[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

NO20150196L - Method for detecting and / or identifying adeno-associated virus (AAV) sequences and isolating new sequences thus identified. - Google Patents

Method for detecting and / or identifying adeno-associated virus (AAV) sequences and isolating new sequences thus identified.

Info

Publication number
NO20150196L
NO20150196L NO20150196A NO20150196A NO20150196L NO 20150196 L NO20150196 L NO 20150196L NO 20150196 A NO20150196 A NO 20150196A NO 20150196 A NO20150196 A NO 20150196A NO 20150196 L NO20150196 L NO 20150196L
Authority
NO
Norway
Prior art keywords
aav
seq
sequences
sequence
aav2
Prior art date
Application number
NO20150196A
Other languages
Norwegian (no)
Other versions
NO338362B1 (en
Inventor
Guangping Gao
Mauricio Alvira
James Wilson
Original Assignee
Univ Pennsylvania
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27502639&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO20150196(L) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Publication of NO20150196L publication Critical patent/NO20150196L/en
Application filed by Univ Pennsylvania filed Critical Univ Pennsylvania
Publication of NO338362B1 publication Critical patent/NO338362B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/015Parvoviridae, e.g. feline panleukopenia virus, human parvovirus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4846Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/864Parvoviral vectors, e.g. parvovirus, densovirus
    • C12N15/8645Adeno-associated virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21022Coagulation factor IXa (3.4.21.22)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material
    • C12N2750/14152Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14161Methods of inactivation or attenuation
    • C12N2750/14162Methods of inactivation or attenuation by genetic engineering
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14171Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/48Vector systems having a special element relevant for transcription regulating transport or export of RNA, e.g. RRE, PRE, WPRE, CTE
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/80Vector systems having a special element relevant for transcription from vertebrates
    • C12N2830/85Vector systems having a special element relevant for transcription from vertebrates mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/80Vector systems having a special element relevant for transcription from vertebrates
    • C12N2830/90Vector systems having a special element relevant for transcription from vertebrates avian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)

Abstract

Det beskrives en fremgangsmåte for detektering og isolering av AAV sekvenser i en prøve av DNA, oppnådd fra vev eller celler. Det beskrives videre AAV sekvenser som er identifisert ved denne metode samt vektorer som er konstruert ved bruk av disse sekvenser.A method for detecting and isolating AAV sequences in a sample of DNA obtained from tissues or cells is described. Further described are AAV sequences identified by this method as well as vectors constructed using these sequences.

Description

OPPFINNELSENS BAKGRUNNBACKGROUND OF THE INVENTION

Adeno-assosiert virus (AAV), et medlem av Parvovirusfamilien, er en liten, ikke-innpakket, ikosaedrisk virus med enkelttrådede lineære DNA genomer på 4,7 kilobaser (kb) til 6 kb. AAV er tilskrevet genusen Dependovirus fordi virusen ble oppdaget som en kontaminant i rensede adenovirusforråd. AAV livscyklusen inkluderer en latent fase med hvilken AAV genomer, etter infeksjon, blir setespesifikt integrert i vertskromoso-mer, og en infektiøs fase der, etter enten adenovirus- eller herpes simplex virus infeksjon, de integrerte genomer deretter reddes, replikeres og pakkes i infektiøse vimser. Egenskapene når det gjelder ikke-patogenisitet, bredt verksspektrum når det gjelder infektivitet inkluderer ikke-delende celler, og potensiell, setespesifikk kromosomal integrering, gjør AAV til et attraktivt verktøy for overføring av gener. Adeno-associated virus (AAV), a member of the Parvovirus family, is a small, non-enveloped, icosahedral virus with single-stranded linear DNA genomes of 4.7 kilobases (kb) to 6 kb. AAV is assigned to the genus Dependovirus because the virus was discovered as a contaminant in purified adenovirus stocks. The AAV life cycle includes a latent phase in which AAV genomes, after infection, become site-specifically integrated into host chromosomes, and an infectious phase in which, after either adenovirus or herpes simplex virus infection, the integrated genomes are then rescued, replicated and packaged into infectious vims . The properties of non-pathogenicity, broad spectrum of infectivity including non-dividing cells, and potential site-specific chromosomal integration make AAV an attractive tool for gene transfer.

Nylige studier antyder at AAV vektorer kan være den foretrukne vehikel for genterapi. Til i dag er det isolert 6 forskjellige serotyper av AAVer fra humane eller ikke-humane primater (NHP) og disse er godtkarakterisert. Blant disse er human serotype 2 den førs-te AAV som ble utviklet som en genoverføringsvektor; den er senere utstrakt brukt for effektive genoverføringsforsøk i forskjellige målvev og dyremodeller. Kliniske prøver av forsøksapplikasjon av AAV2 baserte vektorer mot visse humansykdomsmodeller er i forløp og inkluderer sykdommer som systisk fibrose og hemofili B. Recent studies suggest that AAV vectors may be the vehicle of choice for gene therapy. To date, 6 different serotypes of AAVs have been isolated from human or non-human primates (NHP) and these are well characterized. Among these, human serotype 2 is the first AAV to be developed as a gene transfer vector; it has subsequently been extensively used for efficient gene transfer experiments in various target tissues and animal models. Clinical trials of experimental application of AAV2-based vectors against certain human disease models are in progress and include diseases such as cystic fibrosis and haemophilia B.

Ønsket er å tilveiebringe AAV-baserte konstrukter for genavlevering. The desire is to provide AAV-based constructs for gene delivery.

OPPSUMMERING AV OPPFINNELSENSUMMARY OF THE INVENTION

I ett aspekt angår foreliggende oppfinnelse en ny metode for å detektere og å identifisere AAV sekvenser fra cellulære DNA'er av forskjellige human- og ikke-human primat (NHP) vev ved bruk av bioinformatikkanalyser, PCR basert genforsterkning og klo-ningsteknologi, basert på arten av latens og integrering av AAVer i fravær av hjelpevi-ruskoinfeksjon. In one aspect, the present invention relates to a new method for detecting and identifying AAV sequences from cellular DNAs of various human and non-human primate (NHP) tissues using bioinformatics analyses, PCR-based gene amplification and cloning technology, based on the nature of latency and integration of AAVs in the absence of helper virus ruscoinfection.

I et ytterligere aspekt tilveiebringer foreliggende oppfinnelse metoder for isolering av nye detekterte AAV sekvenser ved bruk av den ovenfor beskrevne metode ifølge oppfinnelsen. Oppfinnelsen omfatter videre metoder for generering av vektorer basert på disse nye AAV serotyper for serologi og genoverføringsstudier kun basert på tilgjenge-lighet av capsidgensekvenser og strukturen for rep/cap genskjøter. In a further aspect, the present invention provides methods for isolating newly detected AAV sequences using the above-described method according to the invention. The invention further includes methods for generating vectors based on these new AAV serotypes for serology and gene transfer studies based only on the availability of capsid gene sequences and the structure of rep/cap gene splices.

I nok et aspekt tilveiebringer foreliggende oppfinnelse en ny fremgangsmåte for å gjen-nomføre studier i forbindelse med serologj, epidemiologi, biofordeling og transmi-sjonsmåte ved bruk av reagenser ifølge oppfinnelsen som inkluderer generiske sett av primere/prober og kvantitativ real tids PCR. In yet another aspect, the present invention provides a new method for carrying out studies in connection with serology, epidemiology, biodistribution and mode of transmission using reagents according to the invention which include generic sets of primers/probes and quantitative real-time PCR.

I nok et aspekt tilveiebringer oppfinnelsen en fremgangsmåte for å isolere komplette og infektiøse genomer av nyere AAV serotyper fra cellulær DNA og forskjellige opprinnelser ved bruk av RACE og andre molekylære teknikker. In yet another aspect, the invention provides a method for isolating complete and infectious genomes of recent AAV serotypes from cellular DNA and diverse origins using RACE and other molecular techniques.

I nok et aspekt tilveiebringer oppfinnelsen en fremgangsmåte for å komme frem til nye serotyper av AAV genomer fra human- og NHP cellelinjer ved bruk av adenovirushjelpere av forskjellige opprinnelser. In yet another aspect, the invention provides a method for arriving at new serotypes of AAV genomes from human and NHP cell lines using adenovirus helpers of different origins.

I nok et aspekt tilveiebringer oppfinnelsen nye AAV serotyper, vektorer inneholdende disse og metoder for bruk av disse. In yet another aspect, the invention provides new AAV serotypes, vectors containing these and methods for using them.

Disse og andre aspekter ifølge oppfinnelsen vil fremgå av den følgende detaljerte beskrivelse. These and other aspects according to the invention will appear from the following detailed description.

KORT BESKRIVELSE AV FIGURENEBRIEF DESCRIPTION OF THE FIGURES

Figurene IA til 1AAAR tilveiebringer en innretning av nukleinsyresekvensen som koder minst cap proteinene for AAV serotypene. Full-lengdesekvensene inkludert ITRene, rep området og capsid området tilveiebringes for nye AAV serotyper 7 [SEQ ID nr. 1], og for tidligere publiserte AAV1 [SEQ IN Nr. 6], AAV2 [SEQ ID nr. 7]; og AAV3 [SEQ ID nr. 8]. Nye AAV serotyper AAV8 [SEQ ID nr. 4] og AAV9 [SEQ ID nr. 5] er gjenstand for samtidig inngitte søknader. De andre nye kloner ifølge oppfinnelsen som tilveiebringes i denne innretning inkluderer: 42-2 [SEQ ID nr. 9], 42-8 [SEQ ID Figures 1A to 1AAAR provide an arrangement of the nucleic acid sequence encoding at least the cap proteins for the AAV serotypes. The full-length sequences including the ITRs, the rep region and the capsid region are provided for new AAV serotypes 7 [SEQ ID No. 1], and for previously published AAV1 [SEQ IN No. 6], AAV2 [SEQ ID NO: 7]; and AAV3 [SEQ ID NO: 8]. New AAV serotypes AAV8 [SEQ ID no. 4] and AAV9 [SEQ ID no. 5] are the subject of simultaneously submitted applications. The other novel clones of the invention provided in this facility include: 42-2 [SEQ ID No. 9], 42-8 [SEQ ID

nr. 27], 42-15 [SEQ ID nr. 28], 42-5b [SEQ ID nr. 29], 42-lb [SEQ ID nr. 30]; 42-13 [SEQ ID nr. 31], 42-3a [SEQ ID nr. 32], 42-4 [SEQ ID nr. 33], 42-5a [SEQ ID nr. 34], 42-10 [SEQ ID nr. 35], 42-3b [SEQ ID nr. 36], 42-11 [SEQ ID nr. 37], 42-6b [SEQ ID nr. 38], 43-1 [SEQ ID nr. 39], 43-5 [SEQ ID nr. 40], 43-12 [SEQ ID nr. 41], 43-20 [SEQ ID nr. 42], 43-21 [SEQ ID nr. 43], 43-23 [SEQ ID nr. 44], 43-25 [SEQ ID nr. 45], 44.1 [SEQ ID nr. 47], 44.5 [SEQ ID nr. 47], 223.10 [SEQ ID nr. 48], 223.2 [SEQ ID nr. 49], 223.4 [SEQ ID nr. 50], 223.5 [SEQ ID nr.51], 223.6 [SEQ ID nr. 52], 223.7 [SEQ ID nr. 53], A3.4 [SEQ ID nr. 54], A3.5 [SEQ ID nr. 55], A3.7 [SEQ ID nr. 56], No. 27], 42-15 [SEQ ID No. 28], 42-5b [SEQ ID No. 29], 42-lb [SEQ ID No. 30]; 42-13 [SEQ ID No. 31], 42-3a [SEQ ID No. 32], 42-4 [SEQ ID No. 33], 42-5a [SEQ ID No. 34], 42-10 [SEQ ID No. 35], 42-3b [SEQ ID No. 36], 42-11 [SEQ ID No. 37], 42-6b [SEQ ID No. 38], 43-1 [SEQ ID No. 39], 43 -5 [SEQ ID No. 40], 43-12 [SEQ ID No. 41], 43-20 [SEQ ID No. 42], 43-21 [SEQ ID No. 43], 43-23 [SEQ ID No. .44], 43-25 [SEQ ID No. 45], 44.1 [SEQ ID No. 47], 44.5 [SEQ ID No. 47], 223.10 [SEQ ID No. 48], 223.2 [SEQ ID No. 49] , 223.4 [SEQ ID No. 50], 223.5 [SEQ ID No. 51], 223.6 [SEQ ID No. 52], 223.7 [SEQ ID No. 53], A3.4 [SEQ ID No. 54], A3. 5 [SEQ ID No. 55], A3.7 [SEQ ID No. 56],

