NO330105B1 - Seabed heat exchanger - Google Patents
Seabed heat exchanger Download PDFInfo
- Publication number
- NO330105B1 NO330105B1 NO20082957A NO20082957A NO330105B1 NO 330105 B1 NO330105 B1 NO 330105B1 NO 20082957 A NO20082957 A NO 20082957A NO 20082957 A NO20082957 A NO 20082957A NO 330105 B1 NO330105 B1 NO 330105B1
- Authority
- NO
- Norway
- Prior art keywords
- seawater
- pump
- fluid
- heat exchanger
- seabed
- Prior art date
Links
- 239000013535 sea water Substances 0.000 claims abstract description 49
- 239000012530 fluid Substances 0.000 claims abstract description 40
- 238000012546 transfer Methods 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 238000000034 method Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/0206—Heat exchangers immersed in a large body of liquid
- F28D1/022—Heat exchangers immersed in a large body of liquid for immersion in a natural body of water, e.g. marine radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/05316—Assemblies of conduits connected to common headers, e.g. core type radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/08—Fluid driving means, e.g. pumps, fans
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Havbunns konveksjonsvarmeveksler (1) for kjøling eller varming av et hydrokarbon holdig fluid i et havbunnsmiljø. Varmevekslen (1) omfatter en konveksjonsseksjon omfattende et fluidførende rør (7) innrettet for varmeoverføring mellom det førte fluidet på en side av rørveggen og det omgivende vannet på den motsatte siden av rørveggen. Konveksjonsseksjonen er innkapslet av en innkapsling (9) omfattende et sjøvannsinnløp (11) og et sjøvannsutløp (13). Varmeveksleren (1) er forsynt med middel (15), i form av en pumpe, for styrt gjennomstrømning av omgivende sjøvann fra sjøvannsinnløpet (11) til sjøvannsutløpet (13). r 15Seabed convection heat exchanger (1) for cooling or heating a hydrocarbonaceous fluid in a seabed environment. The heat exchanger (1) comprises a convection section comprising a fluid-carrying pipe (7) arranged for heat transfer between the conveyed fluid on one side of the pipe wall and the surrounding water on the opposite side of the pipe wall. The convection section is encapsulated by an enclosure (9) comprising a seawater inlet (11) and a seawater outlet (13). The heat exchanger (1) is provided with a means (15), in the form of a pump, for controlled flow of surrounding seawater from the seawater inlet (11) to the seawater outlet (13). r 15
Description
Havbunns konveksjonsvarmeveksler Seabed convection heat exchanger
Den foreliggende oppfinnelsen vedrører havbunnsprosessering av hydrokarbonholdige fluider. Spesielt vedrører oppfinnelsen en konveksjonsvarmeveksler som er tilpasset til å fungere i et legeme av omgivende vann, ved bruk av vannet som kjøle- eller varmemedium. The present invention relates to seabed processing of hydrocarbon-containing fluids. In particular, the invention relates to a convection heat exchanger which is adapted to function in a body of surrounding water, using the water as a cooling or heating medium.
Bakgrunn Background
Ved havbunns fluidprosessering er det kjent å bruke det omgivende sjøvannet for å kjøle eller varme fluid som strømmer i et rør. Det er kjent praksis å innrette røret med et flertall bøyninger eller å kombinere et flertall slike rør i en parallellkonfigurasjon for å oppnå et stort kontaktareal mellom røret og vannet, og således en høy varmeoverføringsrate mellom fluidet i røret (-ene) og det omgivende vannet. Dersom det finnes en strømning i sjøvannet vil varmeoverføringsraten øke. Men selv ved ingen strømning vil røret og det innvendige fluidet blir kjølt eller oppvarmet i avhengighet av temperaturforskjellen mellom fluidet og det omgivende sjøvannet. In seabed fluid processing, it is known to use the surrounding seawater to cool or heat fluid flowing in a pipe. It is known practice to arrange the pipe with a plurality of bends or to combine a plurality of such pipes in a parallel configuration in order to achieve a large contact area between the pipe and the water, and thus a high heat transfer rate between the fluid in the pipe(s) and the surrounding water. If there is a current in the seawater, the heat transfer rate will increase. But even with no flow, the pipe and the internal fluid will be cooled or heated depending on the temperature difference between the fluid and the surrounding seawater.
