NZ755863B2 - Cushion for Patient Interface - Google Patents
Cushion for Patient Interface Download PDFInfo
- Publication number
- NZ755863B2 NZ755863B2 NZ755863A NZ75586306A NZ755863B2 NZ 755863 B2 NZ755863 B2 NZ 755863B2 NZ 755863 A NZ755863 A NZ 755863A NZ 75586306 A NZ75586306 A NZ 75586306A NZ 755863 B2 NZ755863 B2 NZ 755863B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- cushion
- membrane
- region
- pair
- nasal bridge
- Prior art date
Links
- 239000012528 membrane Substances 0.000 claims abstract description 154
- 210000003467 Cheek Anatomy 0.000 claims abstract description 77
- 210000001331 Nose Anatomy 0.000 claims abstract description 58
- 238000005096 rolling process Methods 0.000 claims abstract description 7
- 238000006073 displacement reaction Methods 0.000 claims description 39
- 230000001815 facial Effects 0.000 claims description 15
- 238000010276 construction Methods 0.000 claims description 9
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 6
- 210000000214 Mouth Anatomy 0.000 description 21
- 239000000463 material Substances 0.000 description 8
- 210000000887 Face Anatomy 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 208000000927 Sleep Apnea Syndrome Diseases 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 208000001797 Obstructive Sleep Apnea Diseases 0.000 description 3
- 210000003491 Skin Anatomy 0.000 description 3
- 230000000875 corresponding Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 241000590419 Polygonia interrogationis Species 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000000988 Bone and Bones Anatomy 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 206010012601 Diabetes mellitus Diseases 0.000 description 1
- 210000003128 Head Anatomy 0.000 description 1
- 210000000088 Lip Anatomy 0.000 description 1
- 208000001022 Morbid Obesity Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 210000000614 Ribs Anatomy 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 210000000216 Zygoma Anatomy 0.000 description 1
- 230000001070 adhesive Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 201000006233 congestive heart failure Diseases 0.000 description 1
- 230000001627 detrimental Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0057—Pumps therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
- A61M16/0605—Means for improving the adaptation of the mask to the patient
- A61M16/0611—Means for improving the adaptation of the mask to the patient with a gusset portion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
- A61M16/0605—Means for improving the adaptation of the mask to the patient
- A61M16/0616—Means for improving the adaptation of the mask to the patient with face sealing means comprising a flap or membrane projecting inwards, such that sealing increases with increasing inhalation gas pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
- A61M16/0605—Means for improving the adaptation of the mask to the patient
- A61M16/0616—Means for improving the adaptation of the mask to the patient with face sealing means comprising a flap or membrane projecting inwards, such that sealing increases with increasing inhalation gas pressure
- A61M16/0622—Means for improving the adaptation of the mask to the patient with face sealing means comprising a flap or membrane projecting inwards, such that sealing increases with increasing inhalation gas pressure having an underlying cushion
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B18/00—Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
- A62B18/08—Component parts for gas-masks or gas-helmets, e.g. windows, straps, speech transmitters, signal-devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
Abstract
cushion (10) for a patient interface that delivers breathable gas to a patient, the cushion including a nasal bridge region (16), a pair of side of nose regions (17), a pair of upper cheek regions (18), a pair of lower cheek regions (19) and a chin region (20). The cushion includes a base wall (28) and a membrane (32, Fig 8) connected to the base wall. The membrane has a thickness and includes a nasal bridge region, a pair of side of nose regions, a pair of upper cheek regions, a pair of lower cheek regions and a chin region adapted to form a continuous seal, respectively, on a nasal bridge region, a pair of side of nose regions, a pair of upper cheek regions, a pair of lower cheek regions and a chin region of a patient’s face. The thickness of the membrane in at least one of the nasal bridge region, the pair of side of nose regions, the pair of upper cheek regions, the pair of lower cheek regions and the chin region is different than the thickness in at least one other region. An exterior surface of the membrane in the nasal bridge region forms an elongated ridge having sloping sides that meet to form an elongated crest. The exterior surface of the membrane in the chin region extends from one lower cheek region to the other lower cheek region and forms a concave shape adapted to engage the patient’s chin region. The membrane in the nasal bridge region is configured to invert, in use, with a rolling edge to accommodate patients having a range of nasal bridge profiles. ) and a membrane (32, Fig 8) connected to the base wall. The membrane has a thickness and includes a nasal bridge region, a pair of side of nose regions, a pair of upper cheek regions, a pair of lower cheek regions and a chin region adapted to form a continuous seal, respectively, on a nasal bridge region, a pair of side of nose regions, a pair of upper cheek regions, a pair of lower cheek regions and a chin region of a patient’s face. The thickness of the membrane in at least one of the nasal bridge region, the pair of side of nose regions, the pair of upper cheek regions, the pair of lower cheek regions and the chin region is different than the thickness in at least one other region. An exterior surface of the membrane in the nasal bridge region forms an elongated ridge having sloping sides that meet to form an elongated crest. The exterior surface of the membrane in the chin region extends from one lower cheek region to the other lower cheek region and forms a concave shape adapted to engage the patient’s chin region. The membrane in the nasal bridge region is configured to invert, in use, with a rolling edge to accommodate patients having a range of nasal bridge profiles.
Description
CUSHION FOR PATIENT INTERFACE
CROSS-REFERENCE TO APPLICATIONS
This application claims the benefit of U.S. Provisional Application Nos.
60/643,130, filed January 12, 2005, and 60/724,303, filed October 7, 2005, each of
which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
The present invention relates to a cushion for a patient interface, the
patient interface being used in the treatment, e.g., of Sleep Disordered Breathing
(SDB) with Non-Invasive Positive Pressure Ventilation (NPPV).
BACKGROUND OF THE INVENTION
The use of NPPV for treatment of SDB such as Obstructive Sleep
Apnea (OSA) was pioneered by Sullivan (see U.S. Patent No. 4,944,310). Apparatus
for the treatment of SDB involves a blower which delivers a supply of air at positive
pressure to a patient interface via a conduit. The patient interface may take several
forms, such as a nasal mask assembly and a nasal and mouth mask assembly. Patients
typically wear a mask assembly while sleeping to receive the NPPV therapy.
Mask assemblies typically comprise a rigid shell or frame and a soft
face-contacting cushion. The cushion spaces the frame away from the patient’s face.
The frame and cushion define a cavity which receives the nose or nose and mouth.
The frame and cushion are held in position on the patient’s face by a headgear
assembly. The headgear assembly typically comprises an arrangement of straps
which pass along both sides of the patient’s face to the back or crown of the patient’s
head.
U.S. Patent No. 5,243,971 (Sullivan and Bruderer) describes a nasal
mask assembly for Continuous Positive Airway Pressure (CPAP) having a
ballooning/molding seal that conforms with the patient’s nose and facial contours.
The mask assembly has a face-contacting portion mounted to a shell which is sized
and shaped to overfit the nose region of the patient. The face-contacting portion is in
the form of a distendable membrane which is molded from an elastic plastic material.
The distendable membrane and the shell together define a chamber. Pressurized gas
admitted to the chamber causes the membrane to distend outwardly from the patient’s
face. The contents of this patent are hereby incorporated by reference.
U.S. Patent No. 6,112,746 (Kwok et al.) describes a nasal mask
assembly and a mask cushion therefor. The contents of this patent are hereby
incorporated by reference. The cushion comprises a substantially triangularly-shaped
frame from which extends a membrane. The frame has an edge by which the cushion
is affixed to a mask body. The membrane has an aperture into which the patient’s
nose is received. The membrane is spaced away from the rim of the frame, and its
outer surface is of substantially the same shape as the rim.
