[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

NZ620835A - Improved biocontrol through the use of chlorine-stabilizer blends - Google Patents

Improved biocontrol through the use of chlorine-stabilizer blends Download PDF

Info

Publication number
NZ620835A
NZ620835A NZ620835A NZ62083512A NZ620835A NZ 620835 A NZ620835 A NZ 620835A NZ 620835 A NZ620835 A NZ 620835A NZ 62083512 A NZ62083512 A NZ 62083512A NZ 620835 A NZ620835 A NZ 620835A
Authority
NZ
New Zealand
Prior art keywords
process stream
halogen
composition
urea
stabilizer
Prior art date
Application number
NZ620835A
Other versions
NZ620835B2 (en
Inventor
Andrew J Cooper
Elisa M Luth
Laura E Rice
Wen Li Tu
Original Assignee
Nalco Co
Andrew J Cooper
Elisa M Luth
Laura E Rice
Wen Li Tu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/289,547 external-priority patent/US9161543B2/en
Application filed by Nalco Co, Andrew J Cooper, Elisa M Luth, Laura E Rice, Wen Li Tu filed Critical Nalco Co
Publication of NZ620835A publication Critical patent/NZ620835A/en
Publication of NZ620835B2 publication Critical patent/NZ620835B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/11Halides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paper (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Provided are biocidal compositions comprising a halogen source, urea, a sulfur bearing species, and optionally an additional halogen stabilizer. A preferred halogen source is electrically generated chlorine. A preferred sulfur bearing species is sulfamic acid. A preferred additional halogen stabiliser is ammonium sulfamate. Further provided are methods of reducing biological activity in a process stream, such as a papermaking process stream, using the compositions.