A3.3 [SEQ ID nr. 57], 42.12 [SEQ ID nr. 58], 44.2 [SEQ ID nr. 59]. Nukleotidsekven-sene av signaturområdene av AAV10 [SEQ ID nr. 117], AAV11 [SEQ ID nr. 118] og AAV12 [SEQ ID nr. 119] er tilveiebragt i denne figur. Kritiske landemerker i strukture-ne av AAV genomene vises. Gap påvises ved punkter. 3' ITR'en av AAV1 [SEQ ID nr. 6] vises i den samme konfigurasjon som i de publiserte sekvenser. TRS representerer termaloppløsningssetet. Merk at AAV7 er den eneste AAV som er rapportert som bru-ker GTG som initieringskodon for VP3. A3.3 [SEQ ID No. 57], 42.12 [SEQ ID No. 58], 44.2 [SEQ ID No. 59]. The nucleotide sequences of the signature regions of AAV10 [SEQ ID No. 117], AAV11 [SEQ ID No. 118] and AAV12 [SEQ ID No. 119] are provided in this figure. Critical landmarks in the structure of the AAV genomes are shown. Gaps are indicated by points. The 3' ITR of AAV1 [SEQ ID No. 6] is shown in the same configuration as in the published sequences. TRS represents the thermal resolution seat. Note that AAV7 is the only AAV reported to use GTG as the initiation codon for VP3.

Figurene 2A til 2F er innretninger av aminosyresekvensene av proteinene av vpl capsid proteinene av tidligere publiserte AAV serotyper 1 [SEQ ID nr. 64], AAV2 [SEQ ID nr. 70], AAV3 [SEQ ID nr. 71], AAV4 [SEQ ID nr. 63], AAV5 [SEQ ID nr. 114] og Figures 2A to 2F are alignments of the amino acid sequences of the proteins of the vpl capsid proteins of previously published AAV serotypes 1 [SEQ ID No. 64], AAV2 [SEQ ID No. 70], AAV3 [SEQ ID No. 71], AAV4 [SEQ ID No. 63], AAV5 [SEQ ID No. 114] and

AAV6 [SEQ ID nr. 65] og nye AAV sekvenser ifølge oppfinnelsen, inkludert: Cl [SEQ ID nr. 60], C2 [SEQ ID nr. 61], C5 [SEQ ID nr. 62], A3-3 [SEQ ID nr. 66], A3-7 [SEQ ID nr. 67], A3-4 [SEQ ID nr. 68], A3-5 [SEQ ID nr. 69], 3.3b [SEQ ID nr. 62], 223.4 [SEQ ID nr. 73], 223-5 [SEQ ID nr. 74], 223-10 [SEQ ID nr. 75], 223-2 [SEQ ID nr. 76], 223-7 [SEQ ID nr. 77], 223-6 [SEQ ID nr. 78], 44-1 [SEQ ID nr. 79], 44-5 [SEQ ID nr. 80], 44-2 [SEQ ID nr. 81], 42-15 [SEQ ID nr. 84], 42-8 [SEQ ID nr. 85], 42-13 [SEQ ID nr. 86], 42-3A [SEQ ID nr. 87], 42-4 [SEQ ID nr. 88], 42-5A [SEQ ID nr. 89], 42-1B [SEQ ID nr. 90], 42-5B [SEQ ID nr. 91], 43-1 [SEQ ID nr. 92], 43-12 [SEQ ID nr. 93], 43-5 [SEQ ID nr. 94], 43-21 [SEQ ID nr. 96], 43-25 [SEQ ID nr. 97], 43-20 [SEQ ID nr. 99], 24.1 [SEQ ID nr. 101], 42.2 [SEQ ID nr. 102], 7.2 [SEQ ID nr. 103], 27.3 [SEQ ID nr. 104], 16.3 [SEQ ID nr. 105], 42.10 [SEQ ID nr. 106], 42-3B [SEQ ID nr. 107], 42-11 [SEQ ID nr. 108], Fl [SEQ ID nr. 109], 5F [SEQ ID nr. 110], F3 [SEQ ID nr. 111], 42-6B [SEQ ID nr. 112], 42-12 [SEQ ID nr. 113]. AAV6 [SEQ ID No. 65] and novel AAV sequences according to the invention, including: Cl [SEQ ID No. 60], C2 [SEQ ID No. 61], C5 [SEQ ID No. 62], A3-3 [SEQ ID No. 66], A3-7 [SEQ ID No. 67], A3-4 [SEQ ID No. 68], A3-5 [SEQ ID No. 69], 3.3b [SEQ ID No. 62], 223.4 [ SEQ ID No. 73], 223-5 [SEQ ID No. 74], 223-10 [SEQ ID No. 75], 223-2 [SEQ ID No. 76], 223-7 [SEQ ID No. 77] , 223-6 [SEQ ID No. 78], 44-1 [SEQ ID No. 79], 44-5 [SEQ ID No. 80], 44-2 [SEQ ID No. 81], 42-15 [SEQ ID No. 84], 42-8 [SEQ ID No. 85], 42-13 [SEQ ID No. 86], 42-3A [SEQ ID No. 87], 42-4 [SEQ ID No. 88], 42-5A [SEQ ID No. 89], 42-1B [SEQ ID No. 90], 42-5B [SEQ ID No. 91], 43-1 [SEQ ID No. 92], 43-12 [SEQ ID No. 93], 43-5 [SEQ ID No. 94], 43-21 [SEQ ID No. 96], 43-25 [SEQ ID No. 97], 43-20 [SEQ ID No. 99], 24.1 [SEQ ID No. 101], 42.2 [SEQ ID No. 102], 7.2 [SEQ ID No. 103], 27.3 [SEQ ID No. 104], 16.3 [SEQ ID No. 105], 42.10 [SEQ ID No. 106], 42-3B [SEQ ID No. 107], 42-11 [SEQ ID No. 108], Fl [SEQ ID No. 109], 5F [SEQ ID No. 110], F3 [S EQ ID No. 111], 42-6B [SEQ ID No. 112], 42-12 [SEQ ID No. 113].

Nye serotyper AAV8 [SEQ ID nr. 95] og AAV9 [SEQ ID nr. 100] er gjenstand for samtidig inngitte søknader. New serotypes AAV8 [SEQ ID No. 95] and AAV9 [SEQ ID No. 100] are the subject of concurrently filed applications.

Figurene 3 A til 3C gir aminosyresekvensen av AAV7 rep proteinene [SEQ ID nr. 3]. Figures 3A to 3C provide the amino acid sequence of the AAV7 rep proteins [SEQ ID No. 3].

DETALJERT BESKRIVELSE AV OPPFINNELSENDETAILED DESCRIPTION OF THE INVENTION

Ifølge oppfinnelsen har foreliggende oppfinnere funnet en metode som trekker fordel av evnen hos adenoassosiert virus (AAV) å penetrere nukleus og, i fravær av en hjelpevi-rusko-infeksjon, å integrere inn i cellulær DNA og etablere en latent infeksjon. Denne metode benytter en polymerasekjedereaksjon (PCR)-basert strategi for detektering, identifisering og/eller isolering av sekvenser av AAVer fra DNA'er fra vev av human og ikke-human primatopprinnelse så vel som for andre kilder. Fortrinnsvis er denne metode også egnet for detektering, identifisering og/eller isolering av andre integrerte, virale og ikke-virale sekvenser, som beskrevet nedenfor. According to the invention, the present inventors have found a method that takes advantage of the ability of adeno-associated virus (AAV) to penetrate the nucleus and, in the absence of a helper virus co-infection, to integrate into cellular DNA and establish a latent infection. This method uses a polymerase chain reaction (PCR)-based strategy for the detection, identification and/or isolation of sequences of AAVs from DNAs from tissues of human and non-human primate origin as well as from other sources. Preferably, this method is also suitable for detecting, identifying and/or isolating other integrated, viral and non-viral sequences, as described below.

Oppfinnelsen tilveiebringer videre nukleinsyresekvenser som er identifisert i henhold til oppfinnelsens fremgangsmåte. En slik adenoassosiert virus er av en ny serotype, her kalt serotype 7 (AAV7). Andre, nye adenoassosierte virus serotyper som her tilveiebringes inkluderer også AAV 10, AAV11 og AAV12. Ytterligere andre AAV serotyper som er identifisert ifølge oppfinnelsens metoder tilveiebringes i foreliggende beskrivelse, det vises til figurene og sekvenslistingen som er en del av beskrivelsen. The invention further provides nucleic acid sequences which have been identified according to the method of the invention. One such adeno-associated virus is of a new serotype, here called serotype 7 (AAV7). Other novel adeno-associated virus serotypes provided herein also include AAV 10, AAV11 and AAV12. Further other AAV serotypes which have been identified according to the methods of the invention are provided in the present description, reference is made to the figures and the sequence listing which are part of the description.

Det tilveiebringes videre fragmenter av disse AAV sekvenser. Blant spesielt ønskede AAV fragmenter er cap proteinene inkludert vi, vp2, vp3, de hypervariable områder, rep proteinene inkludert rep 78, rep 68, rep 52 og rep 40, og sekvensene som koder disse proteiner. Hvert av disse fragmenter kan lett benyttes i forskjellige vektorsystemer og vertsceller. Slike fragmenter kan benyttes alene, i kombinasjon med andre AAV sekvenser eller -fragmenter, eller i kombinasjon med elementer fra andre AAV- eller ik-ke-AAV virale sekvenser. I en spesielt ønskelig utførelsesform inneholder en vektor AAV cap- og/eller rep sekvensene ifølge oppfinnelsen. Further fragments of these AAV sequences are provided. Among particularly desired AAV fragments are the cap proteins including vi, vp2, vp3, the hypervariable regions, the rep proteins including rep 78, rep 68, rep 52 and rep 40, and the sequences encoding these proteins. Each of these fragments can easily be used in different vector systems and host cells. Such fragments can be used alone, in combination with other AAV sequences or fragments, or in combination with elements from other AAV or non-AAV viral sequences. In a particularly desirable embodiment, a vector contains the AAV cap and/or rep sequences according to the invention.

