compound cytotoxicity in Hep2 cells using a 384 well format, compounds were diluted in DMSO using a 10-step serial dilution in 3-fold increments via automation in 4 adjacent replicates each. Eight compounds were tested per dilution plate. 0.4uL of diluted compounds were then stamped via Biomek into 384-well plates (Nunc 142761 or 164730 w/lid 264616) containing 20pL of media (Mediatech Inc. MEM supplemented with Glutamine, 10%
FBS and Pen/Strep). 50 pg/mL puromycin and DMSO were used for the 100% and 0% cytotoxicity controls, respectively.
Hep2 cells (1.0 x 105 cells/ml) were added to each stamped plate at 20 ul per well to give a total of 2000 cells/well and a final volume of 40 pL/well. Usually, the cells were batch prediluted to 1.0 x 105 cells/mL in excess of the number of sample plates and added at 20 ul per well into each assay plate using a uFlow dispenser. The plates were then incubated for 4 days at 37°C and 5% CO2. Following incubation, the plates were equilibrated to room temperature in a biosafety cabinet hood for 1.5 hrs and 40pL of Cell-Titer Gio viability reagent (Promega) was added to each well via uFlow. Following a 10-20 minute incubation, the plates were read using an EnVision or Victor Luminescence plate reader (Perkin-Elm er). The data was then uploaded and analyzed on the Bioinformatics portal (Pipeline Pilot) under the Cytotoxicity assay using the 8-plate CC50-Hep2 or 8-plate CC50-Hep2 Envision protocols.
All publications, patents, and patent documents cited herein above are incorporated by reference herein, as though individually incorporated by reference.
The invention has been described with reference to various specific and preferred embodiments and techniques. However, one skilled in the art will understand that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Claims (22)

  1. 492
    What is claimed is
    1. A compound of Formula I or Formula II:
    Formula I Formula II or a pharmaceutically acceptable salt or ester, thereof;
    wherein:
    A is -(C(R4)2)n- wherein any one C(R4)2of said -(C(R4)2)n- maybe optionally replaced with -O-, -S-, -S(O)P-, NH or NRa;
    n is 3, 4, 5 or 6;
    each p is 1 or 2;
    Ar is a C2-C20 heterocyclyl group or a C-.-CNj aryl group, wherein the C2-C20 heterocyclyl group or the C6-C20 aryl group is optionally substituted with 1 to 5 R6 ;
    X is -C(Ri3)(R14)-, -N(CH2R'4)- or X is absent;
    Y is N or CR7;
    each R1, R2, R3, R4, R5, R6, R7or R8 is independently H, oxo, OR11, NR1^12, NRllC(O)Rn, NRl,C(O)OR11, NR”C(O)NRllR12, N3,CN,NO2, SR1!, S(O)pRa, NRnS(O)pRa, C(-())R, -C(=O)OR1‘, -C(=O)NRllR12, -C(=O)SRn, -S(O)p(OR11), -SO2NRR12, NRIIS(0)p(OR11),-NRtlSOpNR11R,25 NRUC(=NR,,)NR11R12,halogen, (Q-Cgjalkyl, (C2-C8)alkenyl, (C2-Cg)alkynyl, aryl(C]-C8)alkyl, C6-C2o aryl, C2--C20 heterocyclyl, (C3C 7) cycloalkyl or (C4~C8)carbocyclylalkyl;
    two R4 on adjacent carbon atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (Cî-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(O)P-, NH- or -NRa-;
    493 four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Ce aryl ring;
    two R4 on the same carbon atom, when taken together, may form a (Cî-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)P-, -NH-or-NRa-;
    two R6 on adjacent carbon atoms, when taken together, may form a (Cx-C-jcycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)p-, -NH- or \Ri!-;
    any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R3, may form a bond or a -(C(Rs)2)m- group wherein m is 1 or 2;
    any R adjacent to the obligate carbonyl group of said Ar, when taken together with R , may form a bond;
    each Ra is independently (CrC8)alkyl, (Ct-Cs)haloalkyl, (C2-C8)alkenyl, (C2-Cg)alkynyl, arylfCi-Cgjalkyl, C6-C20 aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl wherein any (Cj-Cgjalkyl, (Ci-C8)haloalkyl, (C2-Cg)alkenyl or (C2C8)alkynyl of Ra is optionally substituted with one or more OH, NH2, CO2H, C2~C2o heterocyclyl, and wherein any aryl(Ci-C8)alkyl, C6-C2o aryl, C2-C20 heterocyclyl, (C3C7)cycloalkyl or (C4--C8)carbocyclylalkyl of Ra is optionally substituted with one or more OH, NH2, CO2H, C2-C20 heterocyclyl or (Ci-C8)alkyl;
    each R11 or R12 is independently H, (C|-C8)alkyl, (C2-C8)aJkenyl, (C2-C8)alkynyl, aryl(Ci-C8)alkyl, C6-C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl, (C4-Cg)carbocyclylalkyl, -C(=O)Ra, -S(O)pRa, or aryl(Ci-C8)alkyl; or R11 and R12 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(O)P-, -NH-, -NlV- or -C(O)-;
    Rî3îsHor (C]-Cs)alkyl;
    R14 is H, (Ci-C8)alkyl, NRnR12, NR^C^jR11, NRC(O)OR, NR11C(O)NR!1R12, NRuS(O)pRa, -NR1!S(O)p(OR) or NR,1SOpNR“r'2; and wherein each (Ci-Cg)alkyl, (C2-Cg)alkenyl, (C2-C8)alkynyl, aryl(Cj-C8)alkyl, C6~C2o aryl, C2-C2o heterocyclyl, (C3-C7)cycloalkyl or (C4-C8)carbocyclylalkyl of each R1, R2, R3, R4,
    494
    R5, R6, R7, R8, R11 or R12 is, independently, optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-C8)alkyl, (Cr C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2, -C(=O)NHRa, -C(=O)NH2, NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHR\ NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, -NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) PNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -0P(O)(OH)2 or Ra.
