NO803721L - DEVICE FOR DETERMINING THE WIND ENERGY FOR REGULATION OF WIND POWER. - Google Patents
DEVICE FOR DETERMINING THE WIND ENERGY FOR REGULATION OF WIND POWER.Info
- Publication number
- NO803721L NO803721L NO803721A NO803721A NO803721L NO 803721 L NO803721 L NO 803721L NO 803721 A NO803721 A NO 803721A NO 803721 A NO803721 A NO 803721A NO 803721 L NO803721 L NO 803721L
- Authority
- NO
- Norway
- Prior art keywords
- rotor
- wind
- blade
- probes
- pressure
- Prior art date
Links
- 239000000523 sample Substances 0.000 claims abstract description 22
- 238000005259 measurement Methods 0.000 description 14
- 238000007664 blowing Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/74—Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/76—Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/78—Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by aerodynamic forces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/324—Air pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
Oppfinnelsen angår en anordning for bestemmelse. av vindretningen i rotorplanet for vindkraftverk, hvis rotorer er utstyrt med smale, aerodynamisk formede rotorblad.De ved hjelp av trykkmålesonder konstaterte måleverdier le-verer dels for innstilling av rotorbladene og dels for vindkraftverk med horisontal rotordreieakse for innstilling av rotoren i vinden de nødvendige reguleringsstørrelsene for styring av de elementer som påvirker selve innstillingen. Trykkmålesondene (10) er derved anbragt på rotorbladenes (4) overside i selve nærheten av profilnesen, hensiktsmessig i en avstand på ca. 0,7 ganger bladets lengde fra aksen (3) sett utover. Ved hvert blad er således anordnet to trykkmålesonder (10) som er anordnet på begge sider av rotorens (4) midtre plan. Ut fra den trykkdifferanse som måles av disse to sonder, kan sammen med rotorens øvrige innstillingsdata avledes dennskede måleverdi.The invention relates to a device for determination. of the wind direction in the rotor plane of wind turbines, whose rotors are equipped with narrow, aerodynamically shaped rotor blades. The measured values determined by means of pressure measuring probes control of the elements that affect the setting itself. The pressure measuring probes (10) are thereby arranged on the upper side of the rotor blades (4) in the very vicinity of the profile nose, suitably at a distance of approx. 0.7 times the length of the blade from the axis (3) seen outwards. At each blade, two pressure measuring probes (10) are thus arranged, which are arranged on both sides of the central plane of the rotor (4). Based on the pressure difference measured by these two probes, the desired measured value can be deduced together with the rotor's other setting data.
Description
Oppfinnelsen angår en anordning til bestemmelse av vindenergien i rotorplanet for vindkraftverk, hvis rotorer er utstyrt med smale, aerodynamisk utformede rotorblad, for regulering ved hjelp av en med sonder målt trykkdifferanse. The invention relates to a device for determining the wind energy in the rotor plane for wind turbines, whose rotors are equipped with narrow, aerodynamically designed rotor blades, for regulation by means of a pressure difference measured with probes.
Rotorbladene på vindkraftanlegg omdanner den i vinden inneholdte energi til anvendelig akselkraft og frembringer derved reaksjonskrefter som må tas opp av anleggets konstruksjon. Denne omvandling er desto mer fordelaktig og reaksjonskreftene desto mindre jo bedre anlegget kan reguleres. Derved kan følgende komponenter påvirkes: The rotor blades on wind power plants convert the energy contained in the wind into usable shaft power and thereby produce reaction forces that must be taken up by the plant's construction. This transformation is all the more advantageous and the reaction forces the less, the better the plant can be regulated. The following components can thereby be affected:
bladinnstillingsvinkelen, rotoromdreiningstallet,the blade setting angle, the rotor speed,
den uttatte effekt og ved horisontal aksel rotoromdreinings-planets stilling i forhold til luftstrømmen. the output power and, in the case of a horizontal axis, the position of the plane of rotor rotation in relation to the air flow.