Som beskrevet her blir innretning gjennomført ved bruk av en hvilken som helst av et antall ålment eller kommersielt tilgjengelige "Multiple Sequence Alignment Programs" som "Clustal W", tilgjengelig via Web Servere på internet. Alternativt blir vektor NTI utiliteter også benyttet. Det finnes også et antall algoritmer som er velkjente i teknikken som kan benyttes for å måle nukleotidsekvensidentitet inkludert de som inneholdes i programmene som beskrevet ovenfor. Som et annet eksempel kan polynukleotidsekven-ser sammenlignes ved bruk av Fasta, et program i GCG Versjon 6.1. Fasta tilveiebringer innretninger og prosent sekvensidentitet for områdene med best overlapping mellom spørsmåls- og svarsekvensene. For eksempel kan prosent sekvensidentitet mellom nukleinsyresekvenser bestemmes ved bruk av Fasta med dens default parametre (en ordstør-relse på 6 og NOPAM faktoren for bedømmelsesmatrisen) slik den tilveiebringes i GCG Versjon 6.1, hvortil det vises når det gjelder detaljer. Tilsvarende programmer er tilgjengelige for aminosyresekvenser, for eksempel "Clustal X" programmet. Generelt kan et hvilket som helst av disse programmer være brukbare som default settinger selv om fagmannen på området kan endre disse etter behov. Alternativt kan fagmannen på området benytte andre algoritme- eller maskinprogrammer som gir minst det identitets-eller innretningsnivå som tilveiebringes av nevnte algoritmer og programmer. Uttrykket "vesentlig homologi" eller "vesentlig likhet" indikerer at, under henvisning til en nukleinsyre eller et fragment derav, og ved optimal innretning med egnede nukleotid-innskudd eller delesjoner med andre nukleinsyrer (eller dens kompiementærtråd), er det nukleotidsekvensidentitet i minst rundt 95 til 99 % av de innrettede sekvenser. Fortrinnsvis er homologien over full-lengde sekvens, eller en åpen leseramme derav, eller et annet egnet fragment som er minst 15 nukleotider i lengde. Eksempler på egnede fragmenter er beskrevet her. As described herein, alignment is performed using any of a number of commonly or commercially available "Multiple Sequence Alignment Programs" such as "Clustal W", available via Web Servers on the internet. Alternatively, vector NTI utilities are also used. There are also a number of algorithms well known in the art that can be used to measure nucleotide sequence identity including those contained in the programs described above. As another example, polynucleotide sequences can be compared using Fasta, a program in GCG Version 6.1. Fasta provides means and percent sequence identity for the regions of best overlap between the question and answer sequences. For example, percent sequence identity between nucleic acid sequences can be determined using Fasta with its default parameters (a word size of 6 and the NOPAM factor for the evaluation matrix) as provided in GCG Version 6.1, to which reference is made for details. Similar programs are available for amino acid sequences, for example the "Clustal X" program. In general, any of these programs can be used as default settings, although the person skilled in the art can change these as needed. Alternatively, the person skilled in the field can use other algorithms or machine programs that provide at least the level of identity or facility provided by said algorithms and programs. The term "substantial homology" or "substantial similarity" indicates that, with reference to a nucleic acid or fragment thereof, and upon optimal alignment with suitable nucleotide insertions or deletions with other nucleic acids (or its complementary strand), there is nucleotide sequence identity of at least about 95 to 99% of the aligned sequences. Preferably, the homology is over the full-length sequence, or an open reading frame thereof, or another suitable fragment that is at least 15 nucleotides in length. Examples of suitable fragments are described here.

Uttrykket "vesentlig homologi" eller "vesentlig likhet" indikerer at, under henvisning til aminosyrer eller fragmenter derav og når det er optimalt innrettet med egnede aminosy-reinnskudd eller delesjoner med andre aminosyrer, er det aminosyresekvensidentitet på minst rundt 95 til 99 % av de innrettede sekvenser. Fortrinnsvis er homologien over full-lengde sekvenser eller et protein derav, for eksempel et cap protein, et rep protein eller et fragment derav med minst 8 aminosyrer eller helst minst 15 aminosyrer i lengde. Eksempler på egnede fragmenter er beskrevet her. The term "substantial homology" or "substantial similarity" indicates that, with reference to amino acids or fragments thereof and when optimally aligned with suitable amino acid insertions or deletions with other amino acids, there is amino acid sequence identity of at least about 95 to 99% of the aligned sequences. Preferably, the homology is over full-length sequences or a protein thereof, for example a cap protein, a rep protein or a fragment thereof of at least 8 amino acids or preferably at least 15 amino acids in length. Examples of suitable fragments are described here.

Med uttrykket "meget bevart" eller lignende menes minst 80 % identitet, fortrinnsvis minst 90 % identitet og aller helst mer enn 97 % identitet. Identitet bestemmes lett av fagmannen på området ved å benytte algoritmer og dataprogrammer som kjent av fagmannen. The term "highly preserved" or similar means at least 80% identity, preferably at least 90% identity and most preferably more than 97% identity. Identity is easily determined by the person skilled in the art by using algorithms and computer programs known to the person skilled in the art.

Utrykket "prosent sekvensidentitet" eller "identisk" i konteksten nukleinsyresekvenser henviser til rester i de to sekvenser som er de samme når de innrettes for maksimal overensstemmelse. Lengden av sekvensidentitetsammenligningen kan være over hele lengden av genomet, hele lengden av en genkodende sekvens, eller et fragment på minst 500 til 5000 nukleotider, hvis ønskelig. Imidlertid kan identitet blant mindre fragmenter, for eksempel minst rundt 9 nukleotider, vanligvis minst rundt 20 til 24 nukleotider, minst rundt 28 til 32 nukleotider eller minst rundt 36 eller flere nukleotider, også være ønskelig. På samme måte kan "prosent sekvensidentitet" lett bestemmes for aminosyresekvenser over hele lengden av et protein, eller et fragment derav. Hensiktsmessig er et fragment minst 8 aminosyrer i lengde og kan være opp til 700 aminosyrer. Eksempler på egnede fragmenter er beskrevet her. The term "percent sequence identity" or "identical" in the context of nucleic acid sequences refers to residues in the two sequences that are the same when aligned for maximum agreement. The length of the sequence identity comparison can be over the entire length of the genome, the entire length of a gene coding sequence, or a fragment of at least 500 to 5000 nucleotides, if desired. However, identity among smaller fragments, for example at least about 9 nucleotides, usually at least about 20 to 24 nucleotides, at least about 28 to 32 nucleotides, or at least about 36 or more nucleotides, may also be desirable. Likewise, "percent sequence identity" can be easily determined for amino acid sequences over the entire length of a protein, or a fragment thereof. Conveniently, a fragment is at least 8 amino acids in length and can be up to 700 amino acids. Examples of suitable fragments are described here.

AAV sekvensene og fragmentene derav er brukbare ved fremstilling av rAAV og er også brukbare som antisense avleveringsvektorer, genterapivektorer eller vaksinevekto-rer. Oppfinnelsen tilveiebringer videre nukleinsyremolekyler, genavleveringsvektorer og vertsceller som inneholder AAV sekvensene ifølge oppfinnelsen. The AAV sequences and fragments thereof are useful in the production of rAAV and are also useful as antisense delivery vectors, gene therapy vectors or vaccine vectors. The invention further provides nucleic acid molecules, gene delivery vectors and host cells containing the AAV sequences according to the invention.

Som beskrevet her er vektorene ifølge oppfinnelsen inneholdende AAV capsid proteinene ifølge oppfinnelsen spesielt godt egnet for anvendelse ved applikasjon der de nøyt-raliserende antistoffer reduserer effektivitetene av andre AAVserotyp baserte vektorer, så vel som andre virale vektorer. rAAV vektorene ifølge oppfinnelsen er spesielt fordel-aktige ved rAAV readministrering og repeat genterapi. As described here, the vectors according to the invention containing the AAV capsid proteins according to the invention are particularly well suited for use in applications where the neutralizing antibodies reduce the effectiveness of other AAV serotype-based vectors, as well as other viral vectors. The rAAV vectors according to the invention are particularly advantageous for rAAV re-administration and repeat gene therapy.

Disse og andre utførelsesformer og fordeler ifølge oppfinnelsen beskrives i større detalj nedenfor. These and other embodiments and advantages according to the invention are described in greater detail below.

Som benyttet i beskrivelsen og krav er uttrykkene "omfattende" og "inkludert" og deres varianter, inkluderende når det gjelder andre komponenter, elementer, integere, trinn og lignende. Omvendt er uttrykket "bestående av" og varianter derav ekskluderende for andre komponenter, elementer, integere, trinn og lignende. As used in the description and claims, the terms "comprehensive" and "including" and their variations are inclusive of other components, elements, integers, steps and the like. Conversely, the term "consisting of" and variants thereof are exclusive of other components, elements, integers, steps and the like.

I. Metoder ifølge oppfinnelsenI. Methods according to the invention

A. Detektering av sekvenser via molekylær kloningA. Detection of sequences via molecular cloning

I ett aspekt tilveiebringer oppfinnelsen en metode for å detektere og/eller identifisere store nukleinsyresekvenser i en prøve. Denne prøve er spesielt velegnet for detektering av virale sekvenser som er integrert i en celles kromosom, for eksempel adenoassosierte vimser (AAV) og retrovimser, blant andre. Beskrivelsen henviser til AAV som er ek-semplifisert her. Basert på denne informasjon vil fagmannen imidlertid lett kunne gjen-nomføre metodene ifølge oppfinnelsen på retro vimser [for eksempel felin leukemi vi-ms (FeLV), HTLVI og HTLVUI], og lentivirinae [for eksempel human immunodefekt vims (FflV), simian immunodefekt vims (SIV), felin immunodefekt vims (FIV), ekvin infektiøs anemi vims, og spumavirinal)], blant andre. Videre kan metoden ifølge oppfinnelsen også benyttes for detektering av andre virale og ikke-virale sekvenser, uansett om de er integrert eller ikke-integrert i genomet av vertscellen. In one aspect, the invention provides a method for detecting and/or identifying large nucleic acid sequences in a sample. This test is particularly suitable for the detection of viral sequences that are integrated into a cell's chromosome, for example adeno-associated viruses (AAV) and retroviruses, among others. The description refers to AAV, which is exemplified here. Based on this information, however, the person skilled in the art will easily be able to carry out the methods according to the invention on retro vims [for example feline leukemia vi-ms (FeLV), HTLVI and HTLVUI], and lentivirinae [for example human immunodeficient vims (FflV), simian immunodeficient vims (SIV), feline immunodeficiency virus (FIV), equine infectious anemia virus, and spumavirinal)], among others. Furthermore, the method according to the invention can also be used for the detection of other viral and non-viral sequences, regardless of whether they are integrated or not integrated into the genome of the host cell.

Som benyttet her er en prøve en hvilken som helst kilde inneholdende nukleinsyrer, for eksempel vev, vevkultur, celler, cellekultur og biologiske fluider inkludert, uten begrensning, urin og blod. Disse nukleinsyresekvenser kan være DNA eller RNA fra plasmider, naturlig DNA eller RNA fra en hvilken som helst kilde inkludert bakterier, gjær, vimser og høyere organismer som planter eller dyr. DNA eller RNA ekstraheres fra prøver ved et antall teknikker som er velkjente for fagmannen og som de som er beskrevet av Sambrook i "Molecular Cloning: A Laboratoray Manual" (New York: Cold Spring Harbor Laboratory). Opprinnelsen for prøven og den metode med hvilken nuk-leinsyrene oppnås for gjennomføring av metoden ifølge oppfinnelsen er ingen begrensning for denne. Eventuelt kan oppfinnelsens metoder gjennomføres direkte på kilden for DNA, eller på oppnådde nukleinsyrer (som for eksempel er ekstrahert) fra en kilde. As used herein, a sample is any source containing nucleic acids, such as tissue, tissue culture, cells, cell culture, and biological fluids including, without limitation, urine and blood. These nucleic acid sequences can be DNA or RNA from plasmids, natural DNA or RNA from any source including bacteria, yeast, fungi and higher organisms such as plants or animals. DNA or RNA is extracted from samples by a number of techniques well known to those skilled in the art and such as those described by Sambrook in "Molecular Cloning: A Laboratory Manual" (New York: Cold Spring Harbor Laboratory). The origin of the sample and the method by which the nucleic acids are obtained for carrying out the method according to the invention is not a limitation for this. Optionally, the methods of the invention can be carried out directly on the source of DNA, or on obtained nucleic acids (which have, for example, been extracted) from a source.