  2. 2. The compound of claim 1 which is a compound of Formula I.
  3. 3. The compound of claim 1 or claim 2 wherein each R is H.
  4. 4. The compound of claim 1 which is a compound of Formula VII or a compound of
    Formula VIII:
    Formula VII Formula VIII or a pharmaceutically acceptable salt or ester, thereof.
  5. 5. The compound of claim 4 which is a compound of Formula VII.
  6. 6. The compound of any one of claims 1-5 wherein R is H.
  7. 7. The compound of any one of claims 1-6 wherein R7 is H, halogen or (C]-Cs)alkyl.
  8. 8. The compound of any one of claims 1-7 wherein n is 3 or 4.
    495
  9. 9. The compound of any one of claims l-8 wherein each R4 is independently H or optionally substituted (Ci-Cs)alkyl, or four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted C^aryl ring.
    IO. The compound of any one of claims l-7 wherein A is -(CH2)3-> ~( 0-12)4-, -CH2-O-CH2-, -CH2-CH(CH3)-CH2-, -CH2-CH(CF3)-CH2-, -CH2-CH2-CH(CH3)- or the structure:
    The compound of any one of claims 1-7 wherein A is -(CH2)3-.
    12. The compound of any one of claims 1-11 wherein X is -CR13(NR11C(O)OR11)-, -CR13(NRhR12)-, -CR,3(NRnS(O)pRa)- or X is absent.
    13.
    The compound of any one of claims 1-11 wherein X is absent.
    14. The compound of any one of claims 1-13 wherein R1 is H, OR1 NR1 !R12, CN, (Ci-Cgjalkyl, C6-C2o aryl, C2-C20 heterocyclyl or (C3-C7)cycloalkyl, wherein any (Ci-Cg)alkyl, CÊ-C20 aryl, C2-C2o heterocyclyl or (C3-C7)cycloalkyl of R1 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Cr C8)alkyl, (C]-Cs)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2 , -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)0Ra, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) PNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra.
    15. The compound of any one of claims 1-13 wherein R1 is H or C2-C2o heterocyclyl, wherein any C2-C20 heterocyclyl of R1 is optionally substituted with or more oxo, halogen,
    I
    496
    5 hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Ci-Cg)alkyl, (Cj-C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2, -C(==O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O)pNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2,
  10. 10 NHS(O) pNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra.
    16. The compound of any one of claims 1-13 wherein R1 is selected from:
    •AAA/
    UWV
    N •A/W
    JWV
    497
    I I
    WW
    I
    ΛΛΛ/
    I
    WW
    WW
    I
    WW
    AAAf
    JWV •>/WV ί/WV
    WW
    498
    17. The compound of any one of claims 1-13 wherein R1 is H or:
    i >/VW
    18. The compound of any one of claims 1-17 wherein Ar is a Cé-C2o aryl group, wherein the Q-C'ic aryl group is optionally substituted with 1 to 5 R6.
    19. The compound of any one of claims 1-17 wherein Ar is phenyl optionally substituted with 1 to 5 R6.
    g
    20. The compound of any one of claims 1-19 wherein each R is independently selected from OR’^NR^R12, NR^C^R11, NRnC(O)ORn, CN, NRnS(O)pRa, -C(=O)NRR12, -NRilSOpNR11R12, halogen, (C]-C8)alkyl, (C2-C8)alkynyl, C6-C2() aryl, C2-C20 heterocyclyl and (C3-C7)cycloalkyl, wherein any Ci~Cs)alkyl, (C2-C8)alkynyl, C6-C20 aryl, C2-C2o heterocyclyl and (C3-C7)cycloalkyl of R6 is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (Cj-C8)alkyl, (Cr C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C( O)OH, -C(=O)N(Ra)2 , -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, NORa. NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O)pNH2, NHS(O)pNHRa, NHS(O) pN(Ra)2, NHS(O) PNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra.