Description

IMPROVED BIOCONTROL H THE USE OF CHLORINE—STABILIZER BLENDS Cross—Reference to Related ations Not Applicable. ent Regarding Federally Sponsored Research or Development Not Applicable.
Background of the Invention At least one invention pertains to itions and methods for reducing ical activity in process streams, e. g. water based process streams. Biological activity in process streams is problematic for a variety of reasons, including, but not limited to sanitation problems, process equipment efficiency problems, and product quality problems. For example, in papemlaking ses, high biological activity levels have a deleterious effect on equipment operation. The problems associated with cturing certain paper types, e.g. tissue/recycled products, are more pronounced, because high fungal levels present the quandary of providing a e program that stabilizes the biocide well enough so that it is not y consumed (good persistence) and providing a biocide at sufficient levels to combat periodic spikes in biological activity — a need for less stabilization/decreased persistence. Moreover, bleaching/processing of ed fiber presents the additional quandary for papermakers because papermakers are balancing the addition of sulfite post bleaching/processing of recycled fibers, which quenches a halogen, e. g. chlorine, with the need to maintain chlorine in the system, more specifically, a persistent level of chlorine in the papermaking system without having to add more halogen/chlorine than is necessary. Thus, there is a need for a further refinement of biocide- stabilizer formulations and delivery protocols, which can treat systems more effectively and in an environmental friendly manner, such as using less chlorine/halogen, which in turn reduces halogen by-product formation.
At least one invention relates to methods and itions effective at stabilizing oxidant biocides. Oxidant biocides such as peroxide acid and halogen chemicals like sodium hypochlorite have been widely used in the pulp and paper industry. These oxidant biocides are highly effective at immediately killing large numbers of microorganisms. Unfortunately, after their introduction into process water systems, oxidant biocides are not naturally stable and they tend to oxidize y and over time lose their effectiveness. In nments with very high populations of microorganisms such as in process water which is rich in organic and inorganic material on which the microorganisms can feast, ient numbers of microorganisms can survive until after the t biocides have lost effectiveness. As a , unless there is sufficient residual biocide present, the microorganism population will soon recover from an oxidant e treatment. In some cases, halogen tolerant bacteria strains p due to repeated introduction of single t biocide. This can result in systems suffering from out of control bacterial growth. (See for example the textbook: Disinfection, Sterilization, and Preservation, Fifth Edition, by Seymour S. Block, Lippincott Williams & Wilkins, (2001) at least in pp. 31-57).
This problem is compounded by the fact that repeated applications of oxidant biocides is in many contexts, not commercially feasible. Many oxidant biocides cause adverse effects on paper brighteners, dyes, and other additives ed to produce commercially acceptable paper ts. Repeated introduction of oxidant biocides can also e many pieces of papermaking machinery.
One technique used to address this problem is to stabilize the oxidant biocides allowing them to suppress the viability of microorganisms over a long time while weakening the negative impact that the oxidant biocides have on the resulting paper and the papermaking equipment. As described in US Patents 3,328,294, 3,749,672, 3,170,883, 5565109 and 2 previous attempts at stabilizing oxidant biocides ed the use of sulfamic acid, sulfamate stabilized ne, monochloramine, DMH stabilized halogen, AmBr-Clg, and organic nitrogen stabilized chlorine. While at stable, these ts have proven to be less effective biocides than desired. N—hydrogen sources have also been used to stabilize oxidant biocides but they too have been unsatisfactory because they are volatile and too rigid in their dosage requirements. This rigidity prevents the kind of flexible molar ratio adjustments that are often required to suit the specific conditions ofthe particular water system they are used to treat.
Therefore there is a clear need and utility in an enhanced stabilized halogen biocide which is effective, compatible with other biocides, and flexible in dosage and tration.
Another technique to s this problem is bed in US Published Patent Applications 2006/0231505A and 2003/0029812A1 where they se the use of biocide blends. Such blends typically e an oxidant halogen which provides an initial large kill of the organisms and another longer lasting but less ive biocide which provides more long term microorganism suppression. Unfortunately many biocides are themselves incompatible with other biocides and the use of multiple biocides, each having their own preparation and introduction issues, requires an inordinate investment in x application equipment.
Furthermore, multiple biocide feeding machines be installed at various points along a papermaking production line thereby vastly se the cost and complexity of adding the biocides. So there remains need for simplified making biocide and feeding approach.
The art described in this section is not intended to constitute an admission that any patent, publication or other information referred to herein is "Prior Art" with respect to this invention, unless specifically designated as such. In on, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 CFR § l.56(a) exists.
Brief Summary of the Invention At least one embodiment ofthe invention is directed to a composition comprising: a halogen source, urea, and an additional halogen stabilizer excluding urea, optionally an alkali in a concentration sufficient to provide said composition with a pH of greater than 10. Optionally the composition excludes a stabilized bromine compound. The stabilizer may comprise one item from the list consisting of: an ogen compound, ammonia, ammonium salts, ammonium sulfamate, ammonium sulfate, sulfamic acid, sodium sulfamate, cyanuric acid, succinimide, urea, glycouril, glycine, amino acids, and any combination thereof. The stabilizer may comprise at least two compositions of matter each of which function as a halogen izer. The n source may be selected from the group consisting of at least one of the ing: a chlorine source, an alkaline hypohalite, C12 gas, NaOCl, Ca(OCl)2, and electrically generated chlorine.
The composition may n: an alkaline hypohalite, urea, and ammonium ate. The urea and additional halogen stabilizer may be in a ratio of 50:50 with one another.