Fremgangsmåten ifølge oppfinnelsen involverer å underkaste en prøve inneholdende DNA en forsterkning via polymerasekjedereaksjon (PCR) ved bruk av et første sett primere som er spesifikke for et første område av dobbeltstrengede nukleinsyresekvenser for derved å oppnå forsterkede sekvenser. Som benytter her er hvert av "områdene" bestemt på forhånd basert på innretningen av nukleinsyresekvensen av minst to serotyper (for eksempel AAV) eller stammer (for eksempel lentiviruser) og der hvert av områdene består av sekvenser med en 5' ende som er meget konservert, en midtre som fortrinnsvis men ikke nødvendigvis er variabel, og en 3' ende som er sterkt konservert idet hver av disse er konservert eller variable relativt sekvensene av de minst to innrettede AAV serotyper. Fortrinnsvis er 5- og/eller 3-enden sterkt konservert i forhold til minst 9 og aller helst minst 18 basepar (bp). Imidlertid kan en eller begge av sekvensene ved 5- eller 3-enden være konservert over mer enn 18 bp, mer enn 25 bp, mer enn 30 bp eller mer enn 50 bp ved 5-enden. Med henblikk på det variable området er det intet krav for konserverte sekvenser, disse sekvenser kan være relativt konservert eller kan ha mindre enn 90, 80 eller 70 % identitet blant de innrettede serotyper eller stammer. The method according to the invention involves subjecting a sample containing DNA to amplification via polymerase chain reaction (PCR) using a first set of primers specific for a first region of double-stranded nucleic acid sequences in order to thereby obtain amplified sequences. As used herein, each of the "regions" is determined in advance based on the alignment of the nucleic acid sequence of at least two serotypes (for example, AAV) or strains (for example, lentiviruses) and where each of the regions consists of sequences with a 5' end that is highly conserved , a middle tree which is preferably but not necessarily variable, and a 3' end which is highly conserved in that each of these is conserved or variable relative to the sequences of the at least two aligned AAV serotypes. Preferably, the 5- and/or 3-end is highly conserved in relation to at least 9 and most preferably at least 18 base pairs (bp). However, one or both of the sequences at the 5- or 3-end may be conserved over more than 18 bp, more than 25 bp, more than 30 bp, or more than 50 bp at the 5-end. With regard to the variable region, there is no requirement for conserved sequences, these sequences may be relatively conserved or may have less than 90, 80 or 70% identity among the aligned serotypes or strains.

Hvert av områdene kan spenne over 100 bp til rundt 10 kilobase par i lengde. Imidlertid er det spesielt ønskelig at et av områdene er et "signaturområde", det vil si et område som er tilstrekkelig unikt til positivt å identifisere den forsterkede sekvens som en fra målkilden. I en utførelsesform har for eksempel det første området en lengde på rundt 250 bp og er tilstrekkelig unikt blant kjente AAV sekvenser til at det positivt identifise-rer det forsterkede området til å være av AAV opprinnelse. Videre er de variable sekvenser innen området tilstrekkelig unike til at de kan benyttes til å identifisere serotypen hvorfra den forsterkede sekvens stammer. Når de først er forsterket (og derved detektert) kan sekvensene identifiseres ved å gjennomføre konvensjonell restriksjonsdi-gestering og sammenligning med restriksjonsregj streite mønstere for dette området i en hvilken som helst av AAV1, AAV2, AAV3, AAV4, AAV5, eller AAV6, eller den til AAV7, AAV10, AAV11, AAV12 eller en hvilken som helst annen ny serotype som er identifisert ifølge oppfinnelsen, som er bestemt på forhånd og tilveiebragt ved oppfinnelsen. Each of the regions can span over 100 bp to around 10 kilobase pairs in length. However, it is particularly desirable that one of the regions be a "signature region", that is, a region sufficiently unique to positively identify the amplified sequence as one from the target source. In one embodiment, for example, the first region has a length of around 250 bp and is sufficiently unique among known AAV sequences that it positively identifies the amplified region as being of AAV origin. Furthermore, the variable sequences within the area are sufficiently unique that they can be used to identify the serotype from which the amplified sequence originates. Once amplified (and thereby detected), the sequences can be identified by performing conventional restriction digestion and comparison with the restriction patterns for this region in any of AAV1, AAV2, AAV3, AAV4, AAV5, or AAV6, or the to AAV7, AAV10, AAV11, AAV12 or any other new serotype identified according to the invention, which is determined in advance and provided by the invention.

Gitt de rettledninger som finnes her kan fagmannen på området lett identifisere slike områder blant andre, integrerte vimser for å tillate lett detektering og identifisering av disse sekvenser. Deretter kan et optimalt sett av generiske primere lokalisert i de sterkt konserverte ender konstmeres og testes for effektiv forsterkning av de valgte områder fra prøvene. Dette aspekt ved oppfinnelsen kan lett tilpasses et diagnostisk sett for detektering av nærværet av målsekvensen (for eksempel AAV) og for å identifisere AAV serotypen, ved bmk av standarder som inkluderer restriksjonsmønstrene for AAV serotypene som beskrives her eller som isoleres ved bmk av de her beskrevne teknikker. For eksempel kan hurtig identifisering eller molekylær serotyping av PCR produkter gjen-nomføres ved digestering av PCR produktene og sammenligning av restriksjonsmøns-tre. Given the guidelines provided herein, one skilled in the art can easily identify such regions among other integrated features to allow easy detection and identification of these sequences. Then, an optimal set of generic primers located at the highly conserved ends can be constructed and tested for efficient amplification of the selected regions from the samples. This aspect of the invention can be easily adapted to a diagnostic kit for detecting the presence of the target sequence (for example AAV) and for identifying the AAV serotype, by bmk of standards that include the restriction patterns for the AAV serotypes described herein or that are isolated by bmk of those described herein techniques. For example, rapid identification or molecular serotyping of PCR products can be carried out by digesting the PCR products and comparing restriction patterns.

I en utførelsesform spenner således "signaturområdet" for AAV mndt bp 2800 til mndt 3200 av AAV1 [SEQ ID nr. 6] og tilsvarende basepar i AAV2, AAV3, AAV4, AAV5 og AAV6. Mer ønskelig er området cirka 250 bp, lokalisert innen bp 2886 til mndt 3143 bp av AAV1 [SEQ ID nr. 6] og tilsvarende basepar i AAV2 [SEQ ID nr. 7], AAV3 [SEQ ID nr. 8] og andre AAV serotyper, det henvises til figur 1. For å tillate hurtig detektering av AAV i prøven benyttes det primere som spesielt forsterker dette signaturområdet. Imidlertid er oppfinnelsen ikke begrenset til de nøyaktige sekvenser som er identifisert her for AAV signaturområdet da fagmannen lett kan endre området til å omfatte et kortere fragment eller større fragmenter av dette signaturområdet. Thus, in one embodiment, the "signature region" for AAV spans mnt bp 2800 to mnt 3200 of AAV1 [SEQ ID No. 6] and corresponding base pairs in AAV2, AAV3, AAV4, AAV5 and AAV6. More desirable is the region of approximately 250 bp, located within bp 2886 to mndt 3143 bp of AAV1 [SEQ ID No. 6] and corresponding base pairs in AAV2 [SEQ ID No. 7], AAV3 [SEQ ID No. 8] and other AAV serotypes , reference is made to figure 1. In order to allow rapid detection of AAV in the sample, primers are used that specifically amplify this signature region. However, the invention is not limited to the exact sequences identified here for the AAV signature region as the person skilled in the art can easily change the region to include a shorter fragment or larger fragments of this signature region.

PCR primerne genereres ved bmk av teknikker som er velkjente for fagmannen. Hvert av PCR primersettene består av en 5' primer og en 3' primer, se for eksempel Sambrook et al supra. Uttrykket "primer" henviser til et nukleotid som virker som et initierings-punkt for syntesen ved anbringelse under betingelser hvori synteser av et primerforleng-elsesprodukt som er komplementært til nukleinsyretråden, induseres. Primeren er fortrinnsvis enkelttrådet. Hvis imidlertid en dobbelttrådet primer benyttes behandles denne for å separere trådene før de benyttes for å fremstille forlengelsesproduktene. Primerne kan være mndt 15 til 25 eller flere nukleotider og er fortrinnsvis minst 18 nukleotider. For enkelte anvendelser benyttes det imidlertid kortere nukleotider, for eksempel 7 til 15 nukleotider. The PCR primers are generated by bmk by techniques well known to those skilled in the art. Each of the PCR primer sets consists of a 5' primer and a 3' primer, see for example Sambrook et al supra. The term "primer" refers to a nucleotide which acts as an initiation point for synthesis when placed under conditions in which synthesis of a primer extension product complementary to the nucleic acid strand is induced. The primer is preferably single-stranded. If, however, a double-stranded primer is used, this is treated to separate the strands before they are used to make the extension products. The primers can be between 15 and 25 or more nucleotides and are preferably at least 18 nucleotides. For some applications, however, shorter nucleotides are used, for example 7 to 15 nucleotides.

Primerne velges for å være tilstrekkelig komplementære til de forskjellige tråder av hver spesifikke sekvens som skal forsterkes for å hybridere med deres respektive tråder. Primersekvensen behøver derfor ikke å reflektere den nøyaktige sekvens av området som forsterkes. For eksempel kan et ikke-komplementært nukleotidfragment festes til 5- enden av primeren mens resten av primersekvensen er fullstendig komplementær til tråden. Alternativt kan ikke-komplementære baser eller lengre sekvenser intersperseres inn i primeren forutsatt at primersekvensen har tilstrekkelig komplementaritet med sekvensen i tråden som skal forsterkes til å hybridere med denne og danne et templat for syntese av forlengelsesproduktet av den andre primer. The primers are chosen to be sufficiently complementary to the different strands of each specific sequence to be amplified to hybridize with their respective strands. The primer sequence therefore does not need to reflect the exact sequence of the region being amplified. For example, a non-complementary nucleotide fragment can be attached to the 5-end of the primer while the rest of the primer sequence is fully complementary to the strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the primer provided that the primer sequence has sufficient complementarity with the sequence in the strand to be amplified to hybridize with it and form a template for synthesis of the extension product of the second primer.

PCR primerne for signaturområdet ifølge oppfinnelsen er basert på de sterkt konserverte sekvenser av to eller flere innrettede sekvenser (for eksempel to eller flere AAV serotyper). Primerne kan stemme overens med mindre enn nøyaktig identitet blant to eller flere innrettede AAV serotyper ved 5-enden eller i midten. Imidlertid tilsvarer sekvens ved 3-enden av primerne et område av to eller flere innrettede AAV serotyper hvori det er eksakt identitet over minst fem og fortrinnsvis over minst ni basepar, aller helst over minst 18 basepar ved 3-enden av primerne. Således består 3-enden av primerne av sekvenser med 100 % identitet til de innrettede sekvenser over minst fem nukleotider. Imidlertid kan man eventuelt benytte en, to eller flere degeneratnukleotider ved 3-enden av primeren. The PCR primers for the signature region according to the invention are based on the highly conserved sequences of two or more aligned sequences (for example two or more AAV serotypes). The primers may match with less than exact identity among two or more aligned AAV serotypes at the 5' end or in the middle. However, sequence at the 3-end of the primers corresponds to a region of two or more aligned AAV serotypes in which there is exact identity over at least five and preferably over at least nine base pairs, most preferably over at least 18 base pairs at the 3-end of the primers. Thus, the 3-end of the primers consists of sequences with 100% identity to the aligned sequences over at least five nucleotides. However, one, two or more degenerate nucleotides can optionally be used at the 3-end of the primer.