    21. The compound of any one of claims 1-19 wherein each Rfi is independently selected from NRHS(O)pRa, NR!IC(O)ORll,NR1,C(O)Ril, (C|-C8)alkyl and halogen.
    22. The compound of any one of claims 1-17 wherein Ar is:
    Cl ο ο
    C
    500
    C
    504
    I
    JVW /VW raw*
    506
    JWV
    507 αααγ s/WV >JVW
    I
    JWV uwv ww h/VW »A/W
    -VW* îwV
    JWV
    L
    508
    Λ/W
    Λτνν \
    A/W*
    ΛΑΑΓ /VW' nW
    A/W* lAjW aaaj*
    I
    JWV
    ΛΛΑΓ <yVW λλλ^
    A/W*
    JWV »/wv «/wv
    JVW
    N
    510
    JWV
    OMe
    UWV
    JVW
    HN-N
    23. The compound of any one of claims 1-17 wherein Ar is;
    10 24. The compound of any one of claims 1-23 wherein R8is H, NRnR12 * * 15,
    NR10 11C(=NRn)NR)1R12, halogen, (C^CgJalkyl, (C2-C8)alkynyl, C6-C20 aryl, C2-C20 heterocyclyl or (C3-C7)cyc Ioalkyl, wherein any (Ci-Cgjalkyl, (C2 Cg)alkynyl, t y ( 7, aryl, a
    C2-C2o heterocyclyl, or (C3-C7)cycloalkyl of R is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3, N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (CrC8)alkyl, (Ci15 C8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, C(=O)OH, -C(=O)N(Ra)2, -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHRa, NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) pNH2, NHS(O) pNHRa, NHS(O) pN(Ra)2, NHS(O)PNH2, -OC(=O)Ra, -OP(O)(OH)2 or Ra.
    511
    25. The compound of any one of claims 1-23 wherein R8 is C2-C2o heterocyclyl, wherein C2-C20 heterocyclyl is optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N N(Ra)2, NHRa, SH, SRa, S(O)pRa, ORa, (CrC8)alkyi, (CrC8)haloalkyl, -C(O)Ra, -C(O)H, -C(=O)ORa, -C(=O)OH, -C(=O)N(Ra)2, -C(=O)NHRa, -C(=O)NH2 , NHS(O)pRa, NRaS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHC(O)ORa, NRaC(O)ORa, NRaC(O)NHR\ NRaC(O)N(Ra)2, NRaC(O)NH2, NHC(O)NHRa, NHC(O)N(Ra)2, NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRa, NRaS(O) pN(Ra)2, NRaS(O) PNH2, NHS(O) PNHR\ NHS(O) pN(Ra)2, NHS(O) pNH2, -OC(=O)Ra, -OP(O)(OH)2 orRa.
    26. The compound of any one of claims 1-23 wherein R8 is pyrrolidinyl or azetidinyl, wherein pyrrolidinyl or azetidinyl is optionally substituted with one or more hydroxy, NH2, CN or -OP(0)(OH)2.
    27. The compound of any one of claims 1 -23 wherein R8 is :
    514
    V
    V-NH o-p;OH
    OH
    F
    N-H H or
    28.
    The compound of any one of claims 1-23 wherein R is:
    29. The compound according to claim 1 selected from the group consisting of :
    L
    516
    L
    517
    523
    Ο ηΆ to
    527
    528
    Cl
    530
    Cl
    532
    533
    534
    535
    536 ο
    C
    538
    L
    540
    Cl
    L
    543
    544
    ΙΟ
    545
    547
    548
    ΙΟ
    L
    554
    ΙΟ
    ΙΟ
    I
    558 and pharmaceutically acceptable salts and esters thereof
    C
    560 and pharmaceutically acceptable salts and esters thereof.
    56l
    31. A compound of claim I which is a compound as described in any one of Examples 258412, or a pharmaceutically acceptable salt or ester thereof.
    32. A pharmaceutical composition comprising a compound of Formula IX:
    R1
    I
    Ar
    Formula IX or a pharmaceutically acceptable salt or ester thereof and a pharmaceutically acceptable carrier.
