[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

NO854088L - PROCEDURE FOR THE PREPARATION OF ALUMINUM OXYPE-DOPPED SILICON OXYDE FIBERS. - Google Patents

PROCEDURE FOR THE PREPARATION OF ALUMINUM OXYPE-DOPPED SILICON OXYDE FIBERS.

Info

Publication number
NO854088L
NO854088L NO854088A NO854088A NO854088L NO 854088 L NO854088 L NO 854088L NO 854088 A NO854088 A NO 854088A NO 854088 A NO854088 A NO 854088A NO 854088 L NO854088 L NO 854088L
Authority
NO
Norway
Prior art keywords
aluminum
fibers
silicon oxide
procedure
oxype
Prior art date
Application number
NO854088A
Other languages
Norwegian (no)
Inventor
Giacomo Roba
Original Assignee
Cselt Centro Studi Lab Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cselt Centro Studi Lab Telecom filed Critical Cselt Centro Studi Lab Telecom
Publication of NO854088L publication Critical patent/NO854088L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Inorganic Fibers (AREA)
  • Silicon Compounds (AREA)

Description

Foreliggende oppfinnelse vedrører industriell fremstilling avThe present invention relates to the industrial production of

fysiske bærere for optiske telekommunikasjonssystemer og nærmere bestemt vedrører den en fremgangsmåte for fremstilling av aluminiumoksyd-dopede silisiumoksydfibrer. physical carriers for optical telecommunication systems and, more specifically, it relates to a method for producing alumina-doped silicon oxide fibers.

Blant dopemidlene anvendes som kjent germaniumoksyd (GeC^) hoved-sakelig for fremstilling av den optiske fiberkjernen, både i tilfelle indre prosesser (IVPO) og i tilfelle ytre prosesser (OVPO) . GeC>2 gir sammen med silisiumoksyd en binær forbindelse som har et stabilt glassformig nettverk. Videre halogenidbærer, hvorfra germaniumtetraklorid (GeCl^) oppnås ved oksydasjonssyntese, spesielt vel egnet for anvendelse i CVD-teknikker, siden dette ved romtemperatur er en lett fordampbar væske (smeltetemperatur T = 49,5°C; kokepunkt T = 84°C). Among the doping agents, as is known, germanium oxide (GeC2) is mainly used for the production of the optical fiber core, both in the case of internal processes (IVPO) and in the case of external processes (OVPO). Together with silicon oxide, GeC>2 gives a binary compound which has a stable glassy network. Furthermore, the halide carrier, from which germanium tetrachloride (GeCl^) is obtained by oxidation synthesis, is particularly well suited for use in CVD techniques, since this is an easily vaporizable liquid at room temperature (melting temperature T = 49.5°C; boiling point T = 84°C).

De optiske egenskapene for germaniumoksyd er spesielt interessante: ingen materialdispersjon ved bølgelengder større enn 18 pm, The optical properties of germanium oxide are particularly interesting: no material dispersion at wavelengths greater than 18 pm,

infrarød absorbsjonstopp p.g.a. molekylvibrasjon av Ge~0 bindingen sentrert ved en bølgelengde på ca. 12 ym. infrared absorption peak due to molecular vibration of the Ge~0 bond centered at a wavelength of approx. 12 etc.

Den sistnevnte egenskapen forhindrer den fra å modifisere spektral-attenuasjonskurven for silisiumdioksyd som har en infra- The latter property prevents it from modifying the spectral attenuation curve of silicon dioxide which has an infra-

rød absorbsjonstopp for molekylvibrasjonen av Si-0 bindingen plassert ved en noe lavere bølgelengde (9,1 ym). red absorption peak for the molecular vibration of the Si-0 bond located at a somewhat lower wavelength (9.1 ym).

Av disse grunnene er germaniumoksyd på det nåværende tidspunktFor these reasons, germanium oxide is at the present time

den mest anvendte forbindelsen innenfor optisk fiberteknologi,the most widely used connection in optical fiber technology,

og den eneste som benyttes for fremstilling av kjernen i silisiumoksyd-baserte optiske fibrer. and the only one used for the production of the core in silicon oxide-based optical fibers.