At least one embodiment ofthe invention is directed to a method for reducing biological activity in a process stream comprising providing the composition to a process stream.
The composition may be added to the process stream by the following mode of addition: g a mixture of at least an alkali in a concentration sufficient to in a pH of greater than 10 in the final composition and an alkaline lite, and arily mixing said mixture with a second mixture containing urea and said additional izer, wherein said secondary mixing is optionally done with a T-mixer. The process stream may be a papermaking process stream. The papermaking s may be a process selected from the group consisting of: tissue and/or towel, board; packaging; pulping; and recycled pulping. The process stream may contain fungus.
The process stream may have a sulfite concentration of between 2 ppm to 50 ppm. The method may further comprise monitoring the biological activity in the process stream prior to and subsequent to the addition of said composition. The biological activity may be monitored by taking a sample of said process stream and plating said sample on a Petri dish or similar apparatus or by measuring ATP levels of a sample from the process stream or by taking a sample of said process stream and monitoring dissolved oxygen and optionally the oxidation reduction potential of said sample and optionally responding by adding or reducing the amount of one or more chemistries which are added to said process stream, wherein said chemistries include said ition. The method may further comprise adding a second composition to said process stream that contains a halogen, urea, and excludes an additional N—hydrogen compound.
At least one embodiment ofthe invention is directed to a method of ting the growth of microorganisms in a process water stream. The method includes the step of: introducing a composition into the process water stream. The composition comprises: a halogen , a n stabilizer containing a mixture of a sulfur bearing species with urea and/or ammonium e at any ratio, and optionally an alkali. The sulfur bearing species es sulfamic acid or its salt lent. The molar ratio of sulfamic acid to halogen atoms in the halogen source is more than 2:1.
The sulfur bearing species may further comprises a nitrogen izer. The nitrogen stabilizer may be one item selected from the group consisting of ammonium sulfate, sodium sulfamate, and any combination thereof. The molar ratio of halogen to all of the sulfur in the sulfur bearing species may be more than 2: 1. The alkali may be sodium hydroxide. The halogen may be chlorine, sodium hypochlorite, 1,3,5-Trichloroisocyanuric acid (TCCA), 1- 3-chloro-5,5-dimethyl-2,4-imidazolidedione (BCDMH) and 1,3-dichloro-5,5-dimethyl- 2,4-imidazolidedione ). The method may further comprise the steps of first adding to the sulfamic acid an alkali and then the adding urea and/or sodium sulfate.
The process water stream may be so rich in food for microorgasnisms that a single halogen oxidant e is not effective at exterminating the microorganisms population but the composition is. The process water stream may be one selected from the list ting of a cooling tower water stream, and papermaking process water . The ratio of sulfamic acid or its salt to nitrogen stabilizer may be optimized at any ratio between the concerns of biocidal efficacy and impact on chemical additive present in the process water stream. The ratio of sulfamic acid or its salt to nitrogen stabilizer may be optimized at any ratio between the concerns IO of biocidal efficacy and corrosion on equipment present in the process water stream. The ition when used in a papermaking process might not reduce the effectiveness of OBA and DYE additives on paper made from that process. The salt may be sodium sulfamate.
Additional features and advantages are described herein, and will be apparent from, the following ed Description.
Brief Description of the Drawings A detailed description of the invention is hereafter described with specific reference being made to the drawings in which: is a flowchart illustrating one method of combining constituents of the biocide composition. is a second flowchart illustrating one method of combining constituents of the biocide ition. is a third flowchart illustrating one method of combining constituents of the biocide composition. is a graph displaying data which demonstrates the effectiveness of the ion.
Detailed Description of the Invention The following ions are provided to determine how terms used in this application, and in particular how the claims, are to be construed. The organization ofthe definitions is for convenience only and is not intended to limit any of the definitions to any particular category.
“Alkali” means a composition of matter that functions as a pH altering chemical base.
“DYE” or “Dye” means one or more itions used in the papennaking industry to alter the optical properties of a substrate. Dyes often contain chromophoric groups and auxochrome and have good affinity to fiber and compatibility to other additive in paper industry.
“Nitrogen stabilizer” means a stabilizer which contains at least one nitrogen atom. “03A” means a dye or pigment based l brightening agent which is a component of a coating formulation commonly applied to a paper substrate. Dyes or pigments that absorb ultraviolet radiation and reemit it at a higher ncy in the visible spectrum (blue), y effecting a white, bright appearance. nt” means a solid material used in a papermaking process to alter the optical properties of a substrate.
“Halogen Source” means a halogen atom by itself or a halogen atom associated with a ic counterpart.
WO 59074 “Halogen Stabilizer” means a halogen based material whose presence in proximity to a composition of matter functioning as an oxidizing biocide increases the amount of time that the composition remains in a sufficient chemical state to continue functioning as a e, this includes but is not limited to materials which preserve (or slow down the rate of loss of) the oxidizing capability of the biocide composition.
“Stabilizer” means a composition of matter that increases the length of time that oxidizing halogen ions retain oxidant capacity and are capable of ing free ions slowly thereby remaining an effective biocidal agent in a liquid environment.
“Substrate” means a sheet of paper, a sheet of paper precursor, a mass of fibers, or IO any other cellulose based or synthetic fibrous material that can be coverted into a sheet of paper by a papermaking process.