    wherein:
    A is -(C(R4)2)n- wherein any one C(R4)2 of said -(C(R4)2)n- may be optionally replaced with -O-, -S-, S(O)P-, NH or NRa;
    n is 3, 4, 5 or 6;
    each p is 1 or 2;
    Ar is a C2-C2o heterocyclyl group or a C6-C20 aryl group, wherein the C2-C2o heterocyclyl group or the C6-C20 aryl group is optionally substituted with 1 to 5 R6 ;
    X is -(CR13R14)-, -N(CH2R14)- or X is absent;
    Y is N or CR7;
    each R1, R2, R3, R4, R5, R6, R7 or R8 is independently H, oxo, OR11, NR1 lR12, NR11C(O)R11, NRlIC(O)OR11, NRnC(O)NRuR12, N3, CN, NO2, SR11, S(O)pRa, NR1]S(O)pRa, C(=O)Rn, -C(=O)OR, -C(=O)NRllR12, -C(=O)SR1!, -SfO^OR11), -SC^NR^R12, NR11S(0)p(ORli),-NR11SOpNR1,R12, NR1!C(=NR11)NR1IR12,halogen, (C1-Cg)alkyl, (C2-Cg)alkenyl, (C2-C8)alkynyl, aryl(CrC8)alkyI, C6-C20 aryl, C2~C20 heterocyclyl, (C3C7)cycloalkyl or (Cj-CgJcarbocyclyl alkyl;
    two R4 on adjacent carbon atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (Cî-C7)cycloalkyl ring wherein one
    C
    562
    5 carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -O-, -S-, -S(0)p-, NH- or -NRa-;
    four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Ce aryl ring;
    two R4 on the same carbon atom, when taken together, may form a (C3-C7)cycloalkyl
    10 ring wherein one carbon atom of said (C3-C7)cycloalkyl ring may be optionally replaced by -0-, -S-, -S(O)P-, -NH- or -NRa-;
    two R6 on adjacent carbon atoms, when taken together, may form a (C3-C7)cycloalkyl ring wherein one carbon atom of said (C3-C7)cycloalkyi ring may be optionally replaced by -0-, -S-, -S(0)p-, -NH- or-NR1-;
  11. 15 any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R3, may form a bond or a -(C(R5)2)m- group wherein m is 1 or 2;
    any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R2, may form a bond;
    each Ra is independently (Ci-CK)alkyl, (C|-CK)haloalkyl, (C^-Cgjalkenyl, (C2-C8)alkynyl, 20 aryI(C]-C8)alkyl, C6~C2q aryl, C2-C20 heterocyclyl, (C3-C7)cycloalkyl or (C^Cgjcarbocyclylalkyl wherein any (Cj-Cgjalkyl, (Ct-Cgjhaloalkyl, (C2-Cg)alkenyl or (C2Cfi'ialkynvl of Ra is optionally substituted with one or more OH, NH2, CO2H, C2-C2o heterocyclyl, and wherein any aryl(C|-Cs)alkyl, Cf-C2o aryl, C2-C2o heterocyclyl, (C3C7)cycloalkyl or (C^Cgjcarbocyclylalkyl of Ra is optionally substituted with one or more OH, 25 NH2, C02H, C2-C2o heterocyclyl or (Ci-Cg)alkyl;
    each R11 or Ri2 is independently H, (C]~Cs)alkyl, (C2-Cs)alkenyl, (C2-C8)alkynyl, aryl(Ci-Cs)alkyl, C6-C2o aryl, C2-C2q heterocyclyl, (C3-C7)cycloalkyl, (C^Cgjcarbocyclylalkyl, -C(=O)Ra, -S(O)pRa, or aryl(Cj-C8)alkyl; or R11 and R12 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom 30 of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(O)P~, -NH-, -NRa- or -C(O)-;
    R13 is H or (Ct-Csjalkyl;
    R14 is H, (CrC8)alkyI, NRnR12, NRC(0)R1', NR^CtOjOR11, NR1!C(O)NR!1R12, NRnS(O)pRa, -NR1!S(O)p(ORu) or NRI1SOpNRl,R12; and
    563 sjidkyl, Cjf-Cio aryl, C2-C2Q heierocycîyL (Çs-C-jcyclôalkÿl or (C4-C.s)carbocyciyiaikyl of each Rl, R2, κλ R4, R5, R'f R7, Rs,Rn orRn is, independently, optionally substituted with one or more oxo, halogen, hydroxy, ΝΉ2, CN, Ns, N(R% NHR®, SH, SRa, S(C%Ra, OR®, (Ci-C^alky!, (Cr Cs)haloaikyl, -C(O)Ra, -C(O)H, -C(-O)ORB, -C(=O)OH, -C(-O)N(Ra)2, -C(=O)NHRa,
    10 -C(=O)NH2 : NHS(O)pRa, NRnS(O)pRa, NHC(O)Ra, NRaC(O)Ra, NHCfOjOR3, NRaC(O)ORa,
    NRaC(O)NHRa, NRaC(O)N(Ra)2, NR3C(O)NH2, NHC(O)NHRa. NT1C(O)N(R% NHC(O)NH2, =NH, =NOH, =NORa, NRaS(O)pNHRai:NRaS(O) pN(Ra)3, NR®S(O) pNH2, NHS(O) PNHR®, NHS(O) PNCRa)2, NHS(O)PNH3, -ÔC(=-O)Rà, -OP(O)(OH)2 or R\
    15 33. A pharmaceutical composition comprising a therapeutically effective amount of a compound of any one of claims 1-31 or a pharmaceutically acceptable salt or ester thereof and a pharmaceutically acceptable carrier.
    34, The pharmaceutical composition of claim 32 or claim 33 further comprising at least one
  12. 20 other therapeutic agent selected from ribavirin, palivizumab, motavizumab, RSV-1GIV MEDI557, A-60444, MDT-637, BMS-433771, ALN-RSVO or ALX-0171 mixtures thereof.