For eksempel ble primersettet for signaturområdet av AAV konstruert basert på et unikt område innen AAV capsidet som følger. 5' primerenden var basert på nt 2867-2891 av AAV2 [SEQ ID nr. 7], 5 -GGTAATTCCTCCGGAAATTGGCATT3'. Se figur 1.3' primerenden ble konstruert basert på nt 3096-3122 av AAV2 [SEQ ID nr. 7], 5-GACTCATCAACAACAACTGGGGATTC-3'. Imidlertid kan fagmannen lett konstruere primersettet basert på de tilsvarende områder av AAV1, AAV3, AAV4, AAV5, AAV6, eller basert på den formasjon som er gitt der, AAV7, AAAV10, AAV11, AAV12, eller en annen ny AAV ifølge oppfinnelsen. I tillegg kan ytterligere andre primersett lett konstrueres for å forsterke dette signaturområdet ved bruk av teknikker som er velkjente for fagmannen. For example, the primer set for the signature region of AAV was constructed based on a unique region within the AAV capsid as follows. The 5' primer end was based on nt 2867-2891 of AAV2 [SEQ ID No. 7], 5 -GGTAATTCCTCCGGAAATTGGCATT3'. See Figure 1.3' the primer end was constructed based on nt 3096-3122 of AAV2 [SEQ ID No. 7], 5-GACTCATCAACAACAACTGGGGATTC-3'. However, one skilled in the art can easily construct the primer set based on the corresponding regions of AAV1, AAV3, AAV4, AAV5, AAV6, or based on the formation provided therein, AAV7, AAAV10, AAV11, AAV12, or another new AAV according to the invention. In addition, additional other primer sets can be readily constructed to amplify this signature region using techniques well known to those skilled in the art.

B. Isolering av mål sekvenserB. Isolation of target sequences

Som beskrevet her tilveiebringer oppfinnelsen et første primersett som spesifikt forsterker signaturområdet av målsekvensen, for eksempel en AAV serotype, for å tillate detektering av målet. I en situasjon hvori ytterligere sekvenser er ønsket, hvis for eksempel en ny AAV serotype er identifisert, kan signaturområdet forlenges. Således kan oppfinnelsen videre benytte ett eller flere ytterligere primersett. As described herein, the invention provides a first primer set that specifically amplifies the signature region of the target sequence, for example an AAV serotype, to allow detection of the target. In a situation where additional sequences are desired, if for example a new AAV serotype is identified, the signature range can be extended. Thus, the invention can further use one or more additional primer sets.

Hensiktsmessig er disse primersett konstruert til å inkludere enten 5- eller 3-primeren av det første primersettet og en andre primer som er unik for primersettet slik at primersettet forsterker et område 5' eller 3'til signaturområdet som annellerer enten til 5-enden eller 3 -enden av signaturområdet. For eksempel består et første primersett av en 5' primer, Pl og en 3' primer P2 for å forsterke signaturområdet. For å forlenge signaturområdet ved dettes 3-ende består et andre primersett av primer Pl og en 3' primer P4 som forsterker signaturområdet og nabosekvenser nedstrøms signaturområdet. For å forlenge signaturområdet ved dettes 5-ende består et tredje primersett av en 5' primer, P5, og primeren 2 slik at signaturområdet og nabosekvenser oppstrøms signaturområdet forsterkes. Disse forlengelsestrinn gjentas (eller gjennomføres samtidig) etter behov eller ønske. Deretter blir produktene som stammer fra disse forsterkningstrinn fusert ved bruk av konvensjonelle trinn for å gi en isolert sekvens med ønsket lengde. Conveniently, these primer sets are designed to include either the 5' or 3' primer of the first primer set and a second primer unique to the primer set such that the primer set amplifies a region 5' or 3' to the signature region that anneals to either the 5' end or the 3 -end of the signature area. For example, a first primer set consists of a 5' primer, P1 and a 3' primer P2 to amplify the signature region. To extend the signature region at its 3 end, a second primer set consists of primer P1 and a 3' primer P4 which amplify the signature region and neighboring sequences downstream of the signature region. To extend the signature region at its 5 end, a third primer set consists of a 5' primer, P5, and primer 2 so that the signature region and neighboring sequences upstream of the signature region are amplified. These extension steps are repeated (or carried out simultaneously) as needed or desired. Then, the products resulting from these amplification steps are fused using conventional steps to yield an isolated sequence of the desired length.

Det andre og tredje primersett konstrueres som med primersettet for signaturområdet for å forsterke et område med sterk konservert sekvenser blant de innrettede sekvenser. The second and third primer sets are constructed as with the primer set for the signature region to amplify a region of highly conserved sequence among the aligned sequences.

Referanser hertil uttrykket "andre" eller "tredje" primersett er kun for diskusjon og uten hensyn til den rekkefølge med hvilken disse primere settes til reaksjonsblandingen, eller benyttes for forsterkning. Området som forsterkes ved det andre primersett velges slik at ved forsterkning annellerer det ved sin 5-ende til 3-enden av signaturområdet. På tilsvarende måte blir området som forsterkes av det tredje primersett valgt slik at ved forsterkning annellerer det ved sin 3-ende til 5-enden av signaturområdet. Ytterligere primersett kan konstrueres slik at områdene som de forsterker annellerer til enten 5-enden eller 3-enden av forlengelsesproduktene som dannes av det andre eller tredje primersett, eller av etterfølgende primersett. References herein to the term "second" or "third" primer sets are for discussion only and without regard to the order in which these primers are added to the reaction mixture, or used for amplification. The region amplified by the second primer set is chosen so that upon amplification it anneals at its 5' end to the 3' end of the signature region. In a similar way, the region amplified by the third primer set is chosen so that upon amplification it anneals at its 3-end to the 5-end of the signature region. Additional primer sets can be designed so that the regions they amplify anneal to either the 5' end or the 3' end of the extension products formed by the second or third primer set, or by subsequent primer sets.

Der for eksempel AAV er målsekvensen blir et første sett av primere (Pl og P2) benyttet for å forsterke signaturområdet fra prøven. I en ønsket utførelsesform er dette signaturområdet lokalisert inne i AAV capsidet. Et andre sett primere (Pl og P4) benyttes for å forlenge 3-enden av signaturområdet til en lokasjon i AAV sekvensen som er akkurat foran AAV 3'ITR, det vil si som gir et forlengelsesprodukt inneholdende hele 3-enden av AAV capsidet når man benytter signaturområdet som anker. I en utførelsesform tilsvarer P4 primeren nt 4435 til 4462 av AAV2 [SEQ ID nr. 7], og tilsvarende sekvenser i de andre AAV serotyper. Dette resulterer i forsterkning av et område på rundt 1,6 kb som inneholder 0,25 kb signaturområde. Et tredje sett primere (P3 og P2) benyttes for å forlenge 5-enden av signaturområdet til en lokasjon i AAV sekvensene som er i 3-enden av rep genene, det vil si som gir et forlengelsesprodukt inneholdende hele 5-enden av AAV capsidet når man benytter signaturområdet som anker. I en utførelses- form tilsvarer P3 primeren nt 1384 til 1409 av AAV2 [SEQ ID nr. 7] og tilsvarende sekvenser i andre AAV serotyper. Dette resulterer i forsterkning av et område på rundt 1,7 kb som inneholder 0,25 kb signaturområde. Eventuelt blir et fjerde sett av primere benyttet for ytterligere å forlenge forlengelsesproduktet inneholdende hele 5-enden av AAV capsidet til også å inkluder rep sekvensene. I en utførelsesform tilsvarer P5 nt 108 til 133 av AAV2 [SEQ ID nr. 7] og tilsvarende sekvenser i de andre AAV serotyper og benyttes i forbindelse med P2 primeren. Where, for example, AAV is the target sequence, a first set of primers (P1 and P2) are used to amplify the signature region from the sample. In a desired embodiment, this signature region is located inside the AAV capsid. A second set of primers (P1 and P4) are used to extend the 3-end of the signature region to a location in the AAV sequence that is just in front of the AAV 3'ITR, i.e. which gives an extension product containing the entire 3-end of the AAV capsid when uses the signature area as an anchor. In one embodiment, the P4 primer corresponds to nt 4435 to 4462 of AAV2 [SEQ ID No. 7], and corresponding sequences in the other AAV serotypes. This results in the amplification of a region of around 1.6 kb containing the 0.25 kb signature region. A third set of primers (P3 and P2) is used to extend the 5-end of the signature region to a location in the AAV sequences that is at the 3-end of the rep genes, i.e. which gives an extension product containing the entire 5-end of the AAV capsid when the signature area is used as an anchor. In one embodiment, the P3 primer corresponds to nt 1384 to 1409 of AAV2 [SEQ ID No. 7] and corresponding sequences in other AAV serotypes. This results in amplification of a region of about 1.7 kb containing the 0.25 kb signature region. Optionally, a fourth set of primers is used to further extend the extension product containing the entire 5-end of the AAV capsid to also include the rep sequences. In one embodiment, P5 corresponds to nt 108 to 133 of AAV2 [SEQ ID no. 7] and corresponding sequences in the other AAV serotypes and is used in conjunction with the P2 primer.

Etter fullføring av det ønskede antall forlengelsestrinn blir de forskjellige forlengelses-produkter fusert idet man gjør bruk av signaturområdet som anker eller markør for å konstruere en intakt sekvens. I det her gitte eksempel oppnås det AAV sekvenser som som et minimum inneholder et intakt AAV cap gen. Større sekvenser kan oppnås, avhengig av antall forl engel sestrinn som gjennomføres. After completion of the desired number of extension steps, the different extension products are fused using the signature region as an anchor or marker to construct an intact sequence. In the example given here, AAV sequences are obtained which as a minimum contain an intact AAV cap gene. Larger sequences can be achieved, depending on the number of relative steps that are carried out.

Hensiktsmessig blir forlengelsesproduktene satt sammen til en intakt AAV sekvens ved bruk av metoder som er velkjente for fagmannen. For eksempel kan forlengelsesproduktene digesteres med DraUI som spalter ved DraUI setet lokalisert i signaturområdet, for å gi restriksjonsfragmenter som re-ligeres for å gi produkter som (som et minimum) inneholder et intakt AAV cap gen. Imidlertid kan andre egnede teknikker for å sette sammen forlengelsesproduktene til en intakt sekvens, benyttes. Det vises her generelt til Sambrook et al. supra. Appropriately, the extension products are assembled into an intact AAV sequence using methods well known to those skilled in the art. For example, the extension products can be digested with DraUI that cleaves at the DraUI site located in the signature region, to give restriction fragments that are re-ligated to give products that (at a minimum) contain an intact AAV cap gene. However, other suitable techniques for assembling the extension products into an intact sequence may be used. Reference is made here generally to Sambrook et al. supra.