Patentpublikasjon GB 1,117,844 beskriver en varmeveksler anordnet i en oljefylt tank. Rørene til varmeveksleren, gjennom hvilke fluidet som skal varmes eller kjøles strømmer, er nedsenket i olje. Følgelig er en varmeoverføring tilveiebrakt mellom fluidet i rørene og den omgivende oljen. Videre, rørene er anordnet inne i et ytre rørformet skall. Skallet har en helning som tilveiebringer en heverteffekt, slik at den omgivende oljen strømmer gjennom skallet. Patent publication GB 1,117,844 describes a heat exchanger arranged in an oil-filled tank. The tubes of the heat exchanger, through which the fluid to be heated or cooled flows, are immersed in oil. Consequently, a heat transfer is provided between the fluid in the pipes and the surrounding oil. Furthermore, the tubes are arranged inside an outer tubular shell. The shell has a slope which provides a siphoning effect so that the surrounding oil flows through the shell.
I prosesser hvor strømningsraten, temperaturen eller karakteristika til fluidet som strømmer gjennom røret varierer, kan oppsettet beskrevet ovenfor involvere utfordringer for operatøren, ettersom han ikke kan styre eksakt kjøle-eller varmerate. Varierende temperaturer til det omgivende vannet kan også gi korresponderende utfordringer. In processes where the flow rate, temperature or characteristics of the fluid flowing through the pipe vary, the setup described above may involve challenges for the operator, as he cannot control the exact cooling or heating rate. Varying temperatures of the surrounding water can also present corresponding challenges.
Mulige løsninger for slike utfordringer kan være å styre strømningsraten til fluidet i røret(-ene) eller å styre fluidet gjennom lengre eller kortere lengder av røret ved styring av hensiktsmessig innrettete ventiler. For eksempel kan konveksjonsseksjonen bestå av et flertall parallelle grener. Dersom en høy varmeoverføringsrate behøves kan flere grener tilkobles. Tilsvarende, dersom Possible solutions for such challenges can be to control the flow rate of the fluid in the pipe(s) or to control the fluid through longer or shorter lengths of the pipe by controlling appropriately arranged valves. For example, the convection section may consist of a plurality of parallel branches. If a high heat transfer rate is required, several branches can be connected. Similarly, if
mindre varmeoverføring behøves kan operatøren frakoble én eller flere grener. less heat transfer is needed, the operator can disconnect one or more branches.
Hver av de ovenfor nevnte løsningene fremviser imidlertid en ulempe. Avhengig av den spesifikke aktuelle prosessen, kan styring av strømningsraten til fluidet i mange tilfeller ikke gjøres fordi det øker kompleksitet, kostnader og reduserer pålitelighet. Å dele strømningen inn i et spesifikt antall grener ved bruk av ventiler vil begrense varmeoverføringsraten i et begrenset antall mulige varmeoverføringsrater, avhengig av antallet og design/størrelsen på hver gren. However, each of the above-mentioned solutions presents a disadvantage. Depending on the specific process at hand, controlling the flow rate of the fluid in many cases cannot be done because it increases complexity, costs and reduces reliability. Dividing the flow into a specific number of branches using valves will limit the heat transfer rate into a limited number of possible heat transfer rates, depending on the number and design/size of each branch.
Det er følgelig et behov for en havbunns konveksjonsvarmeveksler som overvinner de ovenfor nevnte ulempene. En slik varmeveksler er tilveiebrakt med havbunns konveksjonsvarmeveksleren i samsvar med den foreliggende oppfinnelsen, som angitt i den karakteriserende delen av patentkrav 1. Consequently, there is a need for a seabed convection heat exchanger that overcomes the above-mentioned disadvantages. Such a heat exchanger is provided with the seabed convection heat exchanger in accordance with the present invention, as stated in the characterizing part of patent claim 1.