Forbindelsen har imidlertid to ulemper:However, the connection has two disadvantages:

i) høye råmaterialkostnader; i) high raw material costs;

ii) Rayleigh-spredningskoeffisient som er høyere enn for ren ii) Rayleigh scattering coefficient higher than that of pure

silisiumoksyd, viss verdi er ca. 0,6 dB/Km/ym 4. silicon oxide, certain value is approx. 0.6 dB/Km/ym 4.

Germaniumetfekten i nettverket av den binære forbindelsen SiG^-The germanium effect in the network of the binary compound SiG^-

GeC>2 er i stand til å øke spredningskoeffisienten proporsjonaltGeC>2 is able to increase the scattering coefficient proportionally

med konsentrasjonen av dopemidlet som er tilstede i nettverket.with the concentration of the dopant present in the network.

1 tilfelle med en konsentrasjon av germanium på 3 mol-% (typisk konsentrasjon for et monomodusfiber med trinnvis brytningsindeks med An=3%, optimalisert for det andre transmisjonsvindu med 1,3 pm) vil Rayleich spredningskoeffisienten undergå en økning på 0,2 dB/ Km/pm 4. Dersom den molare konsentrasjonen økes ut over 20% for 1 case with a concentration of germanium of 3 mol-% (typical concentration for a monomode fiber with stepped refractive index with An=3%, optimized for the second transmission window with 1.3 pm) the Rayleich scattering coefficient will undergo an increase of 0.2 dB/ Km/pm 4. If the molar concentration is increased above 20% for

å oppnå forflytning av sonen med minimal kromatisk dispersjon kan en verdi for Rayleigh spredningskoeffisienten som er høyere enn 2 dB/Km/pm 4 oppnås. Dette er nedbrytende for materialets oppførsel p.g.a. for høy økning i de minimale attenuasjonsverdiene. to achieve displacement of the zone with minimal chromatic dispersion, a value for the Rayleigh scattering coefficient higher than 2 dB/Km/pm 4 can be achieved. This is detrimental to the material's behavior due to too high an increase in the minimum attenuation values.

Aluminiumoksyd ( Al^ O^) er et alternativ til Ge02, ved siden avAluminum oxide (Al^O^) is an alternative to GeO2, next to it

at det viser alle de samme fordelene som germaniumoksyd har det i tillegg følgende egenskaper: that it shows all the same advantages as germanium oxide, it also has the following properties:

a) Rayleigh spredningskoeffisient som er dårligere enn den for silisium; b) lavere råmaterialkostnader; a) Rayleigh scattering coefficient inferior to that of silicon; b) lower raw material costs;

c) høyere smeltetemperatur.c) higher melting temperature.

Det er av interesse å understreke det faktum at en sprednings-ikoeffisient som er lavere enn den for silisiumoksyd kan tillate It is of interest to emphasize the fact that a dispersion coefficient lower than that of silicon oxide may allow

de laveste attenuasjonsnivåene å nås for silisiumoksyd-baserte glassformige nettverk. the lowest attenuation levels to be reached for silicon oxide-based glassy networks.

Nærmere bestemt kan med glassformige nettverk av SiO-p-A^O^en ;minimal attenuasjonsverdi som er lavere enn den for silisiumoksyd oppnås; for silisiumoksyd er denne verdien lik 0,12 dB/Km i bølge-lengdeområdet 1,5 6 pm. More specifically, with vitreous networks of SiO-p-A^O^en, a minimal attenuation value lower than that of silicon oxide can be achieved; for silicon oxide this value is equal to 0.12 dB/Km in the wavelength range 1.5 6 pm.

Punkt c), d.v.s. den høye smeltetemperaturen, gir grunnlag for jinteressante betraktninger. Smeltetemperaturen for aluminiumoksyd (2 045°C) er høyere enn verdiene for silisiumoksyd (1 703°C) og for germaniumoksyd (1 086°C). Point c), i.e. the high melting temperature, provides grounds for interesting considerations. The melting temperature for aluminum oxide (2,045°C) is higher than the values for silicon oxide (1,703°C) and for germanium oxide (1,086°C).

De fysikalske egenskapene for nettverket av Si02-Al203 er følge-;lig mer like egenskapene for Si02enn egenskapene for nettverket Si02-Ge02. The physical properties of the network of SiO 2 -Al 2 O 3 are consequently more similar to the properties of SiO 2 than the properties of the network SiO 2 -GeO 2 .