Alle reguleringsprosesser går ut fra den herskende vindhastighet og vindretning i rotorplanet. For en bra regulering er derfor størst mulig'kjennskap til vindhastigheten og vindretningen ved rotorbladene påkrevet. Ved de hittil vanlige målemetoder for bestemmelse av disse verdier, finnes store avvikelser fra de virkelige verdier fordi de konstateres ved hjelp av sonder som enten anbringes i størst mulig nærhet av rotoren, eller i en viss avstand fra den på en spesiell målemast. I det første tilfelle oppsto målefeil ved rotorens tilbakevirkning på luftstrømningsfeltet, i det ide-elle tilfelle minsker rotoren vindhastigheten i sitt plan til ca. 1/3 og påvirker derved ikke uvesentlig strømningsfeltet i sin umiddelbare nærhet. I det annet tilfelle oppstår feil ved ulikedannetheten i luftstrømmen, hvilket også kalles byger og frembringes hovedsakelig ved luftens markfriksjon og ved termiske innvirkninger. Bygene er ofte så lokalt skarpt avgrenset at en ved en i selve nærheten foreliggende mast målt vindhastighet kan avvike kraftig fra den i rotorplanet virksomme og følgelig opptrer feil i reguleringen. Alle hittil kjente metoder for vindmåling er derfor uegnet for vindkraftverk fordi de leder til feil ved reguleringen, hvorved tap ved utnyttelse av den frembudte vindenergi og overbelast-ninger i vindkraftanleggets konstruksjon opptrer. All regulation processes are based on the prevailing wind speed and wind direction in the rotor plane. For a good regulation, the greatest possible knowledge of the wind speed and wind direction at the rotor blades is therefore required. With the hitherto common measurement methods for determining these values, there are large deviations from the real values because they are ascertained using probes which are either placed as close as possible to the rotor, or at a certain distance from it on a special measuring mast. In the first case, measurement errors arose from the rotor's feedback on the air flow field, in the ideal case the rotor reduces the wind speed in its plane to approx. 1/3 and thereby does not unimportantly affect the flow field in its immediate vicinity. In the second case, errors arise from the irregularity of the air flow, which is also called showers and is produced mainly by the air's ground friction and by thermal effects. The squalls are often so sharply delimited locally that a wind speed measured at a nearby mast can deviate greatly from that effective in the rotor plane and, consequently, errors occur in the regulation. All previously known methods for wind measurement are therefore unsuitable for wind power plants because they lead to errors in the regulation, whereby losses occur when utilizing the wind energy offered and overloads in the wind power plant's construction occur.
Det er derfor en oppgave for oppfinnelsen å skaffeIt is therefore a task for the invention to provide
en måleanordning som er særlig egnet for vindkraftverk og hvorved de ovennevnte feil unngås. a measuring device that is particularly suitable for wind power plants and by which the above-mentioned errors are avoided.
Denne oppgave løses ved hjelp av en anordning av den til å begynne med nevnte art som utmerker seg ved at sonder er anordnet for bestemmelse av trykkdifferansen på rotorbladets overside i nærheten av profilnesen. This task is solved by means of a device of the type mentioned at the outset, which is distinguished by the fact that probes are arranged for determining the pressure difference on the upper side of the rotor blade in the vicinity of the profile nose.
Altså er trykksonder anordnet på rotorbladenes overside i nærheten av profilnesen. Som komplettering kan en trykksone for bestemmelse av totaltrykket anbringes foran rotorbladets profilnese. Anbringelsesstedet for trykksondene på rotorbladet skal være på et for rotorens kapasitetsbestem-melse typisk rotorbladsnitt. In other words, pressure probes are arranged on the upper side of the rotor blades near the profile nose. As a supplement, a pressure zone for determining the total pressure can be placed in front of the profile nose of the rotor blade. The location of the pressure probes on the rotor blade must be on a typical rotor blade section for determining the rotor's capacity.
For nøyaktigere målinger kan måling skje ved flere bladsnitt. Et i spennvidderetningen oppdelt blad kan da også seksjonsvis reguleres nøyaktigere med en slik raffinert måling . For more accurate measurements, measurements can be made at several leaf sections. A blade divided in the spanwise direction can then also be regulated more precisely by section with such a refined measurement.
Vindkraftanlegg med en anordning ifølge oppfinnelsen kan fremstilles billigere enn de hittil vanlige, som behøver en spesiell målemast. Anordningen er anvendelig for alle vindkraftverk som er utstyrt med aerodynamisk utformete smale rotorblad. Den forbedrer rotorens reguleringsmuligheter for bladinnstillingen og for rotorens innretning etter vinden. Wind turbines with a device according to the invention can be produced more cheaply than the hitherto common ones, which require a special measuring mast. The device is applicable to all wind turbines that are equipped with aerodynamically designed narrow rotor blades. It improves the rotor's controllability for the blade setting and for the rotor's alignment to the wind.