The cushion of a patient interface can play a key role in the comfort
and effectiveness of therapy. There is considerable variation in facial size and shape
which can mean that a mask designed for one type of face may not be suitable for
another. For example, an Asian-type nose tends to have a lower nasal bridge whereas
a Caucasian-type nose has a higher nasal bridge. Using the wrong cushion can lead to
excessive leak and discomfort. While creating customized cushions for every patient
may solve some fitting issues, customized masks are very expensive. Thus,
manufacturers seek to develop cushions which provide a comfortable and effective
seal for a range of facial sizes and shapes.
SUMMARY OF THE INVENTION
One aspect of the invention is to provide a patient interface having a
cushion that provides more comfort to the patient while maintaining an effective seal.
Another aspect of the invention is to provide a comfortable cushion for
a patient interface which fits a wide range of facial shapes and sizes.
Another aspect of the invention relates to a cushion including an
underlying cushion and a membrane, wherein the underlying cushion and the
membrane have a substantially flat portion in a nasal region of the cushion.
Another aspect of the invention relates to a cushion including a base
wall, an underlying cushion and a membrane, wherein the base wall and underlying
cushion have a cross-sectional configuration that provides a variable spring constant
around the perimeter of the cushion.
Another aspect of the invention relates to a patient interface wherein
the base wall and the frame connection of the cushion are internally offset with
respect to the most external cushion point, e.g., external membrane surface.
Another aspect of the invention relates to a cushion including a base
wall and underlying cushion that are inclined or angled in a side of nose region of the
cushion.
Another aspect of the invention relates to a cushion having a
substantially constant mouth width irrespective of its face height.
Another aspect of the invention relates to a cushion for a patient interface that delivers
breathable gas to a patient. The cushion includes a base wall structured to be
connected to a frame, an underlying support cushion extending away from the base
wall towards the patient's face in use, and a membrane provided to substantially cover
at least a portion of the underlying cushion. The membrane includes nasal bridge,
cheek, and chin regions adapted to form a continuous seal on nasal bridge, cheek, and
chin regions of the patient's face, respectively. The nasal bridge region and adjacent
two cheek regions define an intersection or apex. The membrane in the nasal bridge
region has a height at the apex or intersection that is greater than a height in an
adjacent portion of the cheek region.
Another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane is
adapted to form a continuous seal on the patient's face. The underlying cushion has a
spring-like connection with the base wall. The underlying cushion and/or base wall
define a spring constant that varies along a length of the seal.
Another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane is
adapted to form a continuous seal on the patient's face. One of the membrane and the
underlying cushion includes an external surface that defines an outer width of the
cushion, and the base wall is internally offset with respect to the external surface.
Yet another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane
includes at least nasal bridge and side of nose regions adapted to form a continuous
seal on nasal bridge and side of nose regions of the patient's face, respectively. The
base wall and the underlying cushion in the side of nose region are inclined or angled
with respect to a bottom of the frame.
Yet another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane
includes nasal bridge, side of nose, upper cheek, lower cheek and chin regions
adapted to form a continuous seal on nasal bridge, side of nose, upper cheek, lower
cheek, and chin regions of the patient's face, respectively. An inner edge of the
membrane defines an aperture that receives the patient's nose and mouth. A lower
portion of the aperture that receives the patient's mouth has a mouth width that
remains substantially constant irrespective of a face height of the cushion.
Yet another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane is
adapted to form a continuous seal on the patient's face. At least a portion of the
underlying cushion and/or base wall has a lower portion including a spring
configuration that defines displacement of the cushion with respect to a force applied
from the frame.
Still another aspect of the invention relates to a method of designing a
series of mask assemblies. The method includes providing a first cushion adapted to
fit a larger range of patients and providing a second cushion adapted to fit a smaller
range of patients. Each of the first and second cushions includes an aperture that
receives at least the patient's mouth. The aperture of the first and second cushions
have the same width.
Still another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane
includes at least a nasal bridge region adapted to form a continuous seal on a nasal
bridge region of the patient's face. The membrane forms an elongated ridge in the
nasal bridge region. The elongated ridge has sloping sides that meet to form an
elongated crest. Each of the sloping sides is angled from a crest centerline in the
range of 30-60° and the crest has a radius of curvature in the range of 1.0-5.0mm.
Still another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane
includes at least a nasal bridge region adapted to form a continuous seal on a nasal
bridge region of the patient's face. The nasal bridge region of the membrane includes
a contoured portion that curves inwardly towards a cavity of the cushion along a
radius to terminate at an inner edge of the membrane. The contoured portion has a
free end that is angled with respect to a face contacting plane of the cushion in the
range of 30-50°.
Still another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane is
adapted to form a continuous seal on the patient's face. The underlying cushion
and/or base wall has a question-mark or sickle shape.
Still another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane is
adapted to form a continuous seal on the patient's face. The underlying cushion has
an arcuate configuration including an arc length greater than 16 mm.
Still another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame, an underlying support cushion extending away
from the base wall towards the patient's face in use, and a membrane provided to
substantially cover at least a portion of the underlying cushion. The membrane is
adapted to form a continuous seal on the patient's face. The membrane includes a
thickness that varies along a length of the seal.
Still another aspect of the invention relates to a cushion for a patient
interface that delivers breathable gas to a patient. The cushion includes a base wall
structured to be connected to a frame and a membrane adapted to form a continuous
seal on the patient's face. At least a portion of the base wall includes a tapered portion
that tapers towards the membrane.
Still another aspect of the invention relates to a mask system including
a set of at least two cushions arranged to suit different face sizes, wherein the at least
two cushions have substantially the same width.
Other aspects, features, and advantages of this invention will become
apparent from the following detailed description when taken in conjunction with the
accompanying drawings, which are a part of this disclosure and which illustrate, by
way of example, principles of this invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings facilitate an understanding of the various
embodiments of this invention. In such drawings:
Figs. 1-9 illustrate a cushion for a patient interface constructed
according to an embodiment of the present invention and showing exemplary
dimensions of an embodiment;
Figs. 10-14 are cross-sectional views through the cushion shown in
Fig. 5;
Fig. 15 is a front view of the cushion shown in Figs. 1-9 that illustrates
various regions of the cushion;
Figs. 16-17 illustrates another size of the cushion shown in Figs. 1-9;
Figs. 18-19 illustrates yet another size of the cushion shown in Figs. 1-
Figs. 20-21 illustrates still another size of the cushion shown in Figs. 1-
Fig. 22 is a cross-sectional view through the cushion shown in Figs. 1-
9 that illustrates parameters that can modify a spring characteristic of the underlying
cushion;
Figs. 23-29 are cross-sectional views through the cushion shown in
Fig. 15 and showing exemplary parameters of an embodiment, the cross-sectional
views illustrating the underlying cushion only;
Figs. 30A-30N are cross-sectional views illustrating alternative
embodiments of a cushion according to the present invention;
Fig. 31-32 are graphs illustrating the general relationship between
Force and Displacement for embodiments of the cushion shown in Figs. 1-9 and a
known cushion commercially sold under the name of UltraMirage® Full Face by
ResMed Ltd.;
Fig. 33 is a graph illustrating the general relationship between Force
and Displacement for various cross-sections of the cushion shown in Figs. 23-29;
Fig. 34A illustrates a spring length for the cushion shown in Figs. 1-9,
and showing exemplary dimensions of an embodiment according to the present
invention;
Fig. 34B illustrates a spring length for a known cushion commercially
sold under the name of UltraMirage® Full Face by ResMed Ltd., and showing
exemplary dimensions of the UltraMirage® Full Face;
Fig. 35 is a side view of the cushion shown in Figs. 1-9;
Figs. 36-37 are cross-sectional views through the cushion shown in
Fig. 35;
Fig. 38 is a front view of the cushion shown in Figs. 1-9 illustrating a
flat portion thereof;
Fig. 38B is a graph illustrating the general relationship between Force
and Displacement in a nasal bridge region for embodiments of the cushion shown in
Figs. 1-9 and a known cushion commercially sold under the name of UltraMirage®
Full Face mask by ResMed Ltd.;
Figs. 39-40B are front and cross-sectional views of an embodiment of
the cushion shown in Figs. 1-9, and showing exemplary dimensions of an
embodiment according to the present invention;
Figs. 41-45 are perspective views of an embodiment of the cushion
shown in Figs. 1-9 illustrating the rolling action of the nasal bridge region in use;
Figs. 46-53 illustrate a known cushion commercially sold under the
name of UltraMirage® Full Face by ResMed Ltd.;
Figs. 54-58 illustrate a cushion for a patient interface according to
another embodiment of the present invention and showing exemplary dimensions of
an embodiment;
Figs. 59-63 are cross-sectional views through the cushion shown in
Fig. 54;
Fig. 64 is a cross-sectional view of a portion of the cushion shown in
Figs. 54-58 (in solid lines) overlaid with a cross-section of a known cushion
commercially sold under the name of UltraMirage® Full Face by ResMed Ltd. (only
relevant portions of the UltraMirage® cushion may be shown in dashed lines, i.e.,
there may be other different portions not shown);
Fig. 65 is a cross-sectional view of a portion of the cushion shown in
Figs. 54-58 showing exemplary dimensions of an embodiment according to the
present invention;
Figs. 66-69 are cross-sectional views through the cushion shown in
Fig. 54, and showing exemplary dimensions of an embodiment according to the
present invention;
Figs. 70-71 are plan and cross-sectional views, respectively, of the
cushion shown in Fig. 54, and showing exemplary dimensions of an embodiment
according to the present invention;
Figs. 72-76 illustrate a cushion for a patient interface according to
another embodiment of the present invention;
Figs. 77-83 illustrate a cushion for a patient interface according to
another embodiment of the present invention;
Figs. 84-90 illustrate a cushion for a patient interface according to
another embodiment of the present invention;
Fig. 91 illustrates an alternative cushion cross-section to that shown in
Fig. 34A;
Fig. 92 illustrates another alternative cushion cross-section to that
shown in Fig. 34A;
Fig. 93 illustrates an alternative cushion arrangement to that shown in
Fig. 15;
Figs. 94A-94C are a set of views depicting a horizontal cross-section
through the nasal bridge region of the cushion of Fig. 35; and
Figs. 95A-95C are a set of views depicting a horizontal cross-section
through the nasal bridge region of the prior art cushion of Fig. 51.
DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS
Figs. 1-14 illustrate a cushion 10 constructed according to an
embodiment of the present invention. The cushion 10 is adapted to be removably or
permanently connected (e.g., via mechanical and/or adhesive fastening) to a frame of
a patient interface structured to deliver breathable gas to a patient. In an embodiment,
the cushion 10 may be co-molded to a frame of a patient interface. In another
embodiment, the cushion may form part of a frame with an outer support structure,
e.g., ResMed’s Hospital Nasal Mask. The cushion 10 provides a seal with the
patient's face during use.
In the illustrated embodiment, the cushion 10 forms a part of a full-
face mask. Specifically, the cushion 10 provides a seal around the patient's nose and
mouth to enable the delivery of breathable gas to the patient's nose and mouth.
However, aspects of the present invention may be applicable to other breathing
arrangements, e.g., a nasal mask, a mouth mask, etc. The cushion 10 may be used
with a gusset as described in U.S. Patent Application No. 10/655,622, incorporated
herein by reference in its entirety.
The cushion 10 is structured to provide a more comfortable fit for a
wide range of facial shapes and sizes. Also, the cushion 10 is structured to provide a
better seal and reduce the risk of leakage as discussed below.
As illustrated in Figs. 1-14, the cushion 10 includes a non-face-
contacting portion 12 structured to be connected to a frame of the patient interface,
e.g., via a friction-fit, a tongue-and-groove arrangement, etc., and a face-contacting
portion 14 structured to engage the patient’s face.
As best shown in Figs. 5 and 15, the face-contacting portion 14 of the
cushion 10 preferably has a generally triangular shape and is structured to
continuously contact nasal bridge, side of nose, upper cheek, lower cheek, and chin
regions of the patient. However, the face-contacting portion 14 may have other
suitable shapes, e.g., a generally trapezoidal shape. In the illustrated embodiment, as
best shown in Fig. 15, the cushion 10 includes a nasal bridge region 16 to provide a
seal along the patient's nasal bridge, , a pair of cheek regions 15 to provide a seal
along the patient's nose, cheek, and mouth, and a chin region 20 to provide a seal
along the patient's chin. The pair of cheek regions 15 may be further defined as a pair
of side of nose regions 17 to provide a seal along the sides of the patient's nose, a pair
of upper cheek regions 18 to provide a seal along upper cheeks of the patient, and a
pair of lower cheek regions 19 to provide a seal along the patient's lower cheeks and
the sides of the patient's mouth.
Width of Cushion in Lower Cheek Regions and Ratio of Face Width to Height Across
Mask Sizes
The cushion 10 may be provided in various sizes in order to
accommodate various facial sizes. For example, Figs. 16-21 illustrate embodiments
of the cushion 10 in three other sizes. In an embodiment, the cushion 210 shown in
Figs. 16-17 may represent a extra small size, the cushion 310 shown in Figs. 18-19
may represent a small size, the cushion 10 shown in Figs. 1-14 may represent a
medium size, and the cushion 410 shown in Figs. 20-21 may represent a large size.
As illustrated, the mouth width of the cushions 10, 210, 310, 410 are substantially
constant irrespective of their face height.
Specifically, the cushion 10 defines an aperture 22 that receives the
patient's mouth. In a preferred embodiment, the lower portion of the aperture 22 has a
constant width for all cushion sizes, e.g., 60 mm. However, the width of the lower
portion of the aperture 22 may be almost constant, e.g., in a range of 5 mm, for all
cushion sizes. For example, the width of the lower portion of the aperture 22 of the
cushion 10 may be 60 mm ±5. In contrast, the width of the lower portion of the
aperture 722 of a known cushion 700 commercially sold under the name of
UltraMirage® Full Face by ResMed Ltd. is 60 mm for a large size, 54 mm for a
medium size, and 52 mm for a small size. The UltraMirage® cushion 700 is shown in
Figs. 46-53.
Anthropometric data has indicated that mouth widths for patients with
relatively small faces are not necessarily narrower than mouth widths for patients with
relatively large faces. Hence, all faces generally have the same mouth width. Thus,
the aperture 22 in the cushion 10 is made sufficiently wide to accommodate a wide
range of patients and remains constant or almost constant, e.g., a range of 5 mm,
regardless of the change in face height of a mask to fit larger faces. This can be seen
in the substantially constant cushion geometry around the lower cheek and chin
regions of the different cushion sizes, and thus the varying width to height ratios of
the different cushion sizes. For example, the lower portion of the aperture 22 of each
of the cushions 10, 210, 310, 410 has substantially the same width.
Base Wall, Underlying Cushions, and Membrane
As best shown in Figs. 9 and 10-14, the face-contacting portion 14 of
the cushion 10 includes a base wall 28, a pair of underlying support cushions 30
extending away from the base wall 28, and a membrane 32 provided to substantially
cover at least a portion of the underlying cushions 30 and provide a sealing structure
for the face contacting portion 14. The base wall 28 and underlying cushions 30
provide a support structure for the membrane 32.
As illustrated, the underlying cushions 30 are preferably provided on
lateral sides of the base wall 28 only, e.g., in the side of nose, upper cheek, and lower
cheek regions 17, 18, 19, although the underlying cushions 30 could be joined and
substantially surround the patient's nose and also the lower lip or chin region. The
underlying cushions 30 add rigidity to the membrane 32 at the sides of the patient's
mouth and cheeks. While it is preferable that the membrane 32 be thinner than the
underlying cushions 30, they could have the same thickness or the membrane could be
thicker than the underlying cushion. Also, the elimination of an underlying cushion in
the chin region 20 allows the cushion 10 to more deeply engage with the patient's face
in this region without subjecting the patient's chin region 20 to excessive pressure.