I tillegg vil tilstedeværelsen av en forbindelse med høyere smelte- punkt forhindre dopemidlet fra å diffundere mot periferien under sammenbruddstrinnet for preformen. In addition, the presence of a compound with a higher melting point will prevent the dopant from diffusing towards the periphery during the breakdown step of the preform.

Følgelig viser aluminiumoksyd-dopede silisiumoksydfibrer fremstilt ved MCVD-teknikken ikke noe dropp (d.v.s. sentralreduksjon av brytningsindeksen). Dette er en typisk anomali i profilen for germaniumoksyd-dopede silisiumoksydfibrer, fremstilt ved samme fremgangsmåte. Accordingly, alumina-doped silica fibers prepared by the MCVD technique do not show any drop (i.e., central reduction of the refractive index). This is a typical anomaly in the profile for germanium oxide-doped silicon oxide fibres, produced by the same process.

En bekreftelse av denne sistnevnte egenskapen er allerede beskrevetA confirmation of this latter property has already been described

i artikkelen "Fabrication of Low-Loss Al^ O^ doped silica fibres" in the article "Fabrication of Low-Loss Al^ O^ doped silica fibres"

av Y. Ohmori et al., Electronics Letters, 2. september 1982, bind 18, nr. 18. by Y. Ohmori et al., Electronics Letters, September 2, 1982, Vol. 18, No. 18.

Hovedu^rlempen som forhindrer at aluminiumoksyd benyttes industrielt ligger i det faktum at det ved romtemperatur ikke eksisterer flytende eller gassformige komponenter som kan benyttes som aluminiumbærere og som følgelig egner seg for CVD-teknikken. The main disadvantage that prevents aluminum oxide from being used industrially lies in the fact that at room temperature there are no liquid or gaseous components which can be used as aluminum carriers and which are consequently suitable for the CVD technique.

Aluminiumhalogenider er faste ved romtemperatur og har relativtAluminum halides are solid at room temperature and have relatively

høye koketemperaturer. F.eks. sublimerer AlF^ved 1 291°C,high boiling temperatures. E.g. sublimes AlF^ at 1,291°C,

AlCl^sublimerer ved 178°C, AlBr^smelter ved 97°C og koker ved 263°C, A1I3smelter ved 191°C og koker ved 360°C. Anvendelsen av CVD-teknikker med slike råmaterialer krever reaktantblande- AlCl^ sublimes at 178°C, AlBr^ melts at 97°C and boils at 263°C, AlI3 melts at 191°C and boils at 360°C. The application of CVD techniques with such feedstocks requires reactant mix-

og fordampningslinjer som ved hjelp av termostater holdes ved høy temperatur. Dette gir vanskeligheter ved gjennomføringen av fremgangsmåten og sikrer ikke forurensnings-frie synteseprodukter. and evaporation lines which are kept at a high temperature by means of thermostats. This causes difficulties when carrying out the method and does not ensure contamination-free synthesis products.

I tillegg er forbindelser som er faste ved romtemperatur vanske-ligere å rense enn flytende eller gassformige produkter, følgelig kan de inneholde restforurensninger som virker nedbrytende på de optiske egenskapene. In addition, compounds which are solid at room temperature are more difficult to clean than liquid or gaseous products, consequently they may contain residual impurities which degrade the optical properties.

Anvendelsen av AlCl^som en grunnleggende aluminiumbærer erThe use of AlCl^ as a basic aluminum carrier is

allerede foreslått i den ovenfor nevnte artikkelen, men foreløpig foreligger ikke verdifulle resultater. already proposed in the above-mentioned article, but so far no valuable results are available.

De nevnte ulempene overvinnes og de ovenfor nevnte tekniske problemene løses ved fremgangsmåten til fremstilling av aluminiumoksyd-dopede silisiumoksydfibrer som tilveiebringes ved foreliggende oppfinnelse, denne tillater silisiumoksyd å dopes med aluminiumoksyd ved å benytte en kjemisk dampavsetningsteknikk (CVD-chemical-vapour-deposition) uten behov for å anvende fordampnings-og blandelinjer som ved hjelp av termostater holdes ved høy temperatur. De oppnådde optiske fibrene har lav attenuasjon og har ikke noe dropp. The aforementioned disadvantages are overcome and the above-mentioned technical problems are solved by the method for producing alumina-doped silicon oxide fibers which is provided by the present invention, this allows silicon oxide to be doped with alumina by using a chemical vapor deposition technique (CVD-chemical-vapour-deposition) without the need to use evaporation and mixing lines which are kept at a high temperature by means of thermostats. The obtained optical fibers have low attenuation and have no drop.