Oppfinnelsen The invention
I samsvar med oppfinnelsen er det tilveiebrakt en havbunns konveksjonsvarmeveksler for kjøling eller oppvarming av et hydrokarboninneholdende fluid i et havbunnsmiljø. Varmeveksleren omfatter en konveksjonsseksjon med et fluidførende rør tilpasset for varmeoverføring mellom det førte fluidet på den ene siden av rørveggen og det omgivende vannet på den motsatte siden av rørveggen. Konveksjonsseksjonen er omgitt av en innkapsling som omfatter et sjøvanninnløp og et sjøvannutløp. Videre er varmeveksleren forsynt med middel, i form av en pumpe, for styrt gjennomstrømning av det omgivende sjøvannet fra sjøvannsinnløpet til sjøvannsutløpet. Med en slik havbunns konveksjonsvarmeveksler er en operatør i stand til å styre varmeoverføringsraten mellom fluidet som strømmer gjennom konveksjonsseksjonen og sjøvannet. Dette kan gjøres for eksempel ved å variere pumpehastigheten eller ved å styre en strupeventil for å styre gjennomstrømningen av sjøvann. In accordance with the invention, a seabed convection heat exchanger is provided for cooling or heating a hydrocarbon-containing fluid in a seabed environment. The heat exchanger comprises a convection section with a fluid-conducting pipe adapted for heat transfer between the conducted fluid on one side of the pipe wall and the surrounding water on the opposite side of the pipe wall. The convection section is surrounded by an enclosure comprising a seawater inlet and a seawater outlet. Furthermore, the heat exchanger is provided with means, in the form of a pump, for controlled flow of the surrounding seawater from the seawater inlet to the seawater outlet. With such a seabed convection heat exchanger, an operator is able to control the heat transfer rate between the fluid flowing through the convection section and the seawater. This can be done, for example, by varying the pump speed or by controlling a throttle valve to control the flow of seawater.
Varmeveksleren i samsvar med oppfinnelsen er fortrinnsvis hydrostatisk utjevnet idet det er fluidforbindelse mellom det utvendige og det innvendige av innkapslingen, fortrinnsvis gjennom nevnte innløp og/eller utløp. Følgelig, den kan brukes på et hvilket som helst ønskelig dyp uten å måtte dimensjonere innkapslingen i henhold til det hydrostatiske trykket i det omgivende sjøvannet. The heat exchanger according to the invention is preferably hydrostatically equalized in that there is a fluid connection between the outside and the inside of the enclosure, preferably through said inlet and/or outlet. Consequently, it can be used at any desired depth without having to size the enclosure according to the hydrostatic pressure of the surrounding seawater.
I en spesielt fordelaktig utførelsesform er en pumpe anordnet i en pumpeenhet med en pumpemotor anordnet i et motorkammer (23) som er isolert fra omgivelsene og tilpasset til å være hydrostatisk utjevnet med omgivende sjøvann. Motoren blir så fortrinnsvis innrettet til å drive pumpen med en aksel gjennom en mekanisk tetning, og på slik måte at anordningen av pumpeenheten danner et trykkfall over nevnte mekaniske tetning fra motorkammeret til pumpen når pumpen går, idet pumpen er innrettet til å dannet et trykkfall fra dets utløp til dets innløp. Dette fordelaktige opplegget resulterer i at sjøvann ikke penetrerer inn i motorkammeret gjennom tetningen, og bidrar således til lengre driftstid for pumpemotoren. In a particularly advantageous embodiment, a pump is arranged in a pump unit with a pump motor arranged in a motor chamber (23) which is isolated from the surroundings and adapted to be hydrostatically equalized with surrounding seawater. The motor is then preferably arranged to drive the pump with a shaft through a mechanical seal, and in such a way that the arrangement of the pump unit forms a pressure drop across said mechanical seal from the motor chamber to the pump when the pump is running, the pump being arranged to form a pressure drop from its outlet to its inlet. This advantageous arrangement results in seawater not penetrating into the motor chamber through the seal, and thus contributes to a longer operating time for the pump motor.