That is, there is no underlying cushion to restrain the movement of the membrane 32
in this region, which may improve the seal in this region and adjacent regions.
Additionally, the elimination of an underlying cushion in the chin region 20 enables
the cushion 10 to accommodate more facial shapes and provides more flexibility and
allows for movement or opening of the mouth.
In the illustrated embodiment, the face-contacting portion 14 of the
cushion has a double-walled construction, i.e., membrane 32 and underlying cushion
, in the side of nose, upper cheek, and lower cheek regions 17, 18, 19, and a single-
walled construction, i.e., membrane 32, in the nasal bridge and chin regions 16, 20 as
shown in Figs. 10-14. The single wall construction at the top and bottom of the
cushion 10 helps to accommodate high landmarks, e.g., pointed chin, by allowing the
center of the cushion 10 to flex. This flexibility accommodates more patients with the
same cushion. However, the cushion 10 may have any other suitable construction,
e.g., single walled, double walled, triple walled or more walled construction, in any
suitable region of the cushion 10, e.g., cheek, chin, nasal bridge. For example, the
underlying cushion 30 may extend around the entire perimeter of the cushion 10.
Also, the underlying cushion 30 could be completely removed.
As shown in Figs. 10-14, the membrane thickness may vary in the
different regions of the cushion 10. As illustrated, the membrane in the nasal bridge
region 16 and upper cheek region 18 is 0.3 mm thick which transitions to 0.5 mm
thickness in the upper cheek region 18 and maintains this thickness in the lower cheek
and chin regions 19, 20. This arrangement provides greater compliance/stretch across
the nasal bridge by providing a thinner membrane. This stretch is not required at the
lower regions and here the thicker membrane is less likely to vibrate on the patient
face in use.
Internally Offset Base Wall and Frame Connection
Another aspect of the invention relates to the size and configuration of
the base wall 28, underlying cushion 30, and membrane 32 of the cushion 10. Figs.
48-50 illustrate the base wall 728, underlying cushion 730, and membrane 732 of the
UltraMirage® cushion 700. As illustrated, the cushion 10 has a different cross-
sectional profile than the UltraMirage® cushion 700.
For example, as best shown in Figs. 11-13, the base wall 28 and the
frame connection 29 are internally offset with respect to the most external cushion
point 39, e.g., external surface of membrane or underlying cushion. In contrast, the
base wall 728 and frame connection 729 of the UltraMirage® cushion 700 are not
offset with respect to the most external cushion point 739 (see Figs. 48-50). As a
result of this inward movement, the base width of the cushion 10 is narrowed, e.g., by
about 5 mm or 2.5 mm per base, which provides a less obtrusive cushion and saves
material which means less weight and cost. Also, the narrower cushion 10 provides
less free length for the cushion 10 to bulge outwardly in use, thus helping to minimize
or eliminate leakage.
As illustrated, a lower portion of the underlying cushion 30 has a more
arcuate, e.g., semi-circular, question-mark, sickle-shape, configuration that defines a
space 34 below a lower portion of the underlying cushion 30 and adjacent the base
wall 28.
In the illustrated embodiment, the widest or most external cushion
point is the external surface of the underlying cushion 30 and the base wall 28 and
frame attachment 29 are offset internally with respect to this. Thus, by the design of
the cushion 10 and in particular the underlying cushion curvature, the frame is
attached at a narrower point and thus the frame itself is narrower. This arrangement
has significant advantages in terms of the frame weight, perceived bulk, and size.
This arrangement may also minimize the dead space within the mask which will help
to reduce CO rebreathing.
Moreover, the space 34 below the underlying cushion 30 allows a
greater range of movement of the underlying cushion 30 to add more flexibility to the
underlying cushion 30 and hence the membrane 32 in use. Specifically, the space 34
below the underlying cushion 30 enables more displacement of the underlying
cushion 30 using substantially the same space restraints as the UltraMirage® cushion
700, for example. Additionally, the space 34 allows more displacement of the
underlying cushion 30 before bottoming out, therefore reducing discomfort. Thus,
this arrangement provides a more gradual force, improves comfort, and allows a wider
range of patients to achieve seal.
Variable Spring Constant
As illustrated, the underlying cushion 30 has a spring-like connection
with the base wall 28 such that the underlying cushion 30 can move with respect to
the base wall 28. That is, the underlying cushion 30 is movable into the space 34 (the
underlying cushion 30 is also movable into the space 33). Thus, a spring force is
provided when a frame force is applied and the underlying cushion 30 is resiliently
moved back into its initial position when the frame force is released. The underlying
cushion 30 and/or base wall 28 may have any suitable spring constant, and the spring
constant may be varied anywhere along its length, e.g., by tapering and/or varying the
thickness of the base wall 28, varying the thickness of intermediate and/or lower
portions of the underlying cushion 30. Also, the spring-like connection may extend
along the whole underlying cushion 30 or the spring-like connection may be localized
in certain regions such as the cheekbone region.
Thus, a spring characteristic is molded with the base wall 28 and
underlying cushion 30 of the cushion 10 which allows a continuously variable spring
constant to be incorporated into the base wall 28 and underlying cushion 30, e.g., the
wall stiffness can be varied at each cushion region to suit the sealing requirements in
each region which may vary due to the underlying facial structure of the patient.
The spring characteristics of the base wall 28 and underlying cushion
may be modified by varying a number of characteristics shown in Fig. 22. For
example, the spring characteristics may be modified by varying the underlying
cushion height h, the thickness t, the radius r, and the underlying cushion offset c. It
is to be understood that these parameters are merely exemplary, and other parameters
may be varied to modify the spring characteristics of the base wall 28 and underlying
cushion 30.
Figs. 23-29 illustrate parameters of an embodiment of the underlying
cushion 30 and base wall 28 to achieve desired spring characteristics. As illustrated,
the underlying cushion 30 and base wall 28 is configured to provide a variable spring
constant around the perimeter of the cushion 10. That is, the spring constant of the
underlying cushion 30 and base wall 28 differs along the side of nose, upper cheek,
and lower cheek regions 17, 18, 19. Although specific parameters of the cushion 10
are shown in Figs. 23-29, it is to be understood that these parameters are merely
exemplary and other parameters are possible depending on application.
In the nasal bridge region 16 (e.g., see Fig. 10), no underlying cushion
is provided in order to provide high flexibility and the ability to conform to a
variety of facial shapes. However, in an embodiment, there may be an underlying
cushion 30 with a very soft spring characteristic in this region.
In the side of nose regions 17 (see Figs. 23-24), an underlying cushion
and base wall 28 with a fairly stiff spring characteristic is provided in order to
provide lateral stability to squeeze the side of the patient's nose and keep the
membrane 32 in contact with the underlying cushion 30. As illustrated, this
arrangement is achieved by a relatively thick underlying cushion, short height, and
tight radius. In an embodiment of the section shown in Fig. 23, h may be 12 mm, r
may be 5 mm, t may be 2-3 mm, b may be 4 mm, w1 may be 11.5 mm, and w2 may
be 8 mm. In an embodiment of the section shown in Fig. 24, h may be 14 mm, r may
be 6-7 mm, t may be 2.5 mm, b may be 4 mm, w1 may be 11.5 mm, w2 may be 9.5
mm, and α may be 22°. It is to be understood that these dimensions and ranges are
merely exemplary and other dimensions and ranges are possible depending on
application.
Also, as best shown in Fig. 24, the base wall 28 and underlying
cushion 30 in the side of nose regions 17 have been rotated by about 22 degrees with
respect to the bottom of the frame. That is, the base wall 28 and underlying cushion
are inclined or angled in the side of nose regions 17 of the cushion 10. This
arrangement further increases the lateral stability and allows the force on the
membrane to be applied perpendicular to the skin surface at the side of the patient's
nose. This further helps to keep the membrane 32 in contact with the patient's skin
and prevent any air leaks. In further embodiments, this angle may vary from 15 to 30
degrees.