In the event that the above definitions or a description stated ere in this ation is inconsistent with a meaning (explicit or implicit) which is commonly used, in a dictionary, or stated in a source incorporated by reference into this application, the application and the claim terms in particular are understood to be construed according to the definition or description in this application, and not according to the common definition, dictionary definition, or the definition that was incorporated by reference. In light of the above, in the event that a term can only be understood if it is construed by a dictionary, if the term is defined by the Kirk—0thmer Encyclopedia ofChemtcoZ logy, 5th Edition, (2005), (Published by Wiley, John & Sons, Inc.) this definition shall control how the term is to be defined in the claims.
As stated above, the t invention es for a composition and a method of use for said composition, which reduces ical activity in a process stream by providing a more efficient application of a biocide. In turn the e is more efficiently ed, e. g. increase in persistence of the biocide in the system when needed, which can provide an environmental benefit because a process operator can use less biocide to combat various types of microorganisms and bacteria that pervade process streams, e. g. ing water based systems, wherein one water based system example is a papermaking system.
The ition contains at least the following components: halogen, urea, and an additional halogen stabilizer excluding urea. Stabilizers can be blended with chlorine or bromine to yield a milder t. Benefits of halogen-stabilization include increased persistence of the halogen residual for improved control of microbial growth in biofilm or e ts and in s with long nce times and high halogen demand. n-stabilization can also improve compatibility of the halogen with sensitive process additives, including dyes, optical ening agents, polymers, and corrosion control products. However, it has been observed in several instances that the halogen becomes too persistent when it is blended with stabilizers, for example urea. As a result, the program may not adequately control fungi and several types of bacteria, including sphingomonads and spore- forming bacteria. Some forms of stabilized-halogen are more volatile, ng the halogen residual available in the water-phase and contributing to vapor-phase corrosion.
In at least one embodiment optionally, there is an additional component: an alkali in a concentration sufficient to provide a pH of greater than 10. In at least one embodiment, the pH is greater than 12. In yet a further embodiment, the pH range is from 12 to about 13.5. An alkali can include one or more of the following chemistries: sodium hydroxide and potassium hydroxide.
Optionally, there is an additional component: excluding a stabilized bromine compound from said ition.
With respect to the halogen, in at least one ment, the halogen is selected from at least one of the following: a chlorine , alkaline hypohalite, C12 gas (e. g. added to H20 stream prior to blending), NaOCl, Ca(OCl)2, and electrically generated chlorine.
In at least one embodiment the composition comprises urea in combination with additional stabilizer, including ammonium Sulfamate, to stabilize ns for biocontrol In at least one embodiment, the stabilizer is an N—hydrogen compound.
In at least one embodiment, the N—hydrogen compound is ammonium sulfamate.
In at least one ment, the N—hydrogen compound excludes ammonium sulfate.
In at least one embodiment, the composition contains: an alkaline hypohalite, urea, and ammonium sulfamate.
IO The ratios between urea and an additional stabilizer can vary depending upon system conditions, 6. g. levels of fungus. For example, one could take into account chemical kinetics between: (a) urea with halogen; (b) additional stabilizer with halogen; and (c) blend of urea and additional stabilizer with halogen.
In at least one embodiment, the izer blend between urea and the additional stabilizer is 50:50.
A method for reducing biological ty in a s stream is also disclosed, e.g. process stream contained in a water system. The method ses: providing a composition to a process , wherein said composition contains: a halogen, urea, and an additional izer excluding urea, optionally an alkali in a concentration sufficient to provide said composition with a pH of greater than 10; and optionally excluding a stabilized bromine compound from said composition.
In at least one embodiment, the composition is added to the process stream by the following mode of addition: g a mixture of at least an alkali in a concentration sufficient to provide a pH of greater than 10 and an alkaline hypohalite, and secondarily mixing said mixture 2012/059846 with a second mixture containing urea and said additional stabilizer, wherein said secondary mixing is optionally done with a T-mixer.
In at least one embodiment, the method comprises: adding a second composition to said process stream that contains a halogen, urea, and excludes an additional N-hydrogen With respect to the order of addition ofthe components, In at least one embodiment, the composition is added to the s stream by the following mode of addition: forming a e of at least an alkali in a tration sufficient to provide a pH of greater than , preferably 12 to 13.5, and an alkaline hypohalite, and secondarily mixing said mixture with a second mixture containing urea and an additional stabilizer. One of ordinary skill in the art could mix the first mixture and second e via a variety of techniques, 6. g. tuses.
In at least one embodiment, the first mixture and second mixture are mixed together with a T-mixer. One of ordinary skill the art would understand what a T-mixer is.
In at least one embodiment, one of ry skill in the art can utilize a mixing chamber, such as the one disclosed in U.S. Patent No. 7,550,060, herein incorporated by reference, to carry out a mixing protocol of the tries.
The methodology ofthe present invention is applicable to a variety of s streams or aqueous based systems or water based systems or industrial based systems or a combination thereof.
In at least one embodiment, the process stream is a papermaking process stream.
In at least one embodiment, the papermaking process is a process selected from the group consisting of: tissue and/or towel, board; packaging; pulping; and recycled pulping.
In at least one embodiment, the process stream contains fungus.
In at least one embodiment, the process stream has a sulfite concentration of between 2 ppm to 50 ppm.
The efficacy of the composition for reducing ical activity can be measured by a variety of analytical techniques and controls schemes.
In at least one ment, the process stream r ses monitoring said ical activity in said process stream prior to and subsequent to the addition of said composition.
In at least one embodiment, the biological activity is red by taking a sample of said process stream and g said sample on a Petri dish or similar apparatus.