Ytterligere detaljer, særtrekk og fordeler ved oppfinnelsen vil fremgå av patentkravene såvel som av den følg-ende beskrivelse og tegningene, hvor oppfinnelsen skal for-klares og vises skjematisk. På tegningene viser fig. 1 en del av et vindkraftanlegg med en horisontalakserotor, fig.2 et rotorblad på anlegget ifølge fig. 1, fig. 3 et snitt av et rotorblads (f.eks. fig. 2) profilnese med trykksonder ifølge oppfinnelsen, fig. 4 et vindkraftanlegg med horisontalakserotor med en anordning ifølge oppfinnelsen, fig. 5 en vertikalakserotor sett ovenfra og fig. 6 et ytterligere tverrsnitt av et rotorblad (f.eks. fig. 2). Further details, distinctive features and advantages of the invention will appear from the patent claims as well as from the following description and drawings, where the invention will be explained and shown schematically. In the drawings, fig. 1 a part of a wind power plant with a horizontal axis rotor, fig. 2 a rotor blade of the plant according to fig. 1, fig. 3 a section of a rotor blade (e.g. fig. 2) profile nose with pressure probes according to the invention, fig. 4 a wind power plant with a horizontal axis rotor with a device according to the invention, fig. 5 a vertical axis rotor seen from above and fig. 6 a further cross-section of a rotor blade (eg Fig. 2).
På fig. 1 er vist en del av et vindkraftanlegg medIn fig. 1 shows part of a wind power plant with
en bæremast 1 og en horisontalakserotor 2, hvis akse betegnes med 3 og hvis innstillbare, smale, aerodynamisk utformede vingeblad med 4. a support mast 1 and a horizontal axis rotor 2, whose axis is denoted by 3 and whose adjustable, narrow, aerodynamically designed wing blades are denoted by 4.
Rotoren 2 er montert på en lagerkrans 5 på masten på en slik måte at rotoraksen 3, f.eks. ved hjelp av en på akselen festet vindføy 6 kan svinges om vertikalaksen i vindretningen. I rotorens 2 nav er en regulator 7 og en av den påvirkbar omstillingsanordning 8 for dreining av vingebladene 4 om deres lengdeakse anbragt. Strømtilførsels-sleperinger ved rotorakselen for regulatoren og omstillings-anordningen er betegnet med 9. The rotor 2 is mounted on a bearing ring 5 on the mast in such a way that the rotor axis 3, e.g. with the help of a wind deflector 6 attached to the shaft, it can be swung about the vertical axis in the direction of the wind. In the hub of the rotor 2, a regulator 7 and one of the actuable switching devices 8 for turning the wing blades 4 about their longitudinal axis are arranged. Power supply lags at the rotor shaft for the regulator and the switching device are denoted by 9.
På fig. 2 og særlig på fig. 3 er vist anbringelsenIn fig. 2 and particularly in fig. 3 shows the placement
av trykksonder 10 ifølge oppfinnelsen. Sondene 10 er anbragt i nærheten av profilnesen 11 på begge sider av det midtre plan 12, hensiktsmessig i en avstand fra rotoraksen 3 på 0,7 ganger bladets lengde, på vingebladenes 4 overside. of pressure probes 10 according to the invention. The probes 10 are placed near the profile nose 11 on both sides of the middle plane 12, suitably at a distance from the rotor axis 3 of 0.7 times the length of the blade, on the upper side of the wing blades 4.
På fig. 2 og 4 er vist sondenes 10 anbringelse, hvilke under vindkraftverkets drift beskriver en såkalt målesirkel, ved piler. Ut fra den trykkdifferanse som bestemmes med sondene 10, kan man beregne motblåsningsvinkelen °< (fig. 6). Hvis vingebladets innstillingsvinkel /3 (fig. 6), trykkdifferansen på målestedene og rotorens omdreiningshastighet er kjent, kan man ut fra måleverdiene beregne den lokalt på vingebladet herskende vindhastighet. In fig. 2 and 4 show the placement of the probes 10, which during the operation of the wind power plant describe a so-called measuring circle, by arrows. Based on the pressure difference determined with the probes 10, the counter-blowing angle °< can be calculated (fig. 6). If the wing blade's setting angle /3 (Fig. 6), the pressure difference at the measurement locations and the rotor's rotational speed are known, the wind speed prevailing locally on the wing blade can be calculated from the measured values.
Et eksempel på overføringsveien for den av sondene opptatte trykkverdi til reguleringsanlegget er vist på fig. 3. I dette tilfelle betegnes en strømforsyning med 13, en kodingsanordning med 14 og en måleoverføring fra rotoren R til statoren S med 15. An example of the transmission path for the pressure value captured by the probes to the control system is shown in fig. 3. In this case, a power supply is denoted by 13, an encoding device by 14 and a measurement transfer from the rotor R to the stator S by 15.