Som et alternativ til de multiple forlengelsestrinn som er beskrevet ovenfor gir en annen utførelsesform av oppfinnelsen direkteforsterkning av et 3,1 kb fragment som tillater isolering av full-lengde sekvenser. For direkte å forsterke et 3,1 kb full-lengde cap fragment fra NHP vev- og -blod DNA'er ble to andre sterkt konserverte områder identifisert i AAV genomer for bruk ved PCR forsterkning av store fragmenter. En primer innen et konservert område lokalisert i midten av rep genet benyttes (AVlns: 5' GCTGCGTCAACTGGACCAATGAGAAC 3', nt av SEQ ID nr. 6) i kombinasjon med 3'primeren lokalisert i et annet konservert område nedstrøms cap genet (AV2cas: 5' CGCAGAGACCAAAGTTCAACTGAAACGA 3', SEQ ID nr. 7) for forsterkning av AAV sekvenser inkludert den angjeldende full-lengde AAV cap. Etter forsterkning blir produktene typisk klonet og sekvensanalyse gjennomført med en nøyaktighet på >99,9 %. Ved bruk av denne metode har foreliggende oppfinnere isolert minst 50 capsid kloner som deretter erkarakterisert. Blant disse ble 37 kloner avledet fra Rhesus macaque vev (rh. 1 - rh.37), 6 kloner fra cynomologe macaquer (cy. 1 - cy.6), 2 kloner fra bavianer (bb.l og bb.2) og 5 kloner fra sjimpanser (ch.l - ch.5). Disse kloner er identifisert annensteds i beskrivelsen sammen med dyrespesiene hvorfra de ble identifisert og ve-vene i det dyr der disse nye sekvenser ble lokalisert. As an alternative to the multiple extension steps described above, another embodiment of the invention provides direct amplification of a 3.1 kb fragment allowing isolation of full-length sequences. To directly amplify a 3.1 kb full-length cap fragment from NHP tissue and blood DNAs, two other highly conserved regions were identified in AAV genomes for use in PCR amplification of large fragments. A primer within a conserved region located in the middle of the rep gene is used (AVlns: 5' GCTGCGTCAACTGGACCAATGAGAAC 3', nt of SEQ ID no. 6) in combination with the 3' primer located in another conserved region downstream of the cap gene (AV2cas: 5' CGCAGAGACCAAAGTTCAACTGAAACGA 3', SEQ ID No. 7) for amplification of AAV sequences including the relevant full-length AAV cap. After amplification, the products are typically cloned and sequence analysis performed with an accuracy of >99.9%. By using this method, the present inventors have isolated at least 50 capsid clones which have then been characterized. Among these, 37 clones were derived from Rhesus macaque tissue (rh. 1 - rh.37), 6 clones from cynomologous macaques (cy. 1 - cy.6), 2 clones from baboons (bb.l and bb.2) and 5 clones from chimpanzees (ch.l - ch.5). These clones are identified elsewhere in the specification along with the animal species from which they were identified and the tissues in the animal where these new sequences were located.

C. Alternativ metode for isolering av ny AAVC. Alternative method for isolation of new AAV

I et annet aspekt tilveiebringer oppfinnelsen en alternativ metode for å isolere nye AAV fra en celle. Denne metode involverer infeksjon av cellen med en vektor som tilveiebringer hjelperfunksjoner til den angjeldende AAV; isolering av infektiøse kloner inneholdende AAV; sekvensering av den isolerte AAV; og sammenligning av sekvensen av den isolerte AAV med kjente AAV serotyper hvorved forskjeller i sekvensene av de isolerte AAV- og kjente AAV serotyper indikerer nærværet av en ny AAV. In another aspect, the invention provides an alternative method for isolating new AAV from a cell. This method involves infecting the cell with a vector that provides helper functions to the AAV in question; isolation of infectious clones containing AAV; sequencing the isolated AAV; and comparing the sequence of the isolated AAV with known AAV serotypes whereby differences in the sequences of the isolated AAV and known AAV serotypes indicate the presence of a new AAV.

I en utførelsesform tilveiebringer vektoren som tilveiebringer hjelperfunksjonen essensielle adenovirusfunksjoner inkludert for eksempel Ela, Elb, E2a, E40RF6.1 en utfø-relsesform tilveiebringes disse hjelperfunksjoner av en adenovirus. Adenovirusen kan være en vill-type adenovirus og kan være av human eller ikke-human opprinnelse, fortrinnsvis av ikke-human primat (NHP) opprinnelse. DNA sekvensene av et antall ade-novirustyper er tilgjengelige fra Genbank inkludert type Ad5 [Genbank Aksess nr. M73260]. Adenovirussekvensene kan oppnås fra en hvilken som helst kjent adenovirus serotype som serotypene 2, 3, 4, 7, 12 og 40, og inkluderer videre en hvilken som helst av de til nu identifiserte humane typer, se for eksempel Horwitz supra. Tilsvarende adenoviruser som er kjente for å infisere ikke-humane dyr, for eksempel sjimpanser, kan også benyttes i vektorkonstruktene ifølge oppfinnelsen, se for eksempel US 6 083 716.1 tillegg til vill-type adenoviruser kan rekombinante vimser eller ikke-virale vektorer (for eksempel plasmider, episomer og så videre) som bærer de nødvendige hjelperfunksjoner, benyttes. Slike rekombinante vimser er velkjente i teknikken og kan fremstilles i henhold til offentliggjorte teknikker, se for eksempel US 5 871 982 og 6 251 677 som beskriver en hybrid Ad/AAV vims. Valget av adenovims type er ikke ansett som begrensende for oppfinnelsen. Et antall adenovims stammer er tilgjengelige fra "American Type Culture Collection", Manassas, Virginia eller tilgjengelige på forespørsel fra et antall kommersielle og institusjonelle kilder. Videre er sekvensene for mange slike stammer tilgjengelige fra et antall databaser inkludert for eksempel PubMed og GenBank. In one embodiment, the vector that provides the helper function provides essential adenovirus functions including, for example, E1a, Elb, E2a, E40RF6.1 In one embodiment, these helper functions are provided by an adenovirus. The adenovirus may be a wild-type adenovirus and may be of human or non-human origin, preferably of non-human primate (NHP) origin. The DNA sequences of a number of adenovirus types are available from Genbank including type Ad5 [Genbank Accession no. M73260]. The adenovirus sequences can be obtained from any known adenovirus serotype such as serotypes 2, 3, 4, 7, 12 and 40, and further includes any of the human types so far identified, see for example Horwitz supra. Corresponding adenoviruses which are known to infect non-human animals, for example chimpanzees, can also be used in the vector constructs according to the invention, see for example US 6 083 716.1 addition to wild-type adenoviruses can recombinant vims or non-viral vectors (for example plasmids , episomes and so on) that carry the necessary helper functions are used. Such recombinant vims are well known in the art and can be prepared according to published techniques, see for example US 5,871,982 and 6,251,677 which describe a hybrid Ad/AAV vims. The choice of adenovim's type is not considered limiting for the invention. A number of adenovims strains are available from the American Type Culture Collection, Manassas, Virginia or available upon request from a number of commercial and institutional sources. Furthermore, the sequences for many such strains are available from a number of databases including, for example, PubMed and GenBank.

I et annet alternativ kan infektiøs AAV isoleres ved bmk av genom vandreteknologi (Siebert et al., 1995, "Nucleic Acid Research", 23:1087-1088, Friezner-Degen et al., 1986, "J. Biol. Chem." 261: 6972-6985, BD Biosciences Clontech, Palo, Alto, CA). Genomvandring er spesielt godt egnet for identifisering og isolering av sekvenser ved siden av de nye sekvenser som identifiseres ifølge oppfinnelsens fremgangsmåte. For eksempel kan denne teknikk være brukbar for å isolere invertert terminal repeat (ITR'er) av den nye AAV serotype, basert på de nye AAV capsid- og/eller -rep sekvenser som er identifisert ved bruk av oppfinnelsens metoder. Denne teknikk er også brukbar for å isolere sekvenser ved siden av andre AAV- og ikke-AAV sekvenser som er identifisert og isolert ifølge oppfinnelsen, se eksemplene 3 og 4. In another alternative, infectious AAV can be isolated by bmk by genome walking technology (Siebert et al., 1995, "Nucleic Acid Research", 23:1087-1088, Friezner-Degen et al., 1986, "J. Biol. Chem." 261: 6972-6985, BD Biosciences Clontech, Palo, Alto, CA). Genome walking is particularly well suited for the identification and isolation of sequences alongside the new sequences identified according to the method of the invention. For example, this technique may be useful for isolating inverted terminal repeats (ITRs) of the new AAV serotype, based on the new AAV capsid and/or rep sequences identified using the methods of the invention. This technique is also usable for isolating sequences next to other AAV and non-AAV sequences that have been identified and isolated according to the invention, see examples 3 and 4.

Metodene ifølge oppfinnelsen kan lett benyttes for et antall epidemiologiske studier, studier av biofordeling, overvåking av genterapi via AAV vektorer og vektorer avledet fra andre integrerte vimser. Således er metodene vel egnet for anvendelse i på forhånd pakkede sett for bmk av leger, forskere og epidemiologer. The methods according to the invention can easily be used for a number of epidemiological studies, studies of biodistribution, monitoring of gene therapy via AAV vectors and vectors derived from other integrated vims. Thus, the methods are well suited for use in prepackaged kits for bmk by doctors, researchers and epidemiologists.

n. Diagnosesettn. Diagnostic kit

I et annet aspekt tilveiebringer oppfinnelsen et diagnosesett for detektering av nærværet av en kjent eller ukjent adenoassosiert vims (AAV) i en prøve. Et slikt sett kan inneholde et første sett av 5- og 3'PCR primere som er spesifikke for signaturområdet av AAV nukleinsyresekvensen. Alternativt eller i tillegg kan et slikt sett inneholde et første sett av 5- og 3'PCR primere spesifikke for 3,1 kb fragmentet som inkluderer full-lengde AAV capsid nukleinsyresekvensen som er identifisert her (for eksempel AVlns- og AV2cas primerne). Eventuelt kan et sett ifølge oppfinnelsen videre inneholde to eller flere ytterligere sett av 5- og 3' primere som beskrevet her, og/eller PCR prober. Disse primere og prober benyttes ifølge oppfinnelsen for å forsterke signaturområder av hver AAV serotype, for eksempel ved bmk av kvantitativ PCR. In another aspect, the invention provides a diagnostic kit for detecting the presence of a known or unknown adeno-associated virus (AAV) in a sample. Such a kit may contain a first set of 5- and 3' PCR primers specific for the signature region of the AAV nucleic acid sequence. Alternatively or additionally, such a kit may contain a first set of 5' and 3' PCR primers specific for the 3.1 kb fragment that includes the full-length AAV capsid nucleic acid sequence identified herein (eg, the AVlns and AV2cas primers). Optionally, a set according to the invention can further contain two or more additional sets of 5- and 3' primers as described here, and/or PCR probes. These primers and probes are used according to the invention to amplify signature areas of each AAV serotype, for example by bmk of quantitative PCR.

Oppfinnelsen tilveiebringer videre et sett som er brukbart for å identifisere en AAV serotype som er detektert i henhold til oppfinnelsens fremgangsmåte og/eller for å skille ny AAV fra kjent AAV. Et slikt sett kan videre inkludere ett eller flere restriksjonsen-zymer, standarder for AAV serotyper som tilveiebringer deres "signatur restriksjons enzym digesteringsanalyser" og/eller andre midler for å bestemme serotypen av den detekterte AAV. The invention further provides a kit that is useful for identifying an AAV serotype detected according to the method of the invention and/or for distinguishing new AAV from known AAV. Such a kit may further include one or more restriction enzymes, standards for AAV serotypes that provide their "signature restriction enzyme digestion assays" and/or other means to determine the serotype of the detected AAV.