I en fordelaktig utførelsesform fremviser varmeveksleren i samsvar med oppfinnelsen fortrinnsvis et fluidinnløp og et fluidutløp for fluidet som skal kjøles eller varmes, hvorved middelet for gjennomstrømning av vann er styrt av en styringsanordning som i det minste blir styrt på grunnlag av temperaturen til fluidet som strømmer i fluidutløpet og/eller -innløpet, som målt av temperatursensor(er). Styringen av middelet for gjennomstrømning av sjøvann kan da være automatisk styrt. In an advantageous embodiment, the heat exchanger in accordance with the invention preferably exhibits a fluid inlet and a fluid outlet for the fluid to be cooled or heated, whereby the means for the flow of water is controlled by a control device which is at least controlled on the basis of the temperature of the fluid flowing in the fluid outlet and/or inlet, as measured by temperature sensor(s). The control of the means for the flow of seawater can then be automatically controlled.
Eksempel på utførelsesform Example of embodiment
I det følgende gis et eksempel på en utførelsesform for havbunns konveksjonsvarmeveksleren i samsvar med den foreliggende oppfinnelsen, med henvisning til tegningene, der Fig. 1 er et skjematisk riss av en havbunns konveksjonsvarmeveksler; og Fig. 2 er et skjematisk riss av en foretrukket anordning av pumpen og In the following, an example of an embodiment of the seabed convection heat exchanger in accordance with the present invention is given, with reference to the drawings, where Fig. 1 is a schematic diagram of a seabed convection heat exchanger; and Fig. 2 is a schematic view of a preferred arrangement of the pump and
pumpemotoren. the pump motor.
Fig. 1 illustrerer en havbunns konveksjonsvarmeveksler 1 i samsvar med den foreliggende oppfinnelsen. Den er anordnet på havbunnen i tilknytning til et havbunns prosessanlegg. Formålet med varmeveksleren 1 er å oppnå eksakt kontroll på prosessutløpstemperaturen til en hydrokarbonholdig gass for å unngå kondensering eller dannelse av hydrater. Fig. 1 illustrates a seabed convection heat exchanger 1 in accordance with the present invention. It is arranged on the seabed in connection with a seabed processing facility. The purpose of the heat exchanger 1 is to achieve exact control of the process outlet temperature of a hydrocarbon-containing gas to avoid condensation or the formation of hydrates.
Varmeveksleren 1 fremviser et høytrykks-innløp 3 for prosessfluid og et høytrykks-utløp 5. Varmeveksleren 1 fremviser videre en konveksjonsseksjon omfattende et flertall varmeoverføringsrør 7. Varmeoverføringsrørene 7 er i direkte kontakt med sjøvannet. The heat exchanger 1 exhibits a high-pressure inlet 3 for process fluid and a high-pressure outlet 5. The heat exchanger 1 further exhibits a convection section comprising a plurality of heat transfer tubes 7. The heat transfer tubes 7 are in direct contact with the seawater.
Konveksjonsseksjonen til varmeveksleren 1 er innkapslet med en innkapsling 9. Innkapslingen har et sjøvannsinnløp 11 og et sjøvannsutløp 13. I tilknytning til sjøvannsutløpet 13 er det anordnet en pumpeenhet 15 som kan fjernstyres. The convection section of the heat exchanger 1 is enclosed with an enclosure 9. The enclosure has a seawater inlet 11 and a seawater outlet 13. In connection with the seawater outlet 13, a pump unit 15 is arranged which can be controlled remotely.