Ved en flerbladet rotor med felles bladomstilling må måleverdiene fra samtlige vingeblad konstateres før regulatoren kan konstatere den best egnede bladinnstillingsvinkel og stiller deretter inn vingebladene ved hjelp av omstillings-anordningen. In the case of a multi-bladed rotor with shared blade adjustment, the measurement values from all blades must be ascertained before the regulator can determine the most suitable blade setting angle and then adjusts the blades using the adjustment device.
Ved en rotor med enbladsinnstilling kan regulatoren ved hjelp av den separat målte verdi for hvert vingeblad bestemme den best egnede innstillingsvinkel. In the case of a rotor with a single-blade setting, the regulator can determine the most suitable setting angle using the separately measured value for each blade.
Med en anordning ifølge oppfinnelsen kan vindenergien i rotorplanet konstateres betydelig mer nøyaktig enn med de vanlige metoder, såsom f.eks. målemast eller anemometer på den forlengede rotoraksel. Et skålkorsanemometer 16 (fig. 4) tjener bare til styring av anlegget utenfor det egentlige'arbeidsområde. Da et an@mometer angir lavere vindhastigheter nøyaktigere enn trykksondene, kobles reguleringsanordningen ved vindstille eller stillestående rotor mest hensiktsmessig over til et anemometer. Først når driftsturtallet oppnås, foregår en omkobling til vindmålingen ved vingebladene med trykksondene. Utkoblingen av anlegget på grunn av storm kan skje ved en på forhånd bestemt verdi ved hjelp av målingene ved bladet. Ved vindkraftverk som er koblet ut på grunn av storm, er da igjen bare anemometeret i drift. With a device according to the invention, the wind energy in the rotor plane can be determined significantly more accurately than with the usual methods, such as e.g. measuring mast or anemometer on the extended rotor shaft. A bowl cross anemometer 16 (fig. 4) only serves to control the plant outside the actual working area. As an an@mometer indicates lower wind speeds more accurately than the pressure probes, the control device is most appropriately connected to an anemometer when there is no wind or a stationary rotor. Only when the operating speed is reached is a switchover to the wind measurement at the wing blades with the pressure probes. The shutdown of the system due to a storm can take place at a pre-determined value using the measurements at the blade. In the case of wind turbines that are disconnected due to storms, only the anemometer is then in operation.
De verdier for anblåsningsvinkelen som er frembragt ved hjelp av trykkdifferansen, mates til en regnemaskin. Denne bestemmer ved hjelp av den kjente verdi på innstillingsvinkelen og omdreiningstallet den lokale vindhastighet. I The values for the gust angle which are generated using the pressure difference are fed to a calculator. This determines the local wind speed using the known value of the setting angle and the number of revolutions. IN
et ytterligere beregningstrinn fås av dette ved hjelp av verdiene for lufttrykk, temperatur og rotorsirkelflate den virksomme vindenergi. a further calculation step is obtained from this using the values for air pressure, temperature and rotor circle surface, the effective wind energy.
Vindinnretningen i drift kan foruten med vinfløyen 6 hensiktsmessig også styres ved hjelp av en trykksondemåling på vingebladet. For dette tilfellet sammenligner reguleringsanlegget anblåsningsvinklene for et vingeblad i rotorstil-lingen 90° og 270° (fig. 2) med hverandre. Hvis de to vinkler er like, kreves ingen korrigering av vindinnretningen. Hvis de to vinkler er forskjellige må rotorbladet svinges In addition to the vane 6, the wind device in operation can also be suitably controlled by means of a pressure probe measurement on the vane. For this case, the control system compares the gust angles for a wing blade in the rotor position 90° and 270° (fig. 2) with each other. If the two angles are equal, no correction of the wind device is required. If the two angles are different, the rotor blade must be rotated
til de to vinkler er like.until the two angles are equal.
Forskjellige anblåsningsvinkler kan allikevel oppstå ved enbladsinnstilling ved store lokale differanser i luft-strømningsfeltet. Det nettopp beskrevne vindinnretnings- Different blowing angles can still occur with a single-blade setting when there are large local differences in the air flow field. The wind device just described
c c
anlegg skulle på egnet måte reagere med en svingning av rotorplanet til rotorbelastningen mest mulig er utjevnet. plant should respond in a suitable way with an oscillation of the rotor plane until the rotor load is equalized as much as possible.