I tillegg kan sett ifølge oppfinnelsen inkludere instmksjoner, en negativ og/eller positiv kontroll, beholdere, diluenter og buffere for prøven, indikatorkart for signatursammen-ligninger, engangshansker, dekontamineringsinstmksjoner, applikatorstifter eller beholdere, og prøvepreparatorlokk, så vel som hvilke som helst ønskede reagenser inkludert media, vaskereagenser og konsentrasjonsreagenser. Slike reagenser kan lett velges blant de som er beskrevet her og blant konvensjonelle konsentrasjonsreagenser. I en ønsket utførelsesform er vaskereagensen en isotonisk saltoppløsning som er bufret til fysiologisk pH-verdi, for eksempel fosfatbufret saltoppløsning (PBS), elueringsreagensen er PBS inneholdende 0,4 M NaCl og konsentrasjonsreagensen og innretninger. For eksempel vil fagmannen på området erkjenne at reagenser som polyetylenglykol (PEG) eller NH4SO4kan være brukbare, eller at innretninger som filterinnretninger, for eksempel en filterinnretning med en 100 K membran, vil konsentrere rAAV. In addition, kits of the invention may include instruments, a negative and/or positive control, containers, diluents and buffers for the sample, indicator charts for signature comparisons, disposable gloves, decontamination instruments, applicator sticks or containers, and sample preparation lids, as well as any desired reagents. including media, washing reagents and concentration reagents. Such reagents may be readily selected from those described herein and from conventional concentration reagents. In a desired embodiment, the washing reagent is an isotonic saline buffered to physiological pH, for example phosphate buffered saline (PBS), the elution reagent is PBS containing 0.4 M NaCl and the concentration reagent and devices. For example, one skilled in the art will recognize that reagents such as polyethylene glycol (PEG) or NH 4 SO 4 may be useful, or that devices such as filter devices, for example a filter device with a 100 K membrane, will concentrate rAAV.

Settene som tilveiebringes ifølge oppfinnelsen er brukbare for å gjennomføre metodene som beskrevet her og for studering av biofordeling, epidemiologi, transmisjonsmodus for nye AAV serotyper i mennesker og NHP'er. The kits provided according to the invention are usable for carrying out the methods described here and for studying the biodistribution, epidemiology, transmission mode of new AAV serotypes in humans and NHPs.

Således tillater metoden og settene ifølge oppfinnelsen detektering, identifisering og isolering av virale målsekvenser og særlig integrerte virale sekvenser. Metodene og settene er spesielt egnet for bruk ved detektering, identifisering og isolering av AAV sekvenser og som kan inkludere nye AAV serotyper. Thus, the method and kits according to the invention allow the detection, identification and isolation of viral target sequences and in particular integrated viral sequences. The methods and kits are particularly suitable for use in the detection, identification and isolation of AAV sequences and which may include new AAV serotypes.

I et spesielt eksempel lettet metoden ifølge oppfinnelsen analysen av AAV sekvenser som var klonet av oppfinnerne og som avdekket heterogenitet av provirale sekvenser mellom klonede fragmenter fra forskjellige dyr, alle distinkte fra de kjente seks AAV serotyper, med hovedandelen av variasjonen lokalisert til hypervariable områder av capsidproteinet. Overraskende divergens fra AAV sekvenser ble notert i kloner som var isolert fra enkle vevkilder som lymfeknuten, fra en individuell rhesus ape. Denne heterogenitet forklares best ved den åpenbare evolusjon av AAV sekvensen i det individuelle dyr som delvis skyldes ekstensiv, homolog rekombinering mellom et begrenset antall ko-infiserende parenterale vimser. Disse studier antyder sekvensevaluering av utstrakt disseminert vims under forløpet av en naturlig AAV infeksjon som antagelig fører til dannelse av svermer av kvasispesier som skiller seg fra hverandre i mønstere av capsid hypervariable områder. Dette er det første eksempel på hurtig molekular utvikling av en DNA vims på en måte som tidligere var antatt å være begrenset til RNA vimser. In a particular example, the method according to the invention facilitated the analysis of AAV sequences cloned by the inventors and which revealed heterogeneity of proviral sequences between cloned fragments from different animals, all distinct from the known six AAV serotypes, with the majority of the variation localized to hypervariable regions of the capsid protein . Surprising divergence from AAV sequences was noted in clones isolated from single tissue sources such as the lymph node, from an individual rhesus monkey. This heterogeneity is best explained by the apparent evolution of the AAV sequence in the individual animal due in part to extensive homologous recombination between a limited number of co-infecting parenteral vectors. These studies suggest sequence evaluation of widely disseminated vims during the course of a natural AAV infection that presumably leads to the formation of swarms of quasispecies that differ from each other in the patterns of capsid hypervariable regions. This is the first example of rapid molecular evolution of a DNA vims in a manner previously thought to be limited to RNA vims.

Det tilveiebringes sekvenser av flere nye AAV serotyper som er identifisert ved metoden ifølge oppfinnelsen samt karakteriseringen av disse serotyper. Sequences of several new AAV serotypes that have been identified by the method according to the invention are provided as well as the characterization of these serotypes.

Ul. Nye AAV serotyperUl. New AAV serotypes

A. NukleinsyresekvenserA. Nucleic acid sequences

Nukleinsyresekvenser av nye AAV serotyper som var identifisert ved oppfinnelsens metode tilveiebringes her, se SEQ ID nr. 1, 9 - 59 samt 117 - 120 hvortil det vises. Det skal også vises til figur 1 og sekvenslistene. Nucleic acid sequences of new AAV serotypes that were identified by the method of the invention are provided here, see SEQ ID no. 1, 9 - 59 and 117 - 120 to which reference is made. Reference must also be made to Figure 1 and the sequence lists.

For den nye serotype AAV7 tilveiebringes full-lengde sekvensene inkludert AAV5' ITR'ene, capsid, rep og AAV3'ITR'ene i SEQ ID nr. 1. For the new serotype AAV7, the full-length sequences including the AAV5' ITRs, capsid, rep and AAV3' ITRs are provided in SEQ ID NO: 1.

For andre nye AAV serotyper ifølge oppfinnelsen tilveiebringes det omtrent 3,1 kb store fragment som var isolert ifølge oppfinnelsens metode. Dette fragment inneholder sekvenser som koder full-lengde capsid protein eller hele eller en del av sekvensene som koder rep proteinet. Disse sekvenser inkluderer klonene som er identifisert nedenfor. For other new AAV serotypes according to the invention, a roughly 3.1 kb fragment that was isolated according to the method of the invention is provided. This fragment contains sequences encoding the full-length capsid protein or all or part of the sequences encoding the rep protein. These sequences include the clones identified below.

For ytterligere andre AAV serotyper tilveiebringes det signaturområdet som koder capsid proteinet. For eksempel inkluderer AAV10 nukleinsyresekvensene ifølge oppfinnelsen de som er illustrert i figur 1 [se SEQ ID nr. 117 som spenner over 255 baser]. For further other AAV serotypes, the signature region encoding the capsid protein is provided. For example, the AAV10 nucleic acid sequences of the invention include those illustrated in Figure 1 [see SEQ ID No. 117 which spans 255 bases].

AAV11 nukleinsyresekvensene ifølge oppfinnelsen inkluderer de DNA sekvenser som er illustrert i figur 1 [se SEQ ID nr. 118 som spenner over 258 baser]. AAV 12 nukleinsyresekvensene ifølge oppfinnelsen inkluderer de DNA sekvenser som er illustrert i figur 1 [se SEQ ID nr. 19 som består av 258 baser]. Ved bruk av metodologien som beskrevet ovenfor kan videre AAV10-, AAV11- og AAV12-sekvensen lett identifiseres og anvendes for et antall formål inkludert det som er beskrevet for AAV7 og andre nye serotyper ifølge oppfinnelsen. The AAV11 nucleic acid sequences according to the invention include the DNA sequences illustrated in Figure 1 [see SEQ ID No. 118 which spans 258 bases]. The AAV 12 nucleic acid sequences according to the invention include the DNA sequences illustrated in figure 1 [see SEQ ID no. 19 which consists of 258 bases]. Using the methodology as described above, the AAV10, AAV11 and AAV12 sequence can further be easily identified and used for a number of purposes including that described for AAV7 and other new serotypes according to the invention.

Figur 1 tilveiebringer de ikke-human primat (NHP) AAV nukleinsyresekvenser ifølge oppfinnelsen i en innretning med alle tidligere publiserte AAV serotyper, AAV1 [SEQ ID nr. 6], AAV2 [SEQ ID nr. 7] og AAV3 [SEQ ID nr. 8]. Disse nye NHP sekvenser inkluderer de som er gitt i den følgende tabell 1 og som er identifisert ved klon nr.: Figure 1 provides the non-human primate (NHP) AAV nucleic acid sequences of the invention in an arrangement with all previously published AAV serotypes, AAV1 [SEQ ID No. 6], AAV2 [SEQ ID No. 7] and AAV3 [SEQ ID No. 8 ]. These new NHP sequences include those given in the following Table 1 and which are identified by clone no.:

En ny NHP klon ble tildannet ved å spleise capsidfragmenter fra to sjimpanseadenovi-rus til et AAV2 rep konstrukt. Den nye klon, A3,l, er også kalt Ch.5 [SEQ ID nr. 20]. I tillegg inkluderer oppfinnelsen to human AAV sekvenser kalt H6 [SEQ ID nr. 25] og H2 [SEQ ID nr. 26]. A new NHP clone was generated by splicing capsid fragments from two chimpanzee adenoviruses into an AAV2 rep construct. The new clone, A3,1, is also named Ch.5 [SEQ ID No. 20]. In addition, the invention includes two human AAV sequences called H6 [SEQ ID No. 25] and H2 [SEQ ID No. 26].

AAV nukleinsyresekvensene ifølge oppfinnelsen omfatter videre tråden som er komplementær til de tråder som tilveiebringes i sekvensen som gitt i figur 1 og i sekvenslistene [SEQ ID nr. 1,9- 59, 117 - 120], nukleinsyresekvenser så vel som RNA- og cDNA-sekvenser tilsvarende sekvensene som er gitt i figur 1 og sekvenslisten [SEQ ID nr. 1,9- 59, 117-120], og deres komplementære tråder. Videre inkludert i nukleinsyresekvensene ifølge oppfinnelsen er naturlige varianter og konstruerte modifikasjoner av sekvensene ifølge figur 1 og sekvenslistene [SEQ ID nr. 1,9- 59, 117-120] og deres komplementære tråder. Slike modifikasjoner inkluderer for eksempel merkelapper som er velkjente i teknikken, metylering, og substituering av en eller flere av de naturlig forekommende nukleotider med et degenerat nukleotid. The AAV nucleic acid sequences according to the invention further comprise the strand that is complementary to the strands provided in the sequence as given in Figure 1 and in the sequence lists [SEQ ID no. 1,9-59, 117-120], nucleic acid sequences as well as RNA and cDNA sequences corresponding to the sequences given in Figure 1 and the sequence list [SEQ ID No. 1,9-59, 117-120], and their complementary strands. Also included in the nucleic acid sequences according to the invention are natural variants and engineered modifications of the sequences according to figure 1 and the sequence lists [SEQ ID no. 1,9-59, 117-120] and their complementary strands. Such modifications include, for example, tags well known in the art, methylation, and substitution of one or more of the naturally occurring nucleotides with a degenerate nucleotide.