IO In at least one embodiment, the biological activity is monitored by measuring ATP (adenosine triphosphate) levels of a sample from said process stream.
In at least one embodiment, the biological activity is monitored by taking a sample of said process stream and monitoring dissolved oxygen and optionally the oxidation reduction potential of said sample and optionally ding to said biological activity by adding or reducing the amount of one or more chemistries which are added to said process stream, wherein said chemistries include said composition.
The itions by themselves or compositions utilized to treat a process stream can be made outside ofthe process stream or within the process stream (i_n sifl) or a combination thereof.
In at least one embodiment a composition comprising a n, a halogen stabilizer, and optionally an alkali are provided for inhibiting the growth of microorganisms in a papermaking environment. The stabilizer is a composition comprising sulfur. The sulfur bearing species includes sulfamic acid (or its salt equivalent such as sodium sulfamate). The molar ratio of the halogen to the sulfamic acid is more than 2:1. By having such a large ratio of halogen to stabilizer, it has been observed that an unexpected biocidal effect occurs. This was quite surprising as at a molar ratio of 1:1 of halogen to sulfamic acid, no significant anti-biological efficacy was observed. Moreover because the stabilizers are needed to stabilize the halogens, it would be expected that more stabilizer relative to halogen would better ize the halogen, yet the opposite is the case.
In at least one embodiment the stabilizer is a composition comprising a mixture of sulfur bearing species with urea. The halogen is mixed with sulfarnic acid at molar ratio of en to Chlorine of more than 2: 1. By having such a stabilizer e of stabilized halogen, it has been observed that an unexpected synergistic effect occurs which s in the halogen remaining stabilized for a longer period of time, and without impairing the quality of the produced paper or corroding the papermaking equipment.
In at least one ment the stabilizer is a composition comprising a mixture of sulfur bearing species with ammonium sulfate.
In at least one embodiment the sulfur bearing species r comprises a nitrogen stabilizer.
In at least one embodiment the en stabilizer is one item selected from the group consisting of ammonium sulfate, sodium sulfamate, or any combination thereof.
In at least one embodiment the molar ratio of halogen to all of the sulfur in the sulfur bearing species is more than 2:1.
In at least one embodiment the alkali is sodium hydroxide.
In at least one embodiment the halogen are ne, sodium lorite, 1,3,5- Trichloroisocyanuric acid (TCCA), 1-bromochloro-5,5-dimethyl-2,4—imidazolidedione (BCDMH) and 1,3-dichloro-5,5-dimethyl-2,4-imidazolidedione (DCDMH). 2012/059846 In at least one embodiment the sulfamic acid is first amended with alkali and then the urea/ammonium sulfate is added. Sodium hypochlorite is added to above mixture.
In at least one ment the sulfur baring nitrogen combined sodium hypochlorite first at molar ratio more than 2:1 nitrogen to chlorine and then is added to urea or ammonium sulfate.
In at least one embodiment the urea or ammonium sulfate combined sodium hypochlorite first then is added to sulfur baring nitrogen at ent ratio. The order is significant because different stabilized halogen species are generated at different rates due to differing equilibrium constants. These differences can be accounted for by dosing the halogens in IO ent amounts and in different orders. Also chlorine is able to transfer from stabilized chlorine to other nitrogen s so the order of combinations can compensate for that.
In at least one embodiment the composition contains no buffer.
In at least one embodiment the composition contains no alkali.
In at least one embodiment the composition can be formulated on site by mixing the components together before mixing with halogen oxidant.
In at least one embodiment the composition can be ated on site by mixing the components as illustrated in any one of FIGS 1, 2, and/or 3.
In at least one embodiment the microorganisms killed by the biocide are sessile.
In at least one embodiment the microorganisms killed by the biocide are planktonic.
One noted benefit of the invention is the fact that the sulfamic acid and the nitrogen stabilizer readily combine so when mixing the two a high product yield is ed with little waste. In addition, unlike stand alone stabilizers containing inorganic nitrogen stabilizers, the mixture of sulfamic acid and en stabilizer functions at many different ratio amounts. As a result the relative amounts of sulfamic acid or nitrogen stabilizer can be riately increased or decreased depending on the particular environment it is to be used in. For example in cases where nitrogen stabilizer may interfere with particular paper additives such as OBA or DYE, the relative amount of ic acid will be increased. In contrasts in contexts where the sulfamic acid has compatibility , the amount of nitrogen stabilizer can be increased.
In at least one embodiment the details of the formulation is targeted towards the nature of the biological infestation. For example if bacteria are just ing to infiltrate one or more items of process equipment, a formulation containing relatively equal amounts of sulfamic acid and the nitrogen stabilizer is used because it is optimized to causes low impact on additives and low degrees of corrosion which is more desirable than a highly effective biocide when the IO infestation is weak. In contrast, when the contamination is intense or long term colonization, effectiveness of the biocide is more important than the one time effects on additives or corrosion and a therefore a formulation containing more sulfamic acid ve to the molar amount of nitrogen stabilizer is used. Thus by using a formulation having only two variables, a number of condition specific ratios can be provided which es a simple input system yet is capable of dynamically responding to different conditions over the life cycle of the industrial facility.
In at least one embodiment the composition is used as a al agent in a cooling tower.
In at least one embodiment the composition is used to reduce m on a surface.
Biofilm is the accumulation of sessile organisms on the es of equipment. Such accumulations often pose ular problems as the available exposed surface area for the biocide to work on is d. Moreover there is often a tradeoff n biocide efficacy and impact the biocide has on biofilms yet the invention avoids harmful effects on process equipment yet effectively neutralizes biofilms.