In the upper cheek regions 18 (see Figs. 25-26), the underlying cushion
and base wall 28 have a stiffness that is less than that provided in the side of nose
regions 17 but stiffer than that provided in the lower cheek regions 19 due to the
geometry of the underlying cushion, this is provided to suit the firmer bone structure
of the upper cheeks. In an embodiment of the section shown in Fig. 25, h may be 12-
mm, preferably 13.5 mm, r may be 5 mm, t may be 2 mm, b may be 3 mm, and w1
may be 11.5 mm. In an embodiment of the section shown in Fig. 26, h may be 12-15
mm, preferably 13.5 mm, r may be 5 mm, t may be 2 mm, b may be 3 mm, and w1
may be 11.5 mm. It is to be understood that these dimensions and ranges are merely
exemplary and other dimensions and ranges are possible depending on application.
In the lower cheek regions 19 (see Figs. 27-29), the underlying cushion
and base wall 28 has a relatively low spring constant. That is, the underlying
cushion 30 in the lower cheek regions 19 is fairly soft since the fleshy cheek region of
the patient deforms readily to form a seal with the cushion at relatively low forces.
As illustrated, this arrangement is achieved by a greater height h, larger radii r, and a
thinner underlying cushion wall. In an embodiment of the section shown in Fig. 27, h
may be 14 mm, r1 may be 5 mm, r2 may be 7 mm, t may be 1.5-2 mm, b may be 3.5
mm, and w1 may be 11.5 mm. In an embodiment of the section shown in Fig. 28, h
may be 16.5 mm, r1 may be 6-7 mm, r2 may be 8 mm, t may be 1.5 mm, b may be 3.5
mm, and w1 may be 11.5 mm. In an embodiment of the section shown in Fig. 29, h
may be 17.5 mm, r1 may be 6-7 mm, r2 may be 9-10 mm, t may be 1.5 mm, b may be
3.5 mm, and w1 may be 11.5 mm. It is to be understood that these dimensions and
ranges are merely exemplary and other dimensions and ranges are possible depending
on application.
In the chin region 20 (see Fig. 14), no underlying cushion 30 is
provided, although a very flexible spring region may be used. The chin region 20
provides an unconstrained membrane region that allows for lateral movement, mouth
opening or movement, and a range of facial shapes.
Thus, the cushion 10 may be configured to provide different vertical
and/or lateral stiffness in different regions of the cushion. For example, the side of
nose regions 16, 17 are laterally stiffer than the other regions in order to provide more
lateral stability at the patient's nose.
Alternative Embodiments of Base Wall and Underlying Cushion
Figs. 30A-30N illustrate alternative embodiments of the base wall 28
and the underlying cushion 30. Each of these embodiments provides an arrangement
that allows flexibility of the underlying cushion 30 in use. In Fig. 30A, the underlying
cushion 30 defines an enclosed space 60 that may optionally be filled with pressurized
air, foam, gel, or elastomeric material and adapted to dampen movement of the
underlying cushion 30 in use. In Fig. 30B, the space 34 below the underlying cushion
is within the interior of the breathing cavity. Also, the underlying cushion 30 has
an arcuate shape that curves away from the interior of the breathing cavity towards the
base wall 28. However, the underlying cushion 30 may have any other suitable shape.
For example, the underlying cushion 30 in Fig. 30C has a bulbous shape, which may
be solid or hollow. In Fig. 30D, the underlying cushion 30 has a general Z-shape. In
Figs. 30E and 30F, the underlying cushion 30 has a bulbous shape (which may be
solid or hollow), and the space 34 below the underlying cushion 30 has a ramped
configuration. In Figs. 30C, 30E, and 30F, the bulbous shape may optionally be filled
with pressurized air, foam gel, or elastomeric material and adapted to dampen
movement of the underlying cushion 30 in use. In Fig. 30E the ramped configuration
of the space 34 is adapted to direct the underlying cushion 30 downwardly into the
base wall 28 in use, and in Fig. 30F the ramped configuration of the space 34 is
adapted to direct the underlying cushion 30 inwardly towards the breathing cavity in
use. In Figs. 30G, 30H, and 30I, the underlying cushion 30 has a general T-shape.
Also, in Figs. 30H and 30I, the base wall 28 defines an enclosed space 62 below the
T-shaped underlying cushion 30. The enclosed space 62 may be optionally filled with
pressurized air, foam, gel, or elastomeric material and adapted to dampen movement
of the underlying cushion 30 in use. Moreover, the spring constant may be varied by
varying the pressure within the enclosed space 62. Additionally, the lower surface of
the space 62 may have a ramped configuration (as shown in Fig. 30H) adapted to
direct the underlying cushion 30 inwardly towards the breathing cavity in use. The
lower surface of the enclosed space 60 in Fig. 30A may also have a ramped
configuration for directing the underlying cushion 30 in use. In Figs. 30J and 30K,
the underlying cushion 30 has an elongated section length for soft spring
characteristics. Fig. 30L illustrates a single wall construction with an underlying
cushion 30 and no membrane. In Fig. 30M, the space 34 below the underlying
cushion 30 is greatly increased. In Fig. 30N, a spring construction is provided below
the base wall 28.
Displacement Provided by Underlying Cushion
The space 34 allows more displacement of the underlying cushion 30
for a predetermined amount of force when compared to the UltraMirage® cushion
700. That is, the underlying cushion 30 provides more movement for a given force.
For example, Fig. 31 illustrates the general relationship between Force and
Displacement for the cushion 10 and the UltraMirage® cushion 700. As illustrated,
the curve for the cushion 10 is flatter than the exponential-type curve of the
UltraMirage® cushion 700. Thus, the underlying cushion 30 is less stiff and more
compliant when compared to the UltraMirage® cushion 700. It is noted that the space
34 could be filled with a gel, silicone or other structure to vary the spring
characteristic that it provides.
Further, as illustrated in Fig. 31, the point B at which the cushion 10
is fully compressed or bottomed-out is at a greater displacement than the point B at
which the UltraMirage® cushion 700 is bottomed-out. Moreover, the bottom-out
point B occurs at a greater force than the bottom-out point B . Thus, the cushion
700
increases the force required to bottom-out, and provides a wider range of
adjustment. Additionally, Fig. 31 illustrates an example of maximum and minimum
comfortable sealing forces, which provides an example force range necessary to
achieve seal. As illustrated, the range of displacement A within this force range for
the cushion 10 is substantially larger than the range of displacement A within this
force range for the UltraMirage® cushion 700. Thus, the cushion 10 allows a wide
range of adjustment or displacement to achieve seal, and ensures that the sealing force
is substantially less than the bottom-out force so that the cushion does not have to
bottom-out to seal.
Fig. 32 illustrates another embodiment of the relationship between
Force and Displacement for the cushion 10 and the UltraMirage® cushion 700. In
this embodiment, the linear portion of the curve for cushion 10 has a greater slope
than the linear portion of the curve for cushion 10 in Fig. 31. The difference in slope
may be attributed to a difference in spring constants of respective underlying cushions
. Thus, the cushion represented in Fig. 31 provides more displacement for a given
force than the cushion represented in Fig. 32. Also, the curve for the cushion 10 in
Fig. 32 intersects with the curve for the UltraMirage® cushion 700, such that the
force of cushion 10 is higher at lower displacement, to ensure a seal, and lower at
higher displacement, to maintain comfort for a longer range of displacement.
Fig. 33 illustrates another embodiment of the relationship between
Force and Displacement for the cushion 10. In this embodiment, typical curves for
the different regions of the cushion 10 are shown. Specifically, one curve represents
the cross-sections of Figs. 23-24 in the side of nose region 17, another curve
represents the cross-sections of Figs. 25-27 in upper cheek and lower cheek regions
18, 19, and yet another curve represents the cross-sections of Figs. 28-29 in the lower
cheek region 19. As illustrated, the cushion 10 is softer or less stiff in the lower
regions of the cushion 10.