Pumpeenheten 15 er beskrevet i nærmere detalj nedenfor under henvisning til The pump unit 15 is described in more detail below with reference to
Fig. 2. Det henvises fortsatt til Fig. 1. Pumpen 15 er innrettet til å pumpe omgivende sjøvann inn i innkapslingen 9 gjennom sjøvanninnløpet 11 og ut av innkapslingen 9 gjennom sjøvannsutløpet 13. Som beskrevet i nærmere detalj nedenfor er pumpeenheten 15 fordelaktig anordnet ved nedstrømssiden av vannstrømningen, i tilknytning til sjøvannsutløpet 13. Fig. 2. Reference is still made to Fig. 1. The pump 15 is designed to pump ambient seawater into the enclosure 9 through the seawater inlet 11 and out of the enclosure 9 through the seawater outlet 13. As described in more detail below, the pump unit 15 is advantageously arranged on the downstream side of the water flow, in connection with the seawater outlet 13.
Sammenstillingen av pumpeenheten 15 og innkapslingen 19 som innkapsler konveksjonsseksjonen resulterer i en eksakt prosesskontroll av temperaturen til prosessfluidet som strømmer ut av varmeveksleren 1 gjennom prosessfluidutløpet 5. Idet den styrbare pumpeenheten 15 strømmer omgivende sjøvann gjennom varmeveksleren 1, vil styringen av pumpeenheten 15 direkte styre varmeoverføringsraten til varmeveksleren. I tillegg, dersom ingen konveksjon eller varmeoverføring er ønsket, kan pumpeenheten 15 stanses og idet sjøvannet inne i innkapslingen 9 nærmer seg temperaturen til prosessfluidet, vil praktisk talt ingen varmeoverføring finne sted. For å redusere varmeoverføringsraten gjennom innkapslingen 9 mellom sjøvannet inne i og utenfor innkapslingen 9, kan man anordne ytterligere innkapslinger eller isolerte innkapslinger (ikke vist). The assembly of the pump unit 15 and the casing 19 which encloses the convection section results in an exact process control of the temperature of the process fluid flowing out of the heat exchanger 1 through the process fluid outlet 5. As the controllable pump unit 15 flows ambient seawater through the heat exchanger 1, the control of the pump unit 15 will directly control the heat transfer rate to the heat exchanger. In addition, if no convection or heat transfer is desired, the pump unit 15 can be stopped and as the seawater inside the enclosure 9 approaches the temperature of the process fluid, practically no heat transfer will take place. In order to reduce the heat transfer rate through the enclosure 9 between the seawater inside and outside the enclosure 9, additional enclosures or insulated enclosures (not shown) can be arranged.
Trykkdifferansen mellom det indre av innkapslingen og det omgivende sjøvannet behøver fordelaktig ikke å være mye for å strømme en ønsket mengde sjøvann gjennom varmeveksleren 1. Følgelig behøves kun en liten pumpeenhet 15. The pressure difference between the interior of the enclosure and the surrounding seawater advantageously does not need to be large in order to flow a desired amount of seawater through the heat exchanger 1. Consequently, only a small pump unit 15 is needed.
En temperatursensor (ikke vist) er fortrinnsvis anordnet for å måle fluidtemperaturen til prosessfluidet som strømmer ut av prosessfluidutløpet 5. For å overvåke driften av varmeveksleren 1 kan man fortrinnsvis også anordne en temperatursensor (ikke vist) i tilknytning til prosessfluidinnløpet 3. A temperature sensor (not shown) is preferably arranged to measure the fluid temperature of the process fluid flowing out of the process fluid outlet 5. To monitor the operation of the heat exchanger 1, a temperature sensor (not shown) can preferably also be arranged in connection with the process fluid inlet 3.