Hovedformålet med foreliggende oppfinnelse er å tilveiebringe en fremgangsmåte for fremstilling av aluminiumoksyd-dopede silisium-oksydf ibrer, hvor silisiumoksyd og dopemiddel oppnås ved reaksjonen mellom gassformige kjemiske forbindelser, kjennetegnet ved at dopemidlet oppnås ved reaksjonen mellom oksygen og en organometallisk forbindelse av A1(C a H 6 )5 „ eller av A1C1(C a H $ ) i, > typen, hvor a, 6, £ og \p er koeffisienter som angir tilstedeværelsen i molekyler av hhv. atomene C, H og av gruppen CH. The main purpose of the present invention is to provide a method for the production of alumina-doped silicon oxide fibers, where silicon oxide and dopant are obtained by the reaction between gaseous chemical compounds, characterized in that the dopant is obtained by the reaction between oxygen and an organometallic compound of A1(C a H 6 )5 „ or of A1C1(C a H $ ) i, > type, where a, 6, £ and \p are coefficients indicating the presence in molecules of respectively. the atoms C, H and of the group CH.

Ytterligere foretrukne detaljer ved oppfinnelsen vil fremgå fra den følgende beskrivelsen, i form av ikke-begrensende eksempel, Further preferred details of the invention will appear from the following description, by way of non-limiting example,

av en utførelse av oppfinnelsen.of an embodiment of the invention.

Aluminiumoksydet som skal benyttes som silisiumoksyddopemiddel i en CVD-prosess oppnås fra organometalliske aliuminiumforbindelser, som f.eks. trimetylaluminium, trietylaluminium, dimetylaluminium-klorid og dietylaluminiumklorid. De kjemiske formlene, smelte-temperaturene Tp og koketemperaturene T£for de fire forbindelsene er gjengitt nedenfor: The aluminum oxide to be used as silicon oxide dopant in a CVD process is obtained from organometallic aluminum compounds, such as e.g. trimethylaluminum, triethylaluminum, dimethylaluminum chloride and diethylaluminum chloride. The chemical formulas, melting temperatures Tp and boiling temperatures T£ for the four compounds are given below:

Forbindelsene er enten av Al(C H„)_ eller av A1C1(C H )„ typen, hvor a; 3 og ? er koeffisienter som angir nærværet i molekyler av hhv. atomene C og H og CH gruppen, som kan fordampe ved relativt lav temperatur. The compounds are either of the Al(C H„)_ or of the A1C1(C H )„ type, where a; 3 and ? are coefficients indicating the presence in molecules of respectively the atoms C and H and the CH group, which can evaporate at a relatively low temperature.

Slike forbindelser gir i nærvær av oksygen opphav til følgende reaksjoner: Such compounds in the presence of oxygen give rise to the following reactions:

I tillegg til aluminiumoksyd (A^O^) gir reaksjonen vann, karbon-dioksyd og saltsyre. In addition to aluminum oxide (A^O^), the reaction produces water, carbon dioxide and hydrochloric acid.

HC1 og C02er flyktige og drives ut med hovedstrømmen av reaksjons-produkter og reaktanter som ikke har deltatt i reaksjonen. Vannet kunne inkorporeres i nettverket og forårsake optiske absorbsjons-tap. HC1 and C02 are volatile and are expelled with the main stream of reaction products and reactants that have not taken part in the reaction. The water could be incorporated into the network and cause optical absorption losses.

Dersom ytre prosesser benyttes (OVPO = outside vapour phase oxi-dation), som f.eks. OVD (outside vapour deposition) og VAD (vapour axial deposition), drives vannet som inkorpores under syntesen ut under tørke- og konsolideringsfasen, etter avsetningen. Reak-sjonsproduktene C02, HC1, H20 er også typiske produkter for grunnleggende reaksjoner ved disse avsetningsteknikkene og gir følgelig ikke opphav til forurensningsproblemer. If external processes are used (OVPO = outside vapor phase oxidation), such as e.g. OVD (outside vapor deposition) and VAD (vapour axial deposition), the water incorporated during the synthesis is driven out during the drying and consolidation phase, after the deposition. The reaction products C02, HC1, H20 are also typical products for basic reactions in these deposition techniques and consequently do not give rise to pollution problems.