  13. 25 Formula IX or a pharmaceutically acceptable salt, or ester thereof, or composition thereof for use in the therapeutic or prophylactic treatment of it Piieumovirinae virus infection or a respiratory syncytial vims infection;
    wherein:
    A is ~(Ο(ΤΓ)2)η- wherein any one C(R412 of said --(ClRxkV may be optionally replaced with -O-, -S-, S(O)p-, NH or XR;
    5 n is 3,4,5 or 6:
    each p Is 1 or 2;
    Ar is a C2-C2o heterocyclyl group or a C^-C2c aryl group, wherein the Ch-C^o heterocyclyl group or the Q-Qy asyl group is optionally substituted with 1. to 5 R6 :
    X is -(CRUR’>, -N(CH?Ri4)- or X is absent;
    10 YisNorCR7;
    each R1, R2, R3, R4, R5, R5, R7 or Rs is independently H, oxo, ORU, NR! ’R12, ΝΨ?’θ(Ο)1<π, NR!!C(0)ORh, NRnC(O)NR‘‘R12, N3, CN, NO2, SR11, S(O)PR4 NRnS(O){1Ra, C(-O)Rn, -C(=0)ORn, -C(=O)NRHR12, -C(“O)SR1\ -S(O)p(0Rn), -SO2NRî;R12, NRhS(O)p(0R!I), -NRHSOpNRi!Rî2, NRnC(=NRn)NR11Rif halogen, (Ci-Cglalkyl,
    15 (Ci-CiOalkenyl, (Cs-C^alkjmyl, aryl(Ci-Cs)alkyl, 0(,-(¾ aryl, C2-C^ heterocyclyl, (C3Cyjeycloalkyl Or (C4--C8)carbocyclylalkyl;
    two R4 on adjacent carbon atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (Cs-Crjcyctoaikyl ring wherein one carbon atom of said (CrCrjcycloalkyl ring-may be optionally replaced by -0-,-8-, -8(0 V, 20 NH- or-NRa-;
    four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Cg aryl ring;
    two R4 on the same carbon atom, when token together, may form a (CrCbjcycIoalkyl ring wherein one carbon atom of said (Cj-Crjcycloalkyi ring maybe optionally replaced by -(¾ 25 -S-, -3(0%-, -NH- or -NRa-;
    t wo R6 on adjacent carbon atoms, when taken together, may form a (Cj-Crlcycloalkyi ring wherein one carbon atom of said (C-y-C-jcyctoalky! ring may be optionally replaced by 0-, -5 ·, S(O)t!--, -Ni l- or -NR'1-:
    any R6 adjacent to the obligato carbonyl group of said Ar, when taken together with R\
  14. 30 may form a bond or a—(C(R )3)^- group wherein m is I ar 2;
    àny R° : adjacent to the obligate carbonyl group of said Ar, when taken together with R2, may form a bond;
    each Ra is independently (Ci-C8)itlkyl, (Cj-Cg'jhaloalkyl, (Cs-Csjalkenyl, (C2-C8)alkyn.yi, aiyl(CrCs)alkyl, C§~C20 aryl, 08-(¾ heterocyclyl. (Cj^^cycloalkyl or
  15. 35 (CmCsjcarbocyclylalkyl wherein any (C(-C8)alfcyL (CrCgjhaloalkyl, (CwCs)alkenyl or (C2Csjalkynyl of R is option ally substituted 'with one or more OH, NH-.; C02H, C2-C20
    565 heterocyciyl, and ’wherein any æyd(CrCs)a!kyl, C^-Cio srÿh C;-C;Q beterocyclyl, (CjC7)cycloalkyl or (Ci-CsJcai-bocyclylalkyl of Ra is optionally7 substituted with one or more OIL
    NH:, CO-H, C2-C20 heterocyclyl or (C(-Cg)alkyl;
    each R11 or R1 is independently H, (C:-Cs)alkyl, (C2-Cs)alkenyl, (C2-Cs)alkyuyl, and (Cj-C-s)alkyl, C(,~C2îj aryl, Ch—Chy heterocyclyl, (C3-C-)cycioalkyL (Ci—CsJcfTPOcyclylaikyl, -C(~O)Ras -S(O)pRa, or aryl(Ci-Cj.j)alkyl; orR1’ and R13 taken together with a nitrogen to which they are both attached form a 3 to 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(O)B-, -NH-. -NR8- or
    -c(o>;
    R13isHor(CrC2)alkyl;
    Ri4 is H, (Ci-Cs)aIkyL NRi!Ri3, NRnC(O)Rf\ NRuC(O)ORn, NRnC(O)NRnR12, NRnS(O)pR\ -NRHS(O)?(0R!S) orNRnSOpNRnRn; and wherein each (Cj-Cgjalkyl, (C2“Cs)alkenyI, (Cs-C^alkynyd, aryl(Ci-C8)alkyl, Q-CSo aryl, C^-Cig heterocyclyl (Cs-C^oycloalkyl or (C—C^carbocyclylalkyl of each R1, R2, R3, R\ R5, Rg, R7, Rs,Rn or R12 is, independently, optionally substituted with one or more oxo, halogen, hydroxy, NHfe CNS N3, N(Ra)a>NHRa, SH, SRa, S(O)pR“, OR8, (C.rCs)alkyl, (0r Cgjhaloalkyl -C(O)R\ -C(O)H, -C(=O)ORk -(/(-0)09, -C(=O)m*)2, -C(=O)NHR’, -C(=0)NH2, N}IS(O)..Ra, NR'S(O)pRa, NHC(OjR\ NRaC(0)Ra3 NHC(O)ORNRaC(0)0Ra„ WC(O)NHRa, NR8C(O)N(Ra)2l WC(0)NH2; MHC(O)b’HRa, NHC(0)N(R% NHC(0)NH;, --NH, -NOH. -NOR1, NR^(O)pNH.RE, NRaS(O) PN(RH)2, NRsS(O) NR. NHS(O) PNHR, NiIS(O) ?N(R:-)?, NHS(O) pNH2, -OC(-O)Ra, -OP(O)(OH)?. or Ra.