Registrerer nemlig måleanlegget forskjellige anblåsningsvinkler ved 90° og ved 270° (fig. 2) må bladene i stil-lingen o° og 180° stilles om slik at en svingning av rotorplanet om tårnaksen foregår for at differansen i anblåsnings-vinkel ved 90° og 270° igjen skal utjevnes. Ved vinder som tiltar i høyden, minskes dermed de store krefter i rotor-sirkelens øvre halvdel og krefteneøker i den nedre halvdel. Gjennom denne regulering kan imidlertid ikke bare forskjellige belastninger i stor utstrekning utjevnes, men det minsker også de bøyekrefter som belaster rotorakselen. Namely, if the measuring system registers different blowing angles at 90° and at 270° (fig. 2), the blades in the o° and 180° positions must be repositioned so that an oscillation of the rotor plane about the tower axis takes place so that the difference in blowing angle at 90° and The remaining 270° must be equalised. In the case of winds that increase in height, the large forces in the upper half of the rotor circle are thus reduced and the forces increase in the lower half. Through this regulation, however, not only can different loads be equalized to a large extent, but it also reduces the bending forces that stress the rotor shaft.
Gjennom disse forholdsregler kan i forekommende tilfelle også de krefter som utløser svingningsforløpet, holdes små. Totalt sett frembringes derved en slik minsking av kon-struksjonsbelastningen at denne kan bygges lettere og dermed billigere. Through these precautions, the forces that trigger the course of oscillation can also be kept small in the event of an occurrence. Overall, this results in such a reduction of the construction load that it can be built more easily and thus more cheaply.
Mens rotorplanets vindinnretning i drift kan styres ved en anordning ifølge oppfinnelsen, er en vindinnretning gjennom en vindfløy fordelaktig bare ved start av rotoren. While the rotor plane's wind device in operation can be controlled by a device according to the invention, a wind device through a wind vane is advantageous only when starting the rotor.
En hurtig reagerende innstillingsmekanisme kan for dette tilfelle bygges meget lettere og enklere enn den vanlige fordi reaksjonskreftene er mindre og sikkerhetskravene er lavere. In this case, a fast-reacting adjustment mechanism can be built much easier and simpler than the usual one because the reaction forces are smaller and the safety requirements are lower.
Overfor forholdene ved de nettopp betraktede horison-talakserotorer (fig. 1, 2, 4) opptrer ved vertikalakserotorer (fig. 5) følgende ulikheter: Compared to the conditions for the horizontal axis rotors just considered (fig. 1, 2, 4), the following differences occur with vertical axis rotors (fig. 5):
rotoren krever ingen vindinnretning,the rotor requires no wind device,
rotorbladet 17 utsettes for sykliske anblåsnings-vinkelforandringer og hvert rotorblad griper tak i rotorens strømrør to ganger, the rotor blade 17 is subjected to cyclical inrush angle changes and each rotor blade grips the rotor's current tube twice,
ved første gjennomgang (lovartsiden) er den opptatte luft ennå urørt, on the first pass (downwind side) the occupied air is still untouched,
ved den annen gjennomgang (lesiden) farer bladet gjennom en forsinket og opphvirvlet luftstrøm. on the second passage (the lee side) the blade travels through a delayed and swirled air flow.
Den for horisontalakserotoren beskrevne målemetode for anblåsningsvinkelen (fig. 3 og 6) arbeider uten treg- The measurement method for the angle of attack described for the horizontal axis rotor (Figs. 3 and 6) works without slow-
het og kan likeledes anvendes for vertikalakserotorer. Fra målingen av anblåsningsvinkelen under gjennomgangen på lovartsiden kan den herskende vindhastighet beregnes hvis sam-tidig rotorens dreiehastighet er kjent. Ved uregulert bladomstilling fås for kjente forhold vu/Vq anblåsningsvinkler som kan bestemmes nøyaktig for hver rotorstilling. Ut fra verdiene for rotoromdreiningstall og rotorstilling og anblås-ningsvinkel kan den lokalt herskende vindhastighet<p>g dermed energimengden i rotortverrsnittet umiddelbart beregnes. Ved rotorer med regulert bladomstilling kreves for denne måling dessuten også kjennskap til innstillingsvinkelen (fig. 6) hot and can also be used for vertical axis rotors. From the measurement of the gust angle during the review on the windward side, the prevailing wind speed can be calculated if at the same time the rotational speed of the rotor is known. In the case of unregulated blade adjustment, for known conditions vu/Vq are obtained, which can be precisely determined for each rotor position. Based on the values for the rotor speed, rotor position and blowing angle, the locally prevailing wind speed<p>g and thus the amount of energy in the rotor cross-section can be immediately calculated. In the case of rotors with regulated blade adjustment, knowledge of the setting angle is also required for this measurement (Fig. 6)
i forhold til nullinnstilling.in relation to the zero setting.