In at least one ment the composition is used to treat microorganisms in a membrane system. Membrane systems are often prone to biofilm colonization as microorganisms find their surfaces (because of composition, shape, or both) attractive. As they are also very delicate relative to other forms of process equipment, the general tradeoff issues are even more pronounced in membranes. Fortunately the composition is effective at treating membrane biofilms without damaging them. In at least one embodiment the membrane system is a water permeable ne. In at least one embodiment the ne is a part of a water treatment system.
In at least one embodiment the composition has a ular pH before it is IO introduced into the system. In at least one embodiment the pH is greater than 5 and less than 12, and is most preferably between 8 and 10.
In at least one embodiment the ratio of the ts of the composition are balanced to optimize the composition’s effectiveness and utility. In the prior art chlorosulfamate was used in a ratio of 1 :1 with chlorine. This resulted in stronger than desired bonding of the chlorine and as a result it d the rate of releasing sulfamate from sulfate thereby reducing the effectiveness of the composition. In at least one embodiment the ratio is different and as a result the composition is more effective. In at least one ment the ratio of sulfamate to stabilizer within the composition is between (less than 4):l and (more than 1): 1. Experimental data has shown that in some circumstances ratios of 1:1 and 4:1 do not work at all or at best work poorly, ratios of 8:1 to 4:1 work somewhat and that 3:1 is highly effective as a biocide. This demonstrates that an cted sysnergistic effect based on more than just concentration is at work which is wholly novel and unexpected.
EXAMPLES WO 59074 The foregoing may be better understood by reference to the following examples, which are presented for purposes of illustration and are not intended to limit the scope ofthe ion.
A number of biocide formulations were prepared and were applied to samples of process water from a paper mill. Their compositions and effectiveness are listed in and in Table 1. Table 1 illustrates that a composition comprising 12% Sulfamic Acid and 3% Ammonium Sulfate is able to achieve high t yield without on of NaOH. It also demonstrates that the addition of NaOH in bleach can improve ility of blending stabilizers at different rates.
Op tiun (If hiltanitlin;F cnnditinn fer mixing stabilizer and sodium hypnchlcrite Stabilizer formu1a Molar Ratio THO”: FRD*“*, TRO “field FROITRO cam; ppm ppm 1'6 ‘34:.
Caustic in Bleach: 8.5% 3%84* +12%48“ 1:1 4:1 1558 528 18.28 33.55 F.5%SA+?.5%.4~.8 1:1 35.75 228 474.28 8.15 4:1 3488 888 42.1? 28.24 12%82438348 1:1 8288 328 81.31 5.8?r 4:1 5488 2838 88.78 3?.58 culfamic :acicl 4:1 8558 1218 88.83 18.81 Caustic in Bleach: 3.2% 3%SA+12%AS :1 5285 818 .7818 15.38 :1 4885 18?5 88.85 34.15 ?.5%SA+? 53543 :1 4858 148 53.54 3.58 :1 8818 1888 88.45 12.4? 12%84.+3%48 :1 3524 248 48.22 8.81 :1 8885 3888 85.14 43.5? “Hammad 15388145883123“? *SA sulfamic Acid “Ci-'48: ammonium s ulfat c ““1““: TRO: total re s idual c Xidant **** FRO: flee re sidual o Xidat Table 1 illustrates that 12% Sulfamic Acid and 3% ammonium sulfate showed more active on bioactivity tion than other combinations of stabilizers.
Without being limited in theory and the scope afforded in construing the claims, it is believed that naturally the chlorine transfers back and forth from one chloronitrogen species to another chloronitorgen species according to the equilibrium equations below and the ion makes use ofthe different equilibrium constants to optimize the presence of the desired reactions that produce the particularly desired chloronitrogen species that is effective as a biocide.
H,NSO,H + NaOCZ <:,> CZHNSO3H + NaOH CIHNSOSH + NaOCZ <3 €1,160,H + NaOH (NH4),SO4 + ZNaOCZ c 2NH,CJ 4 + 2H,0 NHZCZ + NaOCZ <::> NHCZ, + NaOH H,NSO3H + NHZCZ c> CJHNSO3H + NH3 CZHNSOgH + NHZCZ <:> ClzNSOgH + NH, In at least one embodiment the dosing sequence ofthe composition is calibrated to make optimal use ofthe relative equilibrium rates of the various chemical reactions. Each of the chemical reactions occurs at different rates and as a result C1 species are constantly passing back and forth between molecules and have ent availabilities at different times. In at least one ment the reagents required for the lower occurring reactions are added to the composition first and are allowed to react somewhat or completely before the ts required for the faster reactions are added. This avoids the faster reactions competing with the slower reactions. In at least one embodiment the reagents ed to allow the sulfamate s to react with the amine to form chloramine and ammonia is only added to the composition after chloroamine has been partially or completely formed.
In at least one embodiment the composition is diluted to produce a more mild (and less violent, reactive, or destructive) biocide effect. In at least one embodiment the methods of diluting biocides disclosed in US Patents 6,132,628 and 7,067,063 are employed. In at least one ment the composition is diluted so the s exists within the range of 100 ppm to 150,000 ppm.
While this invention may be embodied in many different forms, there are shown in the drawings and described in detail herein specific red embodiments of the invention. The present disclosure is an exemplification of the background and principles of the invention and is not intended to limit the invention to the particular embodiments illustrated. All patents, patent applications, scientific papers, books, and any other referenced materials mentioned anywhere herein, are incorporated by reference in their entirety. Furthermore, the ion encompasses any possible combination of some or all ofthe various embodiments bed herein and orated herein.
The above disclosure is ed to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and ions are intended to be included within the scope of the claims where the term "comprising" means "including, but not limited to". Those familiar with the art may recognize other equivalents to the specific embodiments described herein which lents are also ed to be encompassed by the claims.
All ranges and parameters disclosed herein are understood to encompass any and all subranges subsumed therein, and every number between the endpoints. For example, a stated range of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of l or more, (e.g. l to 6.1), and ending with a maximum value of 10 or less, (e.g. 2.3 to 9.4, 3 to 8, 4to 7), and finally to each number 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 contained within the range.
This completes the description of the preferred and alternate embodiments of the ion. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.