  16. 36. A compound of any one of claims 1-31 or à pharmaceutically acceptable salt or ester th ereof) or composition thereof for use in the therapeutic of prophylactic treatment of a Pheismovh’hiae virus infection or a respiratory syncytial virus infection.
  17. 37, The compound of claim 35 or claim 36, wherein the compound is for adminisfrationwith a therapeutically effective amount of at least one other therapeutic agent or composition thereof selected from the group consisting of ribavirin, palîvizumab, motavizumab, RSV-ÏGIV, XÎEDI557, A-60444. MDT-63. BMS-433771. A.LN-RSV0 and ALXR)171 or mixtures thereof.
  18. 38. A compound of Formula ΓΧ;
    C
    566
    Formula IX or a pharmaceutically acceptable salt or ester thereof, or composition thereof for use in medical therapy,
    10 wherein;
    A is -(C(R4)2)n- wherein anj' one C(R4h of said -(CCR4););, may be optionally replaced with -0-, -S-, S(Ô)P-, NH or NRa;
    n is 3,4,5 or 6;
    each p is 1 or 2;
    15 Ar is a Cs-C^ heterocvclyl group or a and group, wherein the C>-C->0 heterocyclyl group or the C6-C20 aryl group is optionally substituted with 1 to 5 Râ ;
    X is -(CR^R1)-, NfCI-hR14)- οτ X is absent;
    Y h N or CR7;
    each R1, R, R3, R4 R5, R, R7 or R$ is independently H, oxo, OR11, NRdR' \
    20 NRi:iC(0)RJ J, NR11 C(O)OR‘NR11 C(O)NRnRl~, Ns, CN, NO?, SR11, S(O)PR2, NRriS(O)PR< C(-O)R:!, -C(-O)ORu, -C(-O}NR'*R12, -C(=O)SRn,- -S(O);!(OR!!), -sœnr”r!2, NR1 ’SCOptOR11), -NR11SOpNRriR1lNRi halogen, (Ci-C^alkyl, (Cs-CsJalkenyl, (C?- C;?):dkyny), aryi(CrCs)alkyl, Cb-Cfo aryl, C2~C?o heterocyclyl, (C3Ci)c\'cloalkyi or (Ci-C^caibocyclylalkyli
    25 two R4 on adjacent carboii atoms, when taken together, may form a double bond between the two carbons to which they are attached or may form a (Cs-Cjlcycloalkyl ring wherein One carbon atom of said (Cs-Cvlcycloaikyl ring maybe optionally replaced by -0-, -S-, -S(O)F-, NH- or-NiV-;
    four IC on adjacent carbon atoms, when taken together, may &~i an optionally
    30 substituted Q aryl ring;
    567 two R6 an. adjacent carb’m atoms,'whentaken together, may fcrin a (Cj-Cîjcycloaïkyl ring wherein one carbon atom of said (Cj-C-jcycloalkyl ring may be optionally replaced by -0-,
    IO
    -S-, -S(Oy, -NH-or-NR: , . *» any R adjacent to the obligate carbonyl group of said Ar, when taken, together with R‘\ may forai a bond Or a —(C(R3)2).n- group wherein in is I or 2;
    any R6 adjacent to the obligate carbonyl group of said Ar, when taken together with R2, may form a bond;
    each R“ is independently (Çi-Cs)alkÿl, (Ci-Cs)haloalkyl, (Cs-Cs-jalkenyl, (C2-Cs)alkynyl, aiyl(Cr-Cs)aikyl, C6-C->o aryl, heterocyclyl, (C3-C7)cycloalkyl or iCj-Csjcarbocyclylalkyl wherein any (Ci-Cg)alkvT, (Ct-Cs)biiloalkyl, (Ch-Cgjalkeuyl or (C3Cg)alkynyl of Ra is optionally substituted with one or more OH, NI-L·, C02H, C2-C20 hetérocyclyl, and wherein any aryl(C[-Cs)alkyl, Cb- C20 aryl, C^-C^o heterocydyl, (C320 Cî^cycloalkyl or (C^CgJcarbocyclylaikjd ofRais optionally substituted with one or more OH, NHi. CO2H( C2-C2a hcterocyclyl Or (C;-Csjaikyl;