Ved den forsinkede og opphvirvlede luftstrøm på lesiden kan anblåsningsvinkelen ved rotorbladet ikke lenger bestemmes nøyaktig. Takket være kontinuerlige målinger av anblåsningsvinkelen på lovartsiden er allikevel en regulering mulig. Due to the delayed and swirling airflow on the leeward side, the angle of attack at the rotor blade can no longer be accurately determined. Thanks to continuous measurements of the gust angle on the windward side, regulation is still possible.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803000678 DE3000678A1 (en) | 1980-01-10 | 1980-01-10 | DEVICE FOR DETERMINING WIND ENERGY FOR CONTROLLING WIND POWER PLANTS |
Publications (1)
Publication Number | Publication Date |
---|---|
NO803721L true NO803721L (en) | 1981-07-13 |
Family
ID=6091785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO803721A NO803721L (en) | 1980-01-10 | 1980-12-10 | DEVICE FOR DETERMINING THE WIND ENERGY FOR REGULATION OF WIND POWER. |
Country Status (6)
Country | Link |
---|---|
DE (1) | DE3000678A1 (en) |
DK (1) | DK526780A (en) |
FI (1) | FI803851L (en) |
GB (1) | GB2067247B (en) |
NO (1) | NO803721L (en) |
SE (1) | SE8008017L (en) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0104034A1 (en) * | 1982-09-20 | 1984-03-28 | JAMES HOWDEN & COMPANY LIMITED | Wind turbines |
US4474531A (en) * | 1982-12-27 | 1984-10-02 | U.S. Windpower, Inc. | Windmill with direction-controlled feathering |
AT384657B (en) * | 1985-05-20 | 1987-12-28 | Thaller Heinrich Ing | Rotational-speed regulating device for wind converters for the generation of electrical current |
US4735552A (en) * | 1985-10-04 | 1988-04-05 | Watson William K | Space frame wind turbine |
US4729716A (en) * | 1986-02-25 | 1988-03-08 | Montana Wind Turbine, Inc. | Wind turbine |
US4890976A (en) * | 1987-11-25 | 1990-01-02 | Peter Jansson | Wind turbine |
US4815936A (en) * | 1988-07-05 | 1989-03-28 | United Technologies Corporation | Wind turbine shutdown system |
FR2748296B1 (en) * | 1996-05-06 | 1998-11-20 | Richer Bertrand Louis Isidore | SYSTEM FOR CONTROLLING THE ADJUSTMENT OF THE BLADES OF AN AEROGENERATOR WITH DYNAMIC AND EXTREME LOAD REDUCTION EFFECT |
DE19731918B4 (en) | 1997-07-25 | 2005-12-22 | Wobben, Aloys, Dipl.-Ing. | Wind turbine |
DE19758857B4 (en) * | 1997-07-25 | 2013-08-08 | Aloys Wobben | Wind generator - has instantaneous stress on rotor blade monitored with control system to adjust position of blade to position appropriate for that stress |
DE29715249U1 (en) * | 1997-08-25 | 1998-12-24 | Institut für Solare Energieversorgungstechnik Verein an der Universität Gesamthochschule Kassel eV, 34119 Kassel | Wind turbine |
DE19832207A1 (en) * | 1998-07-17 | 2000-01-27 | Rolf Hoffmann | Determining wind speed communicated across rotor of wind power plant using rotor torque and windspeed and alteration of torque by disturbance of windflow through tower of wind plant |
DE10022129C2 (en) * | 2000-05-06 | 2002-04-18 | Aloys Wobben | Method for operating a wind energy installation and wind energy installation for carrying out the method |
DE10232021B4 (en) * | 2002-07-16 | 2016-05-04 | Markus Jansen | Method for predicting gusts of wind and the associated control of wind turbines and wind power plant for carrying out this method |
US6940185B2 (en) | 2003-04-10 | 2005-09-06 | Advantek Llc | Advanced aerodynamic control system for a high output wind turbine |
CA2522280A1 (en) * | 2003-04-17 | 2004-10-28 | New World Generation Inc. | Wind turbine with friction drive power take off on outer rim |
JP4304023B2 (en) * | 2003-08-07 | 2009-07-29 | 富士重工業株式会社 | Horizontal axis wind turbine and control method of horizontal axis wind turbine |
EP2562415B1 (en) * | 2003-09-10 | 2016-01-06 | MITSUBISHI HEAVY INDUSTRIES, Ltd. | Blade-pitch-angle control device and wind power generator |