Extended Spring Length of Underlying Cushion
Figs. 34A and 34B illustrate the extended length of the flexible
underlying cushion 30 which is used to provide a softer spring characteristic in
selected regions of the cushion 10 when compared with a typical prior art cushion,
e.g., the UltraMirage® cushion 700. The length a to b can deform, thus providing a
spring characteristic. As illustrated, the length a to b of the cushion 10 (Fig. 34A) is
considerably longer when compared to the UltraMirage® cushion 700 (Fig. 34B) due
to the curvature of the underlying cushion 30. In the illustrated embodiment, the
length a to b of the cushion 10 is 22.84. However, in an embodiment, the length a to
b of the cushion 10 may be in the range of 16-30, preferably 20-25, most preferably
22-24. In another embodiment, the length a to b of the cushion 10 may be in the range
of 16-20. The length b to c is fairly rigid and does not deform to provide a spring
characteristic. The added length in the cushion 10 has been achieved by the arcuate
shape of the underlying cushion 30 and the space 34 is a result of this shape. This
added length adds flexibility and a greater range of movement to the cushion 10.
Figs. 30J and 30K illustrate other embodiments for achieving a longer section length.
Configuration of Membrane in Nasal Bridge Region
The membrane 32 is structured to form an effective seal around nasal
bridge, side of nose, upper cheek, lower cheek, and chin regions 16, 17, 18, 19, 20 of
a patient. Another aspect of the invention relates to the configuration of the
membrane 32 in the nasal bridge region 16 of the cushion 10, which has been
structured to improve sealing and comfort in this region.
Specifically, as shown in a preferred embodiment in Fig. 36 and in an
alternative embodiment in Fig. 68, the membrane 32 forms an elongated ridge 35 in
the nasal bridge region 16 wherein sloping sides 36 meet to form an elongated crest
38. Each of the sloping sides 36 is angled from the crest centerline in the range of 30-
60°, preferably about 47°. The crest 38 has a radius of curvature in the range of 1.0-
.0mm, preferably about 2.5mm. As illustrated, the underlying cushion 30 has been
eliminated from beneath the membrane 32 in the nasal bridge region 16, which allows
the membrane 32 in this region to freely move between the underlying cushions 30
provided in the side of nose regions 17. As discussed in greater detail below, this
membrane configuration allows the creation of a steeply inverted section upon
engagement with the patient's nose, which improves fit, comfort, and seal in the nasal
bridge region 16. In contrast, the UltraMirage® cushion 700 is relatively flat in this
region (see Fig. 52).
As shown in a preferred embodiment in Fig. 37 and in an alternative
embodiment in Fig. 69, the forward end 40 of the elongated ridge 35 has an arcuate
configuration. The forward end 40 is structured to engage the patient's nasal bridge
region and has a radius of curvature in the range of 1.5-7.0mm, preferably about
4.0mm.
Sharp Cross-Sectional Profile of Nasal Bridge Region
As shown in Fig. 10, the membrane 32 in the nasal bridge region 16
has a sharper cross-sectional profile than the corresponding portion of the
UltraMirage® cushion 700 (see Fig. 48). Specifically, the membrane 32 provides a
large contoured portion that curves inwardly towards the cavity of the cushion along a
radius to terminate at an inner edge of the membrane 32. This arrangement more
closely follows the contour or curvature of the patient's nasal bridge region. In the
illustrated embodiment, the membrane 32 is angled with respect to a face contacting
plane of the cushion, e.g., in the range of 30-50°. In contrast, the corresponding angle
of the UltraMirage® cushion 700 is about 6°. This arrangement provides more
comfort and a better fit for the patient.
Flat Portion in Nasal Bridge Region
As best shown in Fig. 38, the nasal bridge region 16 has a substantially
flat portion 50, e.g., on the apex of the membrane curvature, in elevation view that
may deform to provide a more comfortable fit for a wide range of patients, e.g., from
flatter nasal bridges to sharper nasal bridges.
Specifically, one aspect of the invention is to provide a membrane 32
in the nasal bridge region 16 that will accommodate "flat faces", e.g., those patient's
with a low nasal bridge. In order to achieve this, the cushion 10 has an upper point A
which is higher than or level with points B (see Fig. 38). This height in the nasal
bridge region 16 is combined with a rolled edge that keeps the surface area of the
membrane 36 substantially flat against the patient's nasal bridge. Keeping the surface
area of the membrane 36 substantially flat against the patient's nasal bridge prevents
leaks at the edge of the membrane.
The rolled edge also allows movement to accommodate higher nasal
bridges. This arrangement is achieved without "stretching" the membrane which can
lead to discomfort and patient sores. For example, the displacement of the cushion 10
at the nasal bridge region 16 may be greater than about 40 mm, e.g., 41 mm. In
contrast, the UltraMirage® cushion 700 provides displacement of about 20 mm in the
nasal bridge region. At these displacements, the membrane becomes quite taut, i.e.,
the point on the force vs. displacement graph where the force begins to rise sharply
for a small displacement (see Fig. 38B).
The displacement values of the cushion in the nasal bridge region for
some prior art cushions are as follows:
ResMed™ Activa® Nasal Cushion – 16 mm
Respironics Comfort Full Face Cushion – 26 mm
ResMed Bubble Nasal Mask Cushion – 43 mm
Healthdyne Soft Series Nasal Mask Cushion – 17 mm
The above displacement values are by no means an accurate
representation of what nose depth the cushion will cover. Rather, these displacement
values are only an indication of the flexibility and/or range of the membrane. Thus,
the cushion 10 provides an arrangement that is much more flexible and/or rangy than
the UltraMirage® cushion 700, for example.
The force vs. displacement graph of membrane 32 in the nasal bridge
region 16 has a large displacement for relatively low forces. For example, as shown
in Fig. 38B, the displacement provided by the cushion 10 in the nasal bridge region 16
is larger than that provided by the UltraMirage® cushion 700. This allows the
cushion 10 to accommodate relatively deep nasal bridges in use. Also, the molded
(undeformed) cushion state of the UltraMirage® cushion 700 (i.e., no force applied)
does not comfortably accommodate a relatively flat or shallow nasal bridge. In an
embodiment, the membrane of the cushion 700 blows out to meet patient's faces with
shallow nasal bridges. Thus, the cushion 10 also accommodates a wider range of
nasal bridge shapes than the UltraMirage® cushion 700.
Further, as shown in Fig. 36, the profile of the membrane is more
sharply peaked as compared to a flat profile or a saddle shape (e.g., compare with
UltraMirage® cushion 700 in Fig. 52). Also, as shown in Fig. 35, flat portion in the
nasal bridge region 16 extends along a relatively flat plane P1, and this plane P1 is
angled at an angle A with respect to the plane P2 that defines the frame connection.
Thus, the shape (e.g., peak), the rolled edge, and the height, in the
nasal bridge region 16 provide large displacement at relatively low forces. This
arrangement accommodates a wider range of patients, e.g., from those with a low
nasal bridge to those with a high nasal bridge, while maintaining a seal against the
patient's face with little force on the membrane.
It is noted that the cushion height may vary around the cushion
perimeter to vary flexibility or cushion displacement in different regions of the
cushion. A reference dimension 940 for measurement of the cushion height (which
may also be referred to as the membrane height) - i.e. the height between the apex of
the membrane to where it meets the underlying cushion – is shown in Fig. 94C. A
reference dimension 950 for measurement of the cushion height of the prior art
cushion is shown in Fig. 95C.