    each Rn or RU is independently H, (Ci-Cs)alkyk (<%-Cs)alkenyL (Cv-Csjalkynyl, aryKCi-Csjalkyl, Cq-Cto aryl, Cri-iRq hetêiôcyclyl, (Çs-Çvjcydoalkÿl, (Ç^CgJcafbocyçIylalkylj -C(=O)RH, -SlOjpR3, or aryl(€t-Cs)àîkyi; or R1 J and Ru taken. together with a nitrogen to which 25. they arc both attached form a 3 to: 7 membered heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S-, -S(P)p-, -NH-, -NRa- or wherein each (Ci-Cs)alkyl, (Cj-Cg) alkenyl, (C2-C0aikynyl, aryliGi-Cglalkyd, €),-(¾ aryl, C2-C2o heterocyclyl, (Cs-Cjjcycloalkyl or (C—Csjcmbocydylalkyl of each R1, R2, R3, R4,
    568
    ΝΚΤ(Ο)ΝΗΚΛ NRaC(O)N(R% NR*C(O)NH2, NHC(O)NHR2, NHC(O)N(R% NHCO)NH:, ==NH, =NOH, -NOR2, NR'S(O)?NHRa, NRS'C) ?NiRa)2, NR:LS(O) PNH2, NHS(O) BNHRa, NHS(O) NHS(O) PNH2, -OC(=O)Ra, -OP(O)(GH)2 or Ra.
  19. 39. A compound of any one of claims 1-31 or a phannaceinfoslly acceptable salt or ester
    10 thereof or composition thereof for use in medical therapy.
  20. 40. The compound of claim 3S or claim 39, wherein the compound is for administration with a therapeutically effective amount of at least one other therapeutic agent or composition thereof selected from the group consisting of ribavirin, palivizumab, motavizumàb, RSV-ïGIV, MEDÏ-
    15 557, A-60444, MDT-63, BMS-433771, ALN-RSVO and ÂLX-0171 or mixtures thereof.
  21. 41. The use of a compound of Formula IX:
    R1
    I
    Ar
    Formula IX
    20 or a phannaceutically acceptable salt or ester thereof, fortlie manufacture of à medicament for the treatment of a Prieumévirinae virus infection or a respfratorysvncytial virus ÎnféctioBL wherehi:
    A is -(CQVVhr wherein any one C(R4)2of said ~-(C(R4)2)n- may be optionally replaced 25 with -O-, -S-, S(O)p-, NH or NRS;
    π is 3, 4, 5 or 6;
    each p is 1 or 2;
    At is a C2-C;g· heterocyclyl group or a Cs-Q# aryl group, wherein die C3-C20 heterocyclyl group cr foe C0-C2i) aryl group is optionally substituted with I to 5 Rs·
    X is -iCRlsRM>; -N(CH;R'V or X is absent;
    YisN or CR7;
    569 'nW , each R!, R2, R2. R4, R5. R5, R7or Rsis independently H, oxo, ORil, NRi!Rî2, NRi]C(O)RH, NRnC(O)ORH, NRnC(O)NRnR'2: bh, CN. NO2, SR11, S(O)PR3, NR' = S(O)pRa, C(=ô)Ru,-C(=O)ORn,~C(=O)N'RnR12, -C(=O)SR1 -S(O)P(ORH): -SO;NRuRlC NRnS(O)P(0Ru), -NR11SOPNRR1NNRC(-NRn)NRilR12ïhalDgem (C--Cs)alkyL (Cb-CsjaJkenyL, (Ca-C^jalkymyl. aryl(Ci-Q)alkyI, Cô-Cæ aryl, CC-C^ heterocyclyl, (C3
    1 (i Cyjcycloalkyl or (C^CgJcafboc-yclylalkyl;
    two R on sdjacent carbon atoms, when taken together, may fonü a double bond between the two carbons to which, they orc attached or may form a (Cs-Cyjcycloalkyl ring wherein one carbon atom of said (Cj-C^Jcvcloalkyl ring maybe optionally replaced by -O-, -S-, -S(0)p-, NH-or-NR3-;
    15 four R4 on adjacent carbon atoms, when taken together, may form an optionally substituted Cg aryl ring;
    two R4 on the same carbon atom, when taken together, may form a (Cb-Crjcycloalkyl ring wherein one carbon atom of said (CrCyjcvcloalkyl ring may be optionally replaced by -O-, -S-, S(O)?-,-Ν.Ή- or-NR3-;
    20 two R6 on adjacent carbon atoms, when taken together, may form a (CVCricydoalkyl ring wherein one carbon atom Of said (Cj-Cyjcycloalkyl ring may be optionally replaced by -0-, -S., -S(O)P-, -NH- 0T -N.Ras airy R adjacent to the obligate carbonyl group of said Ar, 'when taken together with R3, may form a bond or a.-(C(R?)2]ha- group wherein m is 1 or 2;