JP4064900B2 (en) * | 2003-09-10 | 2008-03-19 | 三菱重工業株式会社 | Blade pitch angle control device and wind power generator |
JP4607450B2 (en) * | 2003-12-26 | 2011-01-05 | 大和ハウス工業株式会社 | Propeller type wind power generation system |
JP4589633B2 (en) * | 2004-01-29 | 2010-12-01 | 富士重工業株式会社 | Horizontal axis wind turbine and control method of horizontal axis wind turbine |
JP4487059B2 (en) * | 2004-03-26 | 2010-06-23 | ダンマーク テクニスク ユニバーシテ | Apparatus and method for determining wind speed and direction experienced by a wind turbine |
RU2358149C2 (en) * | 2004-10-09 | 2009-06-10 | Игус-Иноувейтив Текнише Зюстеме Гмбх | Method and device for control of diametre pitch angle in rotor blades of wind-powered plants |
DK2122164T3 (en) | 2007-01-05 | 2016-07-04 | Lm Wp Patent Holding As | Wind turbine blade with lift regulators in the form of grooves or holes |
DE102007015179A1 (en) * | 2007-03-29 | 2008-10-02 | Siemens Ag | Pressure measuring device and method for determining wind power on wind turbines and use of the pressure measuring device and the method |
EP2017468A1 (en) * | 2007-07-20 | 2009-01-21 | Siemens Aktiengesellschaft | Method for wind turbine yaw control |
US8235662B2 (en) * | 2007-10-09 | 2012-08-07 | General Electric Company | Wind turbine metrology system |
US8183707B2 (en) * | 2007-10-30 | 2012-05-22 | General Electric Company | Method of controlling a wind energy system and wind speed sensor free wind energy system |
EP2108830B1 (en) | 2008-01-10 | 2019-08-28 | Siemens Gamesa Renewable Energy A/S | Method for determining fatigue load of a wind turbine and for fatigue load control, and wind turbines therefor |
US8736092B2 (en) | 2008-03-07 | 2014-05-27 | Vestas Wind Systems A/S | Control system and a method for redundant control of a wind turbine |
ES2524043T3 (en) * | 2008-03-07 | 2014-12-03 | Vestas Wind Systems A/S | A control system and a procedure to control a wind turbine |
US8786117B2 (en) | 2008-06-13 | 2014-07-22 | General Electric Company | Wind turbine sensor assembly and method of assembling the same |
US8408871B2 (en) * | 2008-06-13 | 2013-04-02 | General Electric Company | Method and apparatus for measuring air flow condition at a wind turbine blade |
US20090311097A1 (en) * | 2008-06-13 | 2009-12-17 | General Electric Company | Wind turbine inflow angle monitoring and control system |
EP2148088A1 (en) | 2008-07-22 | 2010-01-27 | Siemens Aktiengesellschaft | Method and arrangement to adjust the pitch of wind turbine blades |
CN101660493B (en) † | 2008-08-29 | 2014-10-01 | 维斯塔斯风力系统有限公司 | Pitch control system for testing pitch system failure |
EP2180183A1 (en) * | 2008-10-23 | 2010-04-28 | Siemens Aktiengesellschaft | Stall detection by use of pressure sensors |
SE533325C2 (en) * | 2008-10-24 | 2010-08-31 | Hm Power Ab | Removable wind turbine (Control circuit) |
DK2182205T3 (en) | 2008-10-28 | 2016-06-06 | Siemens Ag | Wind turbine device and method for adjusting a wind turbine according to the wind direction |
EP2438300A2 (en) * | 2009-06-03 | 2012-04-11 | Vestas Wind Systems A/S | Hub-sited tower monitoring and control system for wind turbines |
US8002524B2 (en) * | 2009-07-10 | 2011-08-23 | General Electric Company | Wind turbine aerodynamic separation control |
EP2317327A1 (en) * | 2009-10-28 | 2011-05-04 | SSB Wind Systems GmbH & Co. KG | Wind sensor system using blade signals |
DE102010016292A1 (en) | 2010-04-01 | 2011-10-06 | Ssb Wind Systems Gmbh & Co. Kg | Control device for a wind turbine |
CN101818724A (en) * | 2010-05-11 | 2010-09-01 | 无锡风电设计研究院有限公司 | Intelligent blade of wind driven generator |
UA99876C2 (en) * | 2011-05-19 | 2012-10-10 | Мита-Текник А/С | Method for control of orientation of wind turbine and wind turbine |
US8231344B2 (en) * | 2011-07-05 | 2012-07-31 | General Electric Company | Methods for controlling the amplitude modulation of noise generated by wind turbines |