Fig. 2 viser pumpeenheten 15 i nærmere detalj. Pumpeenheten 15 omfatter en pumpemotor 17 og en pumpe 19 anordnet i et pumpeenhetshus 21. Pumpemotoren 17 er anordnet i et motorkammer 23 som er isolert fra omgivelsene, men som er hydrostatisk utjevnet med trykket til det omgivende sjøvannet (fortrinnsvis med en membranløsning). Motoren 17 driver pumpen 21 med en aksel som løper gjennom en mekanisk tetning 25. Som nevnt ovenfor er pumpeenheten 15 fordelaktig anordnet på nedstrømssiden av sjøvannsstrømningen. Et slikt opplegg resulterer i et trykkfall over den mekaniske tetningen 25 fra motorsiden til pumpesiden. Følgelig vil ikke sjøvann penetrere inn i motorkammeret 23 langsmed den mekaniske tetningen 25. Fig. 2 shows the pump unit 15 in more detail. The pump unit 15 comprises a pump motor 17 and a pump 19 arranged in a pump unit housing 21. The pump motor 17 is arranged in a motor chamber 23 which is isolated from the surroundings, but which is hydrostatically equalized with the pressure of the surrounding seawater (preferably with a membrane solution). The motor 17 drives the pump 21 with a shaft that runs through a mechanical seal 25. As mentioned above, the pump unit 15 is advantageously arranged on the downstream side of the seawater flow. Such an arrangement results in a pressure drop across the mechanical seal 25 from the motor side to the pump side. Consequently, seawater will not penetrate into the engine chamber 23 along the mechanical seal 25.
I en annen utførelsesform av den foreliggende oppfinnelsen er middelet for å tilveiebringe strømningen av sjøvann gjennom varmeveksleren ikke en vanlig pumpe. I stedet er varmeveksleren anordnet på slik måte at sjøvann vil strømme gjennom den i en vertikal retning. På grunn av varmeoverføringen i konveksjonsseksjonen vil temperaturforskjellen mellom sjøvannet inne i og utenfor innkapslingen resultere i forskjellig egenvekt for vannet. Denne forskjellen vil bevirke vertikal strømning av sjøvann. Strømningen kan for eksempel styres av en ventil ved innløpet eller utløpet av sjøvann. In another embodiment of the present invention, the means for providing the flow of seawater through the heat exchanger is not an ordinary pump. Instead, the heat exchanger is arranged in such a way that seawater will flow through it in a vertical direction. Due to the heat transfer in the convection section, the temperature difference between the seawater inside and outside the enclosure will result in a different specific gravity for the water. This difference will cause vertical flow of seawater. The flow can, for example, be controlled by a valve at the inlet or outlet of seawater.
Claims (5)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20082957A NO330105B1 (en) | 2008-07-03 | 2008-07-03 | Seabed heat exchanger |
AU2009266499A AU2009266499A1 (en) | 2008-07-03 | 2009-07-02 | Subsea heat exchanger |
RU2011102019/06A RU2011102019A (en) | 2008-07-03 | 2009-07-02 | UNDERWATER HEAT EXCHANGER |
GB1020916.1A GB2473563B (en) | 2008-07-03 | 2009-07-02 | Subsea heat exchanger |
PCT/NO2009/000248 WO2010002272A1 (en) | 2008-07-03 | 2009-07-02 | Subsea heat exchanger |
CA2729416A CA2729416A1 (en) | 2008-07-03 | 2009-07-02 | Subsea heat exchanger |
US12/997,675 US20110100589A1 (en) | 2008-07-03 | 2009-07-02 | Subsea heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20082957A NO330105B1 (en) | 2008-07-03 | 2008-07-03 | Seabed heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20082957L NO20082957L (en) | 2010-01-04 |
NO330105B1 true NO330105B1 (en) | 2011-02-21 |
Family