Aperture in Membrane
As shown in Figs. 39-40B, the inner edge of the membrane 32 defines
the aperture 22 that receives the patient's nose and mouth. As illustrated, the aperture
22 has a generally triangular shape. Also, the apex of the aperture 22 has a rounded
notch 42, e.g., keyhole. The notch 42 improves the seal with nasal bridge regions of
various sizes and shapes, particularly patients with sharp noses. The notch 42 has a
radius of curvature in the range of 1.5-6.0mm, preferably about 3.0mm. This rounded
keyhole shape has a length, e.g., the keyhole shape extends outwards from an interior
portion of the cushion, of at least 3.0mm, as shown in Fig. 40A.
Rolling Action of Nasal Bridge Region of Cushion In Use
Figs. 41-45 include hand-marked lines applied to the outer surface of
the nasal bridge region 16 of the cushion 10 to illustrate the rolling action of the nasal
bridge region 16 of the membrane 32 upon engagement with the patient's nose. As
described above, the membrane 32 in the nasal bridge region 16 includes sloping sides
36 that meet to form an elongated crest 38 as shown in Fig. 41. As the patient's nasal
bridge (simulated using a small rod) is engaged with the nasal bridge region 16 of the
membrane 32 (see Fig. 42), the membrane 32 creates a steeply inverted section 44
wherein the sloping sides 36 invert their position as the membrane 32 moves between
the underlying cushions 30 provided in the side of nose regions 17. As the membrane
32 comes more into contact with the patient's nasal bridge, the leading edge 46 of the
inverted section "rolls" towards the top of the cushion 10 as the membrane 32
conforms to the patient's face as shown in Fig. 43. This structure is advantageous
since it allows the cushion 10 to accommodate patients having a wide range of nasal
profiles, including those with relatively low and relatively high root depth at the nose.
Figs. 44 and 45 show the nasal bridge region 16 of the membrane 32 in its completely
inverted position. The creation of the steeply inverted section 44 upon engagement
with the patient's nose provides a better seal and reduces the risk of creasing and/or
folding and associated discomfort and leaks. That is, this configuration encourages
rolling instead of creasing which can be detrimental to patient comfort and seal.
Alternative Embodiments
Figs. 54-71 illustrate another embodiment of a cushion 510. In each of
the figures, portions of the cushion 510 that are substantially similar to the cushion 10
are indicated with similar reference numerals.
Fig. 64 illustrates the base wall 528, underlying cushion 530, and
membrane 532 of the cushion 510 (in solid lines) in relation to the base wall 728,
underlying cushion 730, and membrane 732 of the UltraMirage® Full Face cushion
700 (in dashed lines). As illustrated, the cushion 510 has a different cross-sectional
profile than the UltraMirage® Full Face cushion 700.
For example, the membrane 532 is connected to the underlying
cushion 530 at a position that is further inwardly and upwardly with respect to the
membrane connection of the UltraMirage® cushion 700. This arrangement
substantially removes the vertically extending groove 731 provided in the
UltraMirage® cushion 700. Also, this arrangement narrows the width of the
membrane 532, e.g., in the range of 0-5, preferably about 2.5mm, with respect to the
corresponding portion of the UltraMirage® cushion 700. As a result of this and the
inward movement of the non-face contacting portion 512, this narrows the total width
of the cushion 510 by about 5mm, e.g., about 2.5mm per base, which provides a less
obtrusive cushion and saves material. Also, the narrower membrane 532 provides less
free length for the cushion 510 to bulge outwardly in use, thus helping to minimize or
eliminate leakage. Further, the base wall 528 and the frame connection 529 are
internally offset with respect to the most external cushion point, e.g., external surface
of underlying cushion. Fig. 64 also shows the longer length a to b in the cushion 510
when compared to the UltraMirage® cushion 700.
Fig. 65 illustrates further structural details and dimensions in one
embodiment of the base wall 528, underlying cushion 530, and membrane 532 of the
cushion 510. For example, the depth of the space 534 is in the range of 0-4.0mm,
preferably about 3.0mm.
Fig. 68 illustrates the elongated ridge 535 in the nasal bridge region
516. Each of the sloping sides 536 is angled from the crest centerline in the range of
-60°, preferably about 47°. The crest 538 has a radius of curvature in the range of
1.0-5.0mm, preferably about 2.5mm. As shown in Fig. 69, the forward end 540 of the
elongated ridge 535 has a radius of curvature in the range of 1.5-7.0mm, preferably
about 4.0mm.
Figs. 70 and 71 illustrate the flat portion 550 in the nasal bridge region
516 of the cushion 510. Also, as shown in Fig. 71, the membrane 532 in the nasal
bridge region 516 has a first portion with a radius of curvature in the range of 50-
80mm, preferably about 65mm, and a second portion with a radius of curvature in the
range of 5.5-9.5mm, preferably about 7.5mm. In the illustrated embodiment, the
membrane 532 is angled with respect to a face contacting plane of the cushion in the
range of 30-50°, preferably about 40°.
Figs. 72-76 illustrate another embodiment of a cushion 610. As best
shown in Fig. 76, the cushion includes at least a base wall 628 and a membrane 632.
As illustrated, the length of the membrane 632 (e.g., membrane cross-sectional
length) in a nasal bridge region may change. For example, the membrane length may
be selected to have a shorter length L or a longer length L in the nasal bridge region.
As shown in Figs. 74 and 75, the membrane length controls how far on
the patient's nose the displaced cushion membrane will sit when fitted onto the
patient's face (shown by the dotted line on the patient's facial profile). This
arrangement prevents the potential (e.g., particularly for patients with a shallow nasal
bridge depth) for any excess cushion membrane to sit too far down on the patient’s
nose, which may lead to facial discomfort and skin markings on the patient’s nose.
Figs. 77-83 illustrate another embodiment of a cushion 810. The
cushion 810 includes a base wall 828, an underlying support cushion 830, and a
membrane 832. As described above, the underlying cushion 830 is preferably
provided on lateral sides of the cushion 810 only.
The base wall 828 may be internally offset with respect to the most
external cushion point, e.g., external surface of membrane or underlying cushion.
This arrangement provides a spring characteristic which may be varied around the
cushion perimeter to vary the cushion flexibility (lateral and/or vertical) around the
cushion perimeter, e.g., the cushion stiffness can be varied at each cushion region to
suit the sealing requirements in each region which may vary due to the underlying
facial structure of the patient. That is, the level if bias (e.g., from "hard" to "soft")
along the sides of the cushion may be changed.
For example, Figs. 77-83 illustrate cross-sections through three
different regions R1, R2, R3 in the cushion 810. As shown in Fig. 81, the base wall
828, the underlying cushion 830, and the membrane 832 cooperate to define a
relatively straight external surface 880. This provides a minimal spring component in
the region R1, e.g., hard or stiff characteristics.
As shown in Fig. 82, the base wall 828, the underlying cushion 830,
and the membrane 832 cooperate to define an external surface 882 that transitions
from a relatively straight configuration to a curved configuration. This provides a
relatively small offset for a more flexible spring component than the region R1.
As shown in Fig. 83, the base wall 828, the underlying cushion 830,
and the membrane 832 cooperate to define an external surface 884 that curves
outwards from the base wall 828. This provides a relatively large offset for an
optimal spring component in the region R3, e.g., soft or flexible characteristics.
Thus, the cushion 810 may be designed to provide varying flexibilities
around its perimeter which allows the cushion 810 to conform to a variety of facial
shapes.
Figs. 84-90 illustrate another embodiment of a cushion 910. The
cushion 910 includes a base wall 928, an underlying support cushion 930, and a
membrane 932. As illustrated, the underlying cushion 930 is preferably provided on
lateral sides of the cushion 910 only, e.g., no underlying cushion at nasal bridge and
chin regions (see Fig. 88).
As shown in Fig. 90, the base wall 928 includes a tapered portion 990
when compared to Fig. 89, which tapers towards the membrane 932. This
arrangement may improve moldability.
Fig. 91 illustrates an alternative arrangement to the cushion 10 of Fig.