Ved å benytte indre avsetningsteknikker (IVPO) som f.eks. MCVD-teknikken (Modified Chemical Vapour Deposition) kan hindringen overvinnes ved hjelp av en "myk", d.v.s. ikke-konsolidert, avset-ning, og deretter bevirkes en lagvis dehydrering og konsolidering av avsetningen i nærvær av klor som dehydreringsmiddel. By using internal deposition techniques (IVPO) such as The MCVD technique (Modified Chemical Vapor Deposition) can overcome the obstacle by means of a "soft", i.e. non-consolidated, deposit, and then a layered dehydration and consolidation of the deposit is effected in the presence of chlorine as a dehydrating agent.

Denne fremgangsmåten reduserer ikke fremgangsmåtens produktivitetThis procedure does not reduce the productivity of the procedure

i tilfelle fremstilling av monomodus-fibrer, siden antallet lag som er nødvendig for kjernefremstilling er relativt begrenset. in the case of monomode fiber fabrication, since the number of layers required for core fabrication is relatively limited.

Det skal bemerkes at beskrivelsen ovenfor er gitt i form av et ikke-begrensende eksempel. Variasjoner og modifikasjoner er mulige It should be noted that the above description is given by way of a non-limiting example. Variations and modifications are possible

innenfor omfanget av foreliggende oppfinnelse.within the scope of the present invention.

Nærmere bestemt kan andre organometalliske aluminiumforbindelser benyttes for å fremstille aluminiumoksyd ifølge foreliggende fremgangsmåte for fremstilling av optiske fibrer. More specifically, other organometallic aluminum compounds can be used to produce aluminum oxide according to the present method for producing optical fibres.

Claims (2)

1. Fremgangsmåte for fremstilling av aluminiumoksyd-dopede silisiumoksydfibrer, hvor silisiumoksydet og dopemidlet oppnås ved reaksjon mellom gassformige kjemiske forbindelser, karakterisert ved at dopemidlet oppnås ved reaksjonen mellom oksygen og en organometallisk forbindelse av A1(C HQ)r eller A1C1(C HQ),„ typen, hvor a, 6 og £, V er koeffi- ct p t , ot p T sienter som angir nærværet i molekyler av hhv. atomene C, H og gruppen CH.1. Process for the production of alumina-doped silicon oxide fibers, where the silicon oxide and the dopant are obtained by reaction between gaseous chemical compounds, characterized in that the dopant is obtained by the reaction between oxygen and an organometallic compound of A1(C HQ)r or A1C1(C HQ), „ type, where a, 6 and £, V are coefficients ct p t , ot p T sients that indicate the presence in molecules of resp. the atoms C, H and the group CH. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at den organometalliske forbindelsen velges fra gruppen bestående av trimetylaluminium, trietylaluminium, dimetylaluminium-klorid, dietylaluminiumklorid med kjemiske formler AIJCH^ )^/ AKC.H,),, AlCKCH,)-, A1C1(C,HC )- .2. Method according to claim 1, characterized in that the organometallic compound is selected from the group consisting of trimethylaluminum, triethylaluminum, dimethylaluminum chloride, diethylaluminum chloride with chemical formulas AIJCH^ )^/ AKC.H,),, AlCKCH,)-, A1C1(C ,HC )- .
NO854088A 1984-11-13 1985-10-15 PROCEDURE FOR THE PREPARATION OF ALUMINUM OXYPE-DOPPED SILICON OXYDE FIBERS. NO854088L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT68135/84A IT1180127B (en) 1984-11-13 1984-11-13 PROCEDURE FOR THE PRODUCTION OF FIBER OPTICS IN SILICA DROGATED WITH ALUMINUM

Publications (1)

Publication Number Publication Date
NO854088L true NO854088L (en) 1986-05-14

Family

ID=11308087

Family Applications (1)

Application Number Title Priority Date Filing Date
NO854088A NO854088L (en) 1984-11-13 1985-10-15 PROCEDURE FOR THE PREPARATION OF ALUMINUM OXYPE-DOPPED SILICON OXYDE FIBERS.