Claims (18)

1. A method for reducing biological activity in a process stream comprising: providing a process stream, the process stream containing optical brightening agents, introducing into the process stream a process stream containing optical brightening agents, a ized halogen, the stabilized halogen being ized only by urea, the stabilized halogen initially reducing the biological activity of organisms within the process stream, uently the introduced halogen reacts with the stabilizer resulting in the proliferation of sphiongomonads sphingomonads in the process water, after said proliferation adding a composition into the process stream the composition comprising: a halogen source, urea, and an additional halogen stabilizer and at least one sulfur bearing s, the at least one sulfur bearing species sing sulfamic acid, the ratio of halogen to sulfur in the at least one sulfur bearing species being more than 2:1, the at least one sulfur bearing species excludes ing urea, optionally an alkali in a concentration sufficient to provide said composition with a pH of greater than 10; and optionally excluding a stabilized bromine compound from said ition, wherein the halogen source comprises electrically ted chlorine and the halogen stabilizer comprises an N-hydrogen compound, n the composition ls the sphiongomonads sphingomonads but does not impair the activity of the optical brightening agents.
2. The method of claim 1, n said composition is added to the process stream by the following mode of addition: forming a e of at least an alkali in a concentration sufficient to provide or to maintain a pH of r than 10 in the final composition and an alkaline hypohalite, and secondarily mixing said mixture with a second e containing urea and said onal stabilizer, wherein said secondary mixing is optionally done with a T-mixer.
3. The method of claim 2, wherein said process stream is a papermaking process stream.
4. The method of claim 3, wherein said papermaking process is process selected from the group consisting of: tissue and/or towel, board; packaging; pulping; and recycled pulping.
5. The method of claim 3, wherein said process stream contains fungus.
6. The method of claim 3, wherein said process stream has a sulfite concentration of between 2 ppm to 50 ppm.
7. The method of claim 3, further comprising monitoring said biological activity in said process stream prior to and subsequent to the addition of said composition.
8. The method of claim 7, n said biological activity is monitored by taking a sample of said process stream and plating said sample on a Petri dish or similar apparatus.
9. The method of claim 7, wherein said biological activity is monitored by measuring ATP levels of a sample from said s stream.
10. The method of claim 7, wherein said biological activity is monitored by taking a sample of said process stream and monitoring ved oxygen and optionally the oxidation reduction potential of said sample and ally responding by adding or reducing the amount of one or more chemistries which are added to said process stream, wherein said tries include said composition.
11. The method of claim 3, r comprising: adding a second composition to said process stream that ns a halogen, urea, and excludes an additional N- hydrogen compound.
12. The method of claim 1 wherein the stabilizer further comprises one item from the list consisting of: ammonia, ammonium salts, ammonium sulfamate, ammonium sulfate, sulfamic acid, sodium sulfamate, ic acid, succinimide, urea, glycouril, glycine, amino acids, and any combination thereof.
13. The method of claim 1 wherein the izer comprises at least two compositions of matter each of which function as a halogen stabilizer.
14. The method of claim 1, wherein said halogen source further comprises one item selected from the group consisting of: a chlorine source, an alkaline hypohalite, Cl2 gas, NaOCl, Ca(OCl)2, and any combination thereof.
15. The method of claim 1, n said composition contains: an alkaline hypohalite, urea, and ammonium sulfamate.
16. The method of claim 1, n said urea and said additional halogen izer are in a ratio of 50:50 with one r.
17. A method for reducing biological activity in a process stream comprising: introducing into a process stream a stabilized halogen, the stabilized halogen being stabilized only by urea, the stabilized halogen lly reducing the biological activity of organisms within the process stream, subsequently the introduced n reacts with the stabilizer resulting in the proliferation of sphingomonads in the process water, after said proliferation adding a composition into the process stream the composition comprising: a halogen source, urea, and at least one sulfur bearing species, the at least one sulfur bearing species comprising sulfamic acid, the ratio of n to sulfur in the at least one sulfur bearing species being more than 2:1, the least one sulfur bearing species excludes urea, the alkali in a concentration sufficient to provide said composition with a pH of greater than 10; the halogen source comprises electrically generated chlorine wherein the composition controls the sphingomonads.
18. A method for reducing biological activity in a process stream according to claim 17, wherein the process stream is a paper making process stream.
NZ620835A 2011-10-21 2012-10-12 Improved biocontrol through the use of chlorine-stabilizer blends NZ620835B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN2011103285841A CN103053613A (en) 2011-10-21 2011-10-21 Improved biological control by using chlorine-stabilizing agent mixture
CN2011103285841 2011-10-21
US13/289,547 2011-11-04
US13/289,547 US9161543B2 (en) 2011-10-21 2011-11-04 Biocontrol through the use of chlorine-stabilizer blends
PCT/US2012/059846 WO2013059074A1 (en) 2011-10-21 2012-10-12 Improved biocontrol through the use of chlorine-stabilizer blends