ID=41466163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20082957A NO330105B1 (en) | 2008-07-03 | 2008-07-03 | Seabed heat exchanger |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110100589A1 (en) |
AU (1) | AU2009266499A1 (en) |
CA (1) | CA2729416A1 (en) |
GB (1) | GB2473563B (en) |
NO (1) | NO330105B1 (en) |
RU (1) | RU2011102019A (en) |
WO (1) | WO2010002272A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012141599A1 (en) * | 2011-04-15 | 2012-10-18 | Apply Nemo As | A subsea cooling apparatus, and a separately retrievable submersible pump module for a submerged heat exchanger |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9127897B2 (en) | 2010-12-30 | 2015-09-08 | Kellogg Brown & Root Llc | Submersed heat exchanger |
US8978769B2 (en) * | 2011-05-12 | 2015-03-17 | Richard John Moore | Offshore hydrocarbon cooling system |
CA2840842C (en) | 2011-07-01 | 2018-11-20 | Statoil Petroleum As | A method and system for lowering the water dew point of a hydrocarbon fluid stream subsea |
AU2011372733B2 (en) | 2011-07-01 | 2017-07-06 | Statoil Petroleum As | Multi-phase distribution system, sub sea heat exchanger and a method of temperature control for hydrocarbons |
WO2013004277A1 (en) | 2011-07-01 | 2013-01-10 | Statoil Petroleum As | Subsea heat exchanger and method for temperature control |
MY170916A (en) | 2012-01-03 | 2019-09-16 | Exxonmobil Upstream Res Co | Method for production of hydrocarbons using caverns |
NO339892B1 (en) * | 2012-02-20 | 2017-02-13 | Aker Solutions As | Seabed heat exchanger and cleaning tools |
NO335391B1 (en) * | 2012-06-14 | 2014-12-08 | Aker Subsea As | Use of well stream heat exchanger for flow protection |
SG11201505706SA (en) | 2013-02-22 | 2015-09-29 | Exxonmobil Upstream Res Co | Subwater heat exchanger |
WO2015018945A2 (en) | 2013-08-09 | 2015-02-12 | Linde Aktiengesellschaft | Subsea well stream treatment |
WO2015026237A1 (en) * | 2013-08-20 | 2015-02-26 | Aker Subsea As | Subsea heat exchanger, cleaning tool and appurtenant method |
US20150153074A1 (en) * | 2013-12-03 | 2015-06-04 | General Electric Company | System and method for controlling temperature of a working fluid |
RU2572495C2 (en) * | 2014-06-02 | 2016-01-10 | Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Device for heat bleed from surface waterway |
KR101634436B1 (en) * | 2014-07-04 | 2016-06-30 | 김기동 | Mechanical draft cooling system for process based on the submerged type heat exchanger in seawater or fresh water |
US10578128B2 (en) * | 2014-09-18 | 2020-03-03 | General Electric Company | Fluid processing system |
WO2016081052A1 (en) | 2014-11-17 | 2016-05-26 | Exxonmobil Upstream Research Company | Liquid collection system |
FR3081908B1 (en) * | 2018-06-05 | 2021-04-30 | Saipem Sa | UNDERWATER INSTALLATION AND PROCESS FOR COOLING A FLUID IN A HEAT EXCHANGER BY CIRCULATION OF SEA WATER. |
RU2729566C1 (en) * | 2019-12-19 | 2020-08-07 | Общество с ограниченной ответственностью "Газпром 335" | Device for underwater cooling of flow of hydrocarbon mixture and method of underwater cooling of flow of hydrocarbon mixture |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3251401A (en) * | 1964-05-11 | 1966-05-17 | M B Gardner Co Inc | Heat exchanger |
GB1117844A (en) * | 1966-03-01 | 1968-06-26 | M B Gardner Company Inc | Heat exchanger |
US4464909A (en) * | 1983-03-21 | 1984-08-14 | Skandinavisk Installationssamordning Ab (Sisam Ab) | Method of recovering thermal energy by heat pump from sea water and comparable water masses |
US4872502A (en) * | 1987-09-25 | 1989-10-10 | The Falk Company | Air cooling of enclosed gear drives |