ITRM20110516A1 (en) * | 2011-09-30 | 2013-03-31 | Enel Green Power Spa | HORIZONTAL AXIS WIND GENERATOR WITH SECONDARY WIND ROTOR |
DK2653721T3 (en) * | 2012-04-17 | 2020-10-12 | Siemens Gamesa Renewable Energy As | Wind turbine measurement system |
CN102900609B (en) * | 2012-10-26 | 2014-08-20 | 华北电力大学 | Giant magnetostrictive flap wind turbine blade vibration reduction system and control method |
US9335229B2 (en) * | 2013-03-15 | 2016-05-10 | Frontier Wind, Llc | Load distribution estimation |
US9316205B2 (en) | 2013-03-15 | 2016-04-19 | Frontier Wind, Llc | Determining loads using various sensor locations |
US9488157B2 (en) * | 2013-03-15 | 2016-11-08 | Frontier Wind, Llc | Blade balancing |
KR101656478B1 (en) * | 2014-09-25 | 2016-09-22 | 삼성중공업 주식회사 | Wind turbine generator |
CN105863952A (en) * | 2016-05-16 | 2016-08-17 | 北京玻钢院复合材料有限公司 | Flow guide hood, impeller assembly and wind power generation device |
EP4001641A1 (en) * | 2020-11-17 | 2022-05-25 | Siemens Gamesa Renewable Energy A/S | Method and sensor module for determining a direction of a wind flow at a blade of a wind turbine |
AT526977A1 (en) * | 2023-02-15 | 2024-09-15 | Windpuls Gmbh | Device for measuring wind flow conditions |
-
1980
- 1980-01-10 DE DE19803000678 patent/DE3000678A1/en not_active Withdrawn
- 1980-11-14 SE SE8008017A patent/SE8008017L/en not_active Application Discontinuation
- 1980-12-10 FI FI803851A patent/FI803851L/en not_active Application Discontinuation
- 1980-12-10 DK DK526780A patent/DK526780A/en not_active Application Discontinuation
- 1980-12-10 NO NO803721A patent/NO803721L/en unknown
- 1980-12-12 GB GB8039853A patent/GB2067247B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2067247A (en) | 1981-07-22 |
FI803851L (en) | 1981-07-11 |
SE8008017L (en) | 1981-07-11 |
DK526780A (en) | 1981-07-11 |
GB2067247B (en) | 1983-11-02 |
DE3000678A1 (en) | 1981-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO803721L (en) | DEVICE FOR DETERMINING THE WIND ENERGY FOR REGULATION OF WIND POWER. | |
US10669987B2 (en) | Methods of operating a wind turbine | |
US6619918B1 (en) | Method of controlling the operation of a wind turbine and wind turbine for use in said method | |
AU2007303956B2 (en) | Wind turbine with blade pitch control to compensate for wind shear and wind misalignment | |
US8239071B2 (en) | Method for controlling at least one adjustment mechanism of a wind turbine, a wind turbine and a wind park | |
ES2556829T3 (en) | Control method for a wind turbine | |
US4247253A (en) | Vertical axis wind turbine | |
DK2306003T3 (en) | System and methods for controlling a wind turbine | |
US20150276786A1 (en) | Yaw and pitch angles | |
EP2757253B1 (en) | Method of starting a wind turbine | |
CN107709766B (en) | Method of calibrating a load sensor of a wind turbine | |
NO329219B1 (en) | Installation of energy flow collectors such as a wind farm, as well as a method for operating the same | |
US20130045098A1 (en) | Cyclic Pitch Control System for Wind Turbine Blades | |
NO323071B1 (en) | Wind power plants | |
RU2721466C1 (en) | Method of controlling wind-driven power plant and corresponding wind-driven power plant | |
EP2757252A1 (en) | Method of operating a wind turbine | |
TWI618854B (en) | Wind turbine and method for operating a wind turbine | |
WO2019150805A1 (en) | Wind power generation device and wind power generation system | |
WO2016159927A1 (en) | Control for a wind turbine | |
EP2927483A1 (en) | Noise control in wind turbines | |
WO2009033484A2 (en) | A method of controlling a wind turbine, a wind turbine and use of a method | |
WO2019187553A1 (en) | Wind power generation system | |
DK179022B1 (en) | Method and system of controlling wind turbines in a wind turbine farm | |
Raben et al. | The ELKRAFT 1MW Wind Turbine: Results from the Test Program |