Publications (2)

Publication Number Publication Date
NZ620835A true NZ620835A (en) 2015-07-31
NZ620835B2 NZ620835B2 (en) 2015-11-03

Family

ID=

Also Published As

Publication number Publication date
ES2635119T3 (en) 2017-10-02
CA2844833C (en) 2019-06-18
EP2768538A4 (en) 2015-05-20
TW201323349A (en) 2013-06-16
JP2015501307A (en) 2015-01-15
MY185106A (en) 2021-04-30
CN109303064A (en) 2019-02-05
AU2012326500A1 (en) 2014-02-27
TWI546262B (en) 2016-08-21
EP2768538B1 (en) 2017-05-17
KR102095212B1 (en) 2020-03-31
BR112014007142B1 (en) 2019-08-06
WO2013059074A1 (en) 2013-04-25
CN103053613A (en) 2013-04-24
KR20140079767A (en) 2014-06-27
AU2012326500B2 (en) 2015-09-10
PL2768538T3 (en) 2017-10-31
CA2844833A1 (en) 2013-04-25
AR088373A1 (en) 2014-05-28
BR112014007142A2 (en) 2017-04-04
JP6110392B2 (en) 2017-04-05
EP2768538A1 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
AU2012326500B2 (en) Improved biocontrol through the use of chlorine-stabilizer blends
US9161543B2 (en) Biocontrol through the use of chlorine-stabilizer blends
CA2843162C (en) Use of sulfamic acid or its salts as stabilizers for halogen containing biocides
AU2007210150B2 (en) Suppressing microbial growth in pulp and paper
US8808500B2 (en) Method for the use of oxidants for microbial control under reducing conditions
NZ620835B2 (en) Improved biocontrol through the use of chlorine-stabilizer blends
NZ620230B2 (en) Use of sulfamic acid or its salts as stabilizers especially in combination with ammonium salt and/or ammine for bleach or other halogen containing biocides in the paper area

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2017 BY CPA GLOBAL

Effective date: 20160826

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2018 BY CPA GLOBAL

Effective date: 20170831

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2019 BY CPA GLOBAL

Effective date: 20180830

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2020 BY CPA GLOBAL

Effective date: 20190829

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2021 BY CPA GLOBAL

Effective date: 20200827

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2022 BY CPA GLOBAL

Effective date: 20210827

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2023 BY CPA GLOBAL

Effective date: 20220825

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2024 BY CPA GLOBAL

Effective date: 20230831

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 12 OCT 2025 BY ABHISHEK KUMAR - CPA-PTO PAYMENTS

Effective date: 20240829