    25 airy R6 adjacent to the obligate carbonyl group of said Ar, when taken together With R*, may form a bondeach Ra is independently (Ci-Cg)aikyl, (Ci· C>,)h?.loalkyl, (Ci-COalkenyk (C2-Cg)alkynyl, aryl(Ci-Cs)aikyl, C^-Cao :nyl, CN Cjq heterocyclyl (Cy-C^cycloalkyl or (C4-Cs)carbocyclylalkyl wherein any (Cï-CsjàlkÿL (CrCs)haloalkyl, (Ca-C^alkenyl or (C330 Cs)aR_ynyl of R'! is optionally substituted with one or more OH, NH?, CO2H, Cb-CNg heterocych-1, and wherein any aryI(Ci-Cg)idkyl, Co-Csa aryl, C2-C30 heterocyclyl, (C3CNjoycloalkyl or (Q-CNjcarbocyclyl alkyl ofR* is optionally substituted with one or more OH, each Ru or Rf2 is independently H,
    35 aryl(Ci-Cs)alkyl, C.. C?i! aryl. Cb-CNa heterocyclyl, (Cb-CNjcycloalkyl, (C^Cgjcarbocyclylaikyl, -C(=a!O)Ra, -S(O)PRa, er diyI(C]-Cs)a!kyl; or RJ and R12 taken together with a nitrogen to which
    570
    L a 3 heterocyclic ring wherein any one carbon atom of said heterocyclic ring can optionally be replaced with -O-, -S wherein each (C--Cs)idkÿL (Cb-Cyalkenyl, (C<rCs)alkynyl, aryl(CrCs)alkyl, Cb-C2o aryl, C2-C2o heterocyclyl, (Ch-Crlcycloalkyi or (Cd-C^carbocyclyl alkyl of each R.’, Rf, R3, R4, Ry R6, R7, R8,.Ru or Ru is, independently, optionally substituted with one or more oxo, halogen, hydroxy, NH2, CN, N3j N(R% NHRa, SH, SR”, S(O)pRa, OR3, (C3-Cg)alkyl> (Cj15 Cs)hafoalkyl, -C(O)Ra, ~C(O)H, -C(=0)OR\ -C(=O)OH, -C(=0)N(Ra)2 , -C(=O)NHRa, -C(=O)NH2 , NHS(O)PR”, NRaS(O).Ra, NHC(O)R\ NRaC(0)Ra, NHC(.O)OR\ NRrC(0)0R3, NR”C(O)NHRa. ΝΚ30(Ο)Ν(Χ)2, NRaC(O)NH2î NHC(O)NHR\ NHC(0)N(RàE NHC(O)NH2, =NH, =b)OH, =NORh NRS(G%NHRa; NRsS(0)PMRaK NR’SfO) pNH2, NHS(O) PNHRa, NHS(O)pN(Ra)2> -OC(=O)R\ -OP(O)(OH)2 orR5.
  22. 42, Thé use of a compound of any one of claims 1~31 or a pharmaceutically acceptable sait or ester thereof, for the manufacture of a medicament for the treatment of à Prie&fnovtrmae Virus infectionor a respiratory syncytial virus infection.
    25 43. Tim use of claim 41 or claim 42, wherein the medicament is for administration with a thempeutically effective- amount of at least one other therapeutic agent or composition thereof selected from the group consisting of ribavirin, palivizuin ab, motavizuraab, RSV-TGIV, MEDI557, A-60444, MDT-637, BMS-433771, ALN-RSVÔ and ALX-ÔI71 or mixtures thereof.
OA1201200525 2010-06-24 2011-06-23 Pyrazolo [1,5-A] pyrimidines as antiviral agents. OA16278A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61/358,122 2010-06-24

Publications (1)

Publication Number Publication Date
OA16278A true OA16278A (en) 2015-04-24

Family

ID=

Similar Documents

Publication Publication Date Title
US9957275B2 (en) Pyrazolo[1,5-A]pyrimidines for antiviral treatment
EP2838900B1 (en) Compounds and methods for antiviral treatment
AU2012358805B2 (en) Pyrazolo[1,5-a]pyrimidines as antiviral agents
AU2015200638B2 (en) Pyrazolo [1, 5 -a] pyrimidines as antiviral agents
OA16278A (en) Pyrazolo [1,5-A] pyrimidines as antiviral agents.
AU2016247174A1 (en) Pyrazolo [1, 5 -a] pyrimidines as antiviral agents