34A (arrangement of Fig. 34A shown in dashed lines). As illustrated, material has
been removed from the side wall 28 and the space or gap 34 has been reduced with
respect to the arrangement of Fig. 34A. This arrangement of Fig. 91 increases
displacement with respect to the previous displacement of Fig. 34A. The increased
displacement is achieved by the changed geometry in the side wall 28. It is noted that
the gap 34 may be variable or constant around the cushion perimeter.
Fig. 92 illustrates an alternative arrangement to the cushion 10 of Fig.
34A (arrangement of Fig. 34A shown in dashed lines). As illustrated, some material
has been removed from the side wall 28 and the space or gap 34 has been reduced
with respect to the arrangement of Fig. 34A. This arrangement of Fig. 92 increases
displacement with respect to the previous displacement of Fig. 34A. The increased
displacement is achieved by the changed geometry in the side wall 28. This
arrangement may require the cross-section of the base wall 28 to be thickened to add
stiffness around the cushion perimeter or locally. Stiffening may be achieved by local
ribs where required.
Fig. 93 illustrates an alternative arrangement to the cushion 10 shown
in Fig. 15. As illustrated, the keyhole-shaped cutout (for receiving the patient's nasal
bridge region) may be larger as the mask size reduces. For example, the cutout is
larger for an extra small size mask than a large size mask.
It is noted that the cross-section design of the cushion at specific areas
of the patient's face (e.g., Figs. 23-29) may be in the specific area or any area around
the cushion perimeter. That is, the cross-section design should not be limited to the
specified area. Also, the cross-section shown in Figs. 91 and 92 may be employed at
any point around the cushion perimeter.
While the invention has been described in connection with what are
presently considered to be the most practical and preferred embodiments, it is to be
understood that the invention is not to be limited to the disclosed embodiments, but on
the contrary, is intended to cover various modifications and equivalent arrangements
included within the spirit and scope of the invention. Also, the various embodiments
described above may be implemented in conjunction with other embodiments, e.g.,
aspects of one embodiment may be combined with aspects of another embodiment to
realize yet other embodiments. In addition, while the invention has particular
application to patients who suffer from OSA, it is to be appreciated that patients who
suffer from other illnesses (e.g., congestive heart failure, diabetes, morbid obesity,
stroke, barriatric surgery, etc.) can derive benefit from the above teachings.
Moreover, the above teachings have applicability with patients and non-patients alike
in non-medical applications.
James & Wells Ref: 503884DIVF
Claims (20)
1. A cushion for a patient interface that delivers breathable gas to a patient, the cushion including a nasal bridge region, a pair of side of nose regions, a pair of upper cheek regions, a pair of lower cheek regions and a chin region, the cushion comprising: a base wall; and a membrane connected to the base wall, the membrane having a thickness and including a nasal bridge region, a pair of side of nose regions, a pair of upper cheek regions, a pair of lower cheek regions and a chin region adapted to form a continuous seal, respectively, on a nasal bridge region, a pair of side of nose regions, a pair of upper cheek regions, a pair of lower cheek regions and a chin region of a patient’s face, wherein the thickness of the membrane in at least one of the nasal bridge region, the pair of side of nose regions, the pair of upper cheek regions, the pair of lower cheek regions and the chin region is different than the thickness in at least one other region, wherein an exterior surface of the membrane in the nasal bridge region forms an elongated ridge having sloping sides that meet to form an elongated crest, wherein the exterior surface of the membrane in the chin region extends from one lower cheek region to the other lower cheek region and forms a concave shape adapted to engage the patient’s chin region, and wherein the membrane in the nasal bridge region is configured to invert, in use, with a rolling edge to accommodate patients having a range of nasal bridge profiles.
2. The cushion according to claim 1, wherein, in at least the nasal bridge region of the cushion, the cushion has a single-walled construction formed by the membrane.
3. The cushion according to any one of claims 1 and 2, wherein the nasal bridge region of the cushion has relatively high flexibility to conform to a variety of facial shapes, and the side of nose region of the cushion is relatively stiff to provide lateral stability to the cushion to facilitate constant contact of the membrane with the patient’s face. James & Wells Ref: 503884DIVF
4. The cushion according to any one of claims 1 to 3, wherein the cushion has only a single-walled construction formed by the membrane in a majority of the chin region of the cushion so as to allow the membrane in the chin region to readily flex inwardly toward a breathing cavity of the cushion when the cushion is worn.
5. The cushion according to any one of claims 1 to 4, wherein, in cross-section, the cushion has a question mark shape in at least a cheek region of the cushion.
6. The cushion according to any one of claims 1 to 5, wherein the cushion is constructed to provide different lateral stiffness in different regions of the cushion.
7. The cushion according to any one of claims 1 to 6, wherein the elongated ridge is structured to invert its configuration upon engagement with the patient's nasal bridge region.
8. The cushion according to any one of claims 1 to 7, wherein a leading edge of the elongated ridge is adapted to roll as the elongated ridge inverts its configuration.
9. The cushion according to any one of claims 1 to 8, wherein each of the sloping sides is angled from a crest centerline in the range of 30-60° and the crest has a radius of curvature in the range of 1.0-5.0mm.
10. The cushion according to claim 9, wherein the base wall is adapted to be permanently connected to a frame of a patient interface.
11. The cushion according to claim 9, wherein the base wall is adapted to be removably connected to a frame of a patient interface.
12. The cushion according to any one of claims 1 to 11, wherein at least a portion of the base wall includes a spring configuration that determines displacement of the cushion when a force is applied to the cushion by a frame. James & Wells Ref: 503884DIVF
13. The cushion according to any one of claims 1 to 12, wherein the base wall defines a spring constant that varies along the base wall in accordance with a variable cross- sectional configuration of the base wall.
14. The cushion according to claim 13, wherein the spring constant is varied by tapering and/or varying a thickness of the base wall.
15. The cushion according to any one of claims 1 to 14, wherein the membrane includes an external surface that defines an outer width of the cushion, and the base wall is internally offset with respect to the external surface.
16. The cushion according to claim 1, further comprising an underlying cushion to provide support to the membrane, the underlying cushion including at least a pair of upper cheek regions and a pair of lower cheek regions, wherein the membrane, at least partially, covers the underlying cushion such that in use the membrane is positioned between the underlying cushion and the patient’s face.
17. The cushion according to any one of claims 1 to 16, wherein the thickness of membrane in the nasal bridge region is less than the thickness of the membrane in the pair of upper cheek regions.
18. The cushion according to any one of claims 1 to 17, wherein the thickness of the membrane in the nasal bridge region is less than the thickness of the membrane in the pair of lower cheek regions.
19. The cushion according to any one of claims 1 to 18, wherein the thickness of the membrane in the nasal bridge region is less than the thickness of the membrane in the chin region. James & Wells Ref: 503884DIVF
20. The cushion according to any one of claims 1 to 16, wherein the membrane in the nasal bridge region and the pair of upper cheek regions has a thickness of 0.3 mm which transitions to a thickness of 0.5 mm in the pair of upper cheek regions and maintains a thickness of 0.5 mm in the pair of lower cheek regions and the chin region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ772374A NZ772374A (en) | 2005-01-12 | 2006-01-12 | Cushion for patient interface |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64313005P | 2005-01-12 | 2005-01-12 | |
US60/643130 | 2005-01-12 | ||
US72430305P | 2005-10-07 | 2005-10-07 | |
US60/724303 | 2005-10-07 | ||
NZ73944306A NZ739443A (en) | 2005-01-12 | 2006-01-12 | Cushion for patient interface |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ755863A NZ755863A (en) | 2021-02-26 |
NZ755863B2 true NZ755863B2 (en) | 2021-05-27 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200009343A1 (en) | Cushion for patient interface | |
AU2018267671B2 (en) | Cushion for Patient Interface | |
AU2012261592B2 (en) | Cushion for Patient Interface | |
NZ755863B2 (en) | Cushion for Patient Interface | |
AU2014202899A1 (en) | Cushion for Patient Interface |