US6142215A (en) * | 1998-08-14 | 2000-11-07 | Edg, Incorporated | Passive, thermocycling column heat-exchanger system |
US6599091B2 (en) * | 2001-05-29 | 2003-07-29 | James Nagle | Modular submersible pump |
US7520720B2 (en) * | 2004-07-28 | 2009-04-21 | Sta-Rite Industries, Llc | Pump |
-
2008
- 2008-07-03 NO NO20082957A patent/NO330105B1/en active IP Right Review Request
-
2009
- 2009-07-02 US US12/997,675 patent/US20110100589A1/en not_active Abandoned
- 2009-07-02 GB GB1020916.1A patent/GB2473563B/en active Active
- 2009-07-02 RU RU2011102019/06A patent/RU2011102019A/en unknown
- 2009-07-02 CA CA2729416A patent/CA2729416A1/en not_active Abandoned
- 2009-07-02 AU AU2009266499A patent/AU2009266499A1/en not_active Abandoned
- 2009-07-02 WO PCT/NO2009/000248 patent/WO2010002272A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012141599A1 (en) * | 2011-04-15 | 2012-10-18 | Apply Nemo As | A subsea cooling apparatus, and a separately retrievable submersible pump module for a submerged heat exchanger |
US9719698B2 (en) | 2011-04-15 | 2017-08-01 | Kongsberg Oil & Gas Technologies As | Subsea cooling apparatus, and a separately retrievable submersible pump module for a submerged heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
GB2473563A (en) | 2011-03-16 |
CA2729416A1 (en) | 2010-01-07 |
WO2010002272A1 (en) | 2010-01-07 |
RU2011102019A (en) | 2012-08-10 |
GB201020916D0 (en) | 2011-01-26 |
AU2009266499A1 (en) | 2010-01-07 |
NO20082957L (en) | 2010-01-04 |
US20110100589A1 (en) | 2011-05-05 |
GB2473563B (en) | 2012-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO330105B1 (en) | Seabed heat exchanger | |
US11026344B2 (en) | Fluid conditioner for cooling fluid in a tank holding computers and/or other electronics equipment, a cooling system incorporating such a fluid conditioner, and a method of cooling fluid in a tank holding computers and/or other electronics equipment | |
NO334268B1 (en) | An underwater cooling device | |
NO326079B1 (en) | Process for treating and separating a multi-phase well flow mixture. | |
NO340844B1 (en) | Device for heat transport | |
GB2506798A (en) | Subsea heat exchanger and method for temperature control | |
NO330192B1 (en) | Fluid Pump System. | |
NO20110348A1 (en) | UNDERWATER ENGINE ¿TURBOMASKIN | |
RU2011102323A (en) | METHOD AND SYSTEM FOR REFRIGERATING THE PRODUCED HYDROCARBON FLUID FOR TRANSPORT | |
NO337174B1 (en) | Heat exchanger tubes and method using the same | |
JP7025061B2 (en) | Self-drainage mount head for transmitter | |
NO335450B1 (en) | Seabed compression device | |
CN206055958U (en) | A kind of head tank cooling system | |
CN104215099A (en) | Heat exchanger | |
RU169322U1 (en) | THERMAL INSULATING CASE TO INCREASE THE RELIABILITY OF SECURITY VALVES | |
NO339227B1 (en) | Heat recovery from well flow | |
US450771A (en) | lindley | |
US1494180A (en) | Gas and oil well | |
NO20140561A1 (en) | Subsea Cooler | |
CN105698151A (en) | Controllable low-temperature mercury vapor source for ultrahigh vacuum system | |
NO333061B1 (en) | An underwater dress | |
SU717503A1 (en) | Refrigeration plant | |
CN205001048U (en) | Heat dissipation structure of engine | |
CN114111027A (en) | Water heater | |
RU2014105063A (en) | METHOD FOR COOLING OIL IN A GAS-PUMPING UNIT AND HEAT EXCHANGER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
Filing an opposition |
Opponent name: FMC KONGSBERG SUBSEA AS, POSTBOKS 1012 Effective date: 20111121 Opponent name: APPLY NEMO AS, POSTBOKS 150, LYSAKER, 1325, N Effective date: 20111121 |
||
D25 | Change according to b1 publication after opposition (par. 25 patents act) |
Effective date: 20110221 |