Country Status (9)

Country Link
US (1) US4657575A (en)
EP (1) EP0182252A3 (en)
JP (1) JPS61122134A (en)
AU (1) AU559723B2 (en)
CA (1) CA1260333A (en)
DE (1) DE182252T1 (en)
DK (1) DK523885A (en)
IT (1) IT1180127B (en)
NO (1) NO854088L (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662311B2 (en) * 1988-12-07 1994-08-17 シツプ‐ソシエタ・イタリアーナ・ペル・レセルチツイオ・デル・テレコミニカイオーニ・ピー・アー Method for doping the core of silica-based fiber preforms
US5211731A (en) * 1991-06-27 1993-05-18 The United States Of Americas As Represented By The Secretary Of The Navy Plasma chemical vapor deposition of halide glasses
JP2690047B2 (en) * 1991-12-24 1997-12-10 三菱製鋼株式会社 Belleville spring with improved contact surface flatness
US7066628B2 (en) * 2001-03-29 2006-06-27 Fiber Optic Designs, Inc. Jacketed LED assemblies and light strings containing same
KR100624247B1 (en) * 2004-07-02 2006-09-19 엘에스전선 주식회사 Multimode optical fiber for high data rate local area network
WO2009094114A1 (en) * 2008-01-22 2009-07-30 Corning Incorporated Aluminum doped optical fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217027A (en) * 1974-02-22 1980-08-12 Bell Telephone Laboratories, Incorporated Optical fiber fabrication and resulting product
DE3374555D1 (en) * 1982-04-09 1987-12-23 Western Electric Co Doped optical fiber
JPS59184748A (en) * 1983-04-02 1984-10-20 Sumitomo Electric Ind Ltd Manufacture of optical fiber covered by metal

Also Published As

Publication number Publication date
IT8468135A0 (en) 1984-11-13
US4657575A (en) 1987-04-14
DE182252T1 (en) 1988-05-19
JPS61122134A (en) 1986-06-10
IT1180127B (en) 1987-09-23
AU559723B2 (en) 1987-03-19
DK523885A (en) 1986-05-14
EP0182252A3 (en) 1988-01-07
EP0182252A2 (en) 1986-05-28
JPH0456781B2 (en) 1992-09-09
IT8468135A1 (en) 1986-05-13
DK523885D0 (en) 1985-11-13
AU4970585A (en) 1986-06-12
CA1260333A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
Tran et al. Heavy metal fluoride glasses and fibers: a review
US4979971A (en) Method for producing glass preform for optical fiber
US3999835A (en) Dielectric optical waveguides
US4804247A (en) Quartz glass optical fiber
CA1194280A (en) Optical fibres
NO854088L (en) PROCEDURE FOR THE PREPARATION OF ALUMINUM OXYPE-DOPPED SILICON OXYDE FIBERS.
EP0135903B1 (en) Process of manufacturing optical fibres of extremely low loss in the medium infrared
US4738873A (en) Method of making alumina-doped silica optical fibers
US4189208A (en) Zinc chloride optical fibers for transmission in the infrared
CA1335486C (en) Method of and apparatus for fabricating silica optical fibres
EP0185362B1 (en) Apparatus for the continuous production of optical fibres
EP0135126B1 (en) Preparation of glass for optical fibers
CA1277952C (en) Production of optical fibres by vapour reaction of an organo-metallic compound and halogen
Drexhage Infrared glass fibers
JPS63107841A (en) Halide glass for optical fiber
JPH0813689B2 (en) Manufacturing method of optical fiber preform
JPS6077138A (en) Synthesis of doped quartz for optical fiber
JP3367624B2 (en) Optical fiber
JPH0416428B2 (en)
JPS59227740A (en) Glass for optical fiber preform and its manufacture
JPS605028A (en) Production of fluorine-containing optical glass
Chiaruttini et al. Tellurium Bromide Glasses For Far IR Optics
Newns Materials Systems and Fibre Fabrications Processes in the UK
JPH0233657B2 (en) TIO2GANJUHIKARIFUAIBANOSEIZOHOHO
JPH01212244A (en) Base material for optical fiber