Videre inkludert i oppfinnelsen er nukleinsyresekvenser som er mer enn 85 %, fortrinnsvis minst rundt 90 % og aller helst minst rundt 95 %, spesielt minst rundt 98 til 99 % identiske eller homologe med sekvensene ifølge oppfinnelsen inkludert figur 1 og sekvenslisten [SEQ ID nr. 1, 9 - 59, 117-120]. Disse termer er som definert her. Also included in the invention are nucleic acid sequences that are more than 85%, preferably at least around 90% and most preferably at least around 95%, especially at least around 98 to 99% identical or homologous to the sequences according to the invention including figure 1 and the sequence list [SEQ ID no. 1, 9 - 59, 117-120]. These terms are as defined herein.

Også inkludert i oppfinnelsen er fragmenter av de nye AAV sekvenser identifisert ved de her beskrevne metoder. Egnede fragmenter er minst 15 nukleotider lange og omfatter funksjonelle fragmenter, det vil si fragmenter som er av biologisk interesse. I en utførel-sesform er disse fragmenter slike av de nye sekvenser med figur 1 og sekvenslistene [SEQ ID nr. 1,9- 59, 117-120], deres komplementære tråder, cDNA og RNA som er komplementære dertil. Also included in the invention are fragments of the new AAV sequences identified by the methods described here. Suitable fragments are at least 15 nucleotides long and include functional fragments, i.e. fragments that are of biological interest. In one embodiment, these fragments are such of the new sequences with Figure 1 and the sequence lists [SEQ ID no. 1,9-59, 117-120], their complementary strands, cDNA and RNA that are complementary thereto.

Eksempler på egnede fragmenter tilveiebringes med henblikk på lokasjonen av disse fragmenter på AAV1, AAV2 eller AAV7. Imidlertid kan fagmannen ved bruk av inn-retningene som her er gitt (oppnådd ved bruk av Clustal W programmet ved default innstilling), eller tilsvarende teknikker for å generere en innretning med andre nye serotyper ifølge oppfinnelsen, lett identifisere de nøyaktige nukleotid start- og stopp-codoner for ønskede fragmenter. Examples of suitable fragments are provided with a view to the location of these fragments on AAV1, AAV2 or AAV7. However, the person skilled in the art, using the devices provided here (achieved using the Clustal W program at default settings), or similar techniques for generating a device with other new serotypes according to the invention, can easily identify the exact nucleotide start and stop -codons for desired fragments.

Eksempler på egnede fragmenter inkluderer sekvensene som koder de tre variable proteiner (vp) av AAV capsidet som er alternative spleisevarianter: vpl [for eksempel nt 825 til 3049 av AAV7, SEQ ID nr. 1]; vp2 [for eksempel nt 1234 - 3049 av AAV7, SEQ ID nr. 1]; og vp3 [for eksempel nt 1434 - 3049 av AAV7, SEQ ID nr. 1]. Det er verdt å merke seg at AAV7 har en uvanlig GTG startcodon. Bortsett fra noen få hus-holdningsgener er en slik startcodon tidligere ikke rapportert i DNA vimser. Startcodonene for vpl, vp2 og vp3 for andre AAV serotyper er antatt å være slik at de tillater den cellulære mekanisme i vertscellen hvori de residerer å produser vpl, vp2 og vp3 i et forhold på henholdsvis 10 %: 10 %:80 %, for å tillate effektiv sammensetning av virionet. Imidlertid er AAV7 virionet funnet å sette seg sammen effektivt selv med denne sjeldne GTG startcodon. Således antar oppfinnerne at det er ønskelig å endre startcodonen for vp3 for andre AAV serotyper til å inneholde denne sjeldne GTG startcodon for å forbedre pakkingseffektiviteten, for å endre virionstrukturen og/eller for å endre lokasjonen av epitoper (for eksempel nøytraliserende antistoffepitoper) av andre AAV serotyper. Startcodonene kan endres ved bmk av konvensjonelle teknikker inkludert for eksempel seterettet mutagenese. Således omfatter foreliggende oppfinnelse endrede AAV virioner av en hvilken som helst valgt serotype, bestående av en vp3, og/eller eventuelt vpl og/eller vp2 med startcodoner endret til GTG. Examples of suitable fragments include the sequences encoding the three variable proteins (vp) of the AAV capsid that are alternative splice variants: vpl [eg, nt 825 to 3049 of AAV7, SEQ ID NO: 1]; vp2 [eg nt 1234 - 3049 of AAV7, SEQ ID NO: 1]; and vp3 [for example, nt 1434 - 3049 of AAV7, SEQ ID NO: 1]. It is worth noting that AAV7 has an unusual GTG start codon. Apart from a few housekeeping genes, such a start codon has not previously been reported in DNA vimser. The start codons for vpl, vp2 and vp3 for other AAV serotypes are thought to be such that they allow the cellular machinery in the host cell in which they reside to produce vpl, vp2 and vp3 in a ratio of 10%: 10%:80%, respectively, to allow efficient assembly of the virion. However, the AAV7 virion has been found to assemble efficiently even with this rare GTG start codon. Thus, the inventors assume that it is desirable to change the vp3 start codon of other AAV serotypes to contain this rare GTG start codon to improve packaging efficiency, to change the virion structure and/or to change the location of epitopes (eg neutralizing antibody epitopes) of other AAV serotypes. The start codons can be changed by bmk by conventional techniques including, for example, site-directed mutagenesis. Thus, the present invention includes modified AAV virions of any selected serotype, consisting of a vp3, and/or optionally vpl and/or vp2 with start codons changed to GTG.

Andre egnede fragmenter av AAV inkludert et fragment inneholdende startcodonen for AAV capsidproteinet [for eksempel nt 468 til 3090 av AAV7, SEQ ID nr. 1, nt 725 til Other suitable fragments of AAV including a fragment containing the start codon for the AAV capsid protein [for example, nt 468 to 3090 of AAV7, SEQ ID NO: 1, nt 725 to

3090 av AAV7, SEQ ID nr. 1 og tilsvarende regioner av andre AAV serotyper]. Ytterligere andre fragmenter av AAV7 og de andre nye AAV serotyper som er identifisert ved bruk av de her beskrevne metoder inkluderer de som koder rep proteinene, inkludert rep 78 [for eksempel initialcodon 334 av figur 1 for AAV7], rep 68 [initialcodon nt 334 av 3090 of AAV7, SEQ ID No. 1 and corresponding regions of other AAV serotypes]. Additional other fragments of AAV7 and the other new AAV serotypes identified using the methods described herein include those encoding the rep proteins, including rep 78 [eg, initial codon 334 of Figure 1 for AAV7], rep 68 [initial codon nt 334 of

figur 1 for AAV7], rep 52 [initialcodon 1006 av figur 1 for AAV7] og rep 40 [initalco-don 1006 av figur 1 for AAV7]. Andre fragmenter av interesse kan inkludere de AAV5' inverterte terminalrepeat ITR'er [nt 1 til 107 av figur 1 for AAV7]; AAV3'ITR'er [nt 4704 til 4721 av figur 1 for AAV7], P19 sekvenser, AAV P40 sekvenser, rep bindings-sete og terminal resolutt sete (TRS). Ytterligere andre egnede fragmenter vil lett fremgå for fagmannen. De egnede områder i andre nye serotyper ifølge oppfinnelsen kan lett bestemmes under henvisning til figur 1 eller ved å benytte konvensjonelle innretnings-teknikker med de sekvenser som her tilveiebringes. Figure 1 for AAV7], rep 52 [initial codon 1006 of Figure 1 for AAV7] and rep 40 [initial codon 1006 of Figure 1 for AAV7]. Other fragments of interest may include the AAV5' inverted terminal repeat ITRs [nt 1 to 107 of Figure 1 for AAV7]; AAV3'ITRs [nt 4704 to 4721 of Figure 1 for AAV7], P19 sequences, AAV P40 sequences, rep binding site and terminal resolute site (TRS). Further other suitable fragments will be readily apparent to those skilled in the art. The suitable regions in other new serotypes according to the invention can be easily determined with reference to Figure 1 or by using conventional alignment techniques with the sequences provided here.

I tillegg til å inkludere nukleinsyresekvensene som gis i figurene og sekvenslisten inkluderer oppfinnelsen nukleinsyremolekyler og sekvenser som er designert til å uttrykke aminosyresekvensene, proteinene og peptidene av AAV serotypene ifølge oppfinnelsen. Således inkluderer oppfinnelsen nukleinsyresekvenser som koder de følgende nye AAV aminosyresekvenser: Cl [SEQ ID nr. 60], C2 [SEQ ID nr. 61], C5 [SEQ ID nr. 62], A3-3 [SEQ ID nr. 66], A3-7 [SEQ ID nr. 67], A3-4 [SEQ ID nr. 68], A3-5 [SEQ ID nr. 69], 3.3b [SEQ ID nr. 62], 223.4 [SEQ ID nr. 73], 223-5 [SEQ ID nr. 74], 223-10 [SEQ ID nr. 75], 223-2 [SEQ ID nr. 76], 223-7 [SEQ ID nr. 77], 223-6 [SEQ ID nr. 78], 44-1 [SEQ ID nr. 79], 44-5 [SEQ ID nr. 80], 44-2 [SEQ ID nr. 81], 42-15 [SEQ ID nr. 84], 42-8 [SEQ ID nr. 85], 42-13 [SEQ ID nr. 86], 42-3 A [SEQ ID nr. 87], 42-4 [SEQ ID nr. 88], 42-5A [SEQ ID nr. 89], 42-1B [SEQ ID nr. 90], 42-5B [SEQ ID nr. 91], 43-1 [SEQ ID nr. 92], 43-12 [SEQ ID nr. 93], 43-5 [SEQ ID nr. 94], 43-21 [SEQ ID nr. 96], 43-25 [SEQ ID nr. 97], 43-20 [SEQ ID nr. 99], 24,1 [SEQ ID nr. 101], 42,2 [SEQ ID nr. 102], 7,2 [SEQ ID nr. 103], 27,3 [SEQ ID nr. 104], 16,3 [SEQ ID nr. 105], 42,10 [SEQ ID nr. 106], 42-3B [SEQ ID nr. 107], 42-11 [SEQ ID nr. 108], Fl [SEQ ID nr. 109], F5 [SEQ ID nr. 110], F3 [SEQ ID nr. 111], 42-6B [SEQ ID nr. 112] og/eller 42-12 [SEQ ID nr. 113] og kunstige AAV serotyper som genereres ved bruk av disse sekvenser og/eller unike fragmenter derav. In addition to including the nucleic acid sequences given in the figures and the sequence list, the invention includes nucleic acid molecules and sequences designed to express the amino acid sequences, proteins and peptides of the AAV serotypes according to the invention. Thus, the invention includes nucleic acid sequences that encode the following new AAV amino acid sequences: Cl [SEQ ID No. 60], C2 [SEQ ID No. 61], C5 [SEQ ID No. 62], A3-3 [SEQ ID No. 66], A3-7 [SEQ ID No. 67], A3-4 [SEQ ID No. 68], A3-5 [SEQ ID No. 69], 3.3b [SEQ ID No. 62], 223.4 [SEQ ID No. 73 ], 223-5 [SEQ ID No. 74], 223-10 [SEQ ID No. 75], 223-2 [SEQ ID No. 76], 223-7 [SEQ ID No. 77], 223-6 [ SEQ ID No. 78], 44-1 [SEQ ID No. 79], 44-5 [SEQ ID No. 80], 44-2 [SEQ ID No. 81], 42-15 [SEQ ID No. 84] , 42-8 [SEQ ID No. 85], 42-13 [SEQ ID No. 86], 42-3 A [SEQ ID No. 87], 42-4 [SEQ ID No. 88], 42-5A [ SEQ ID No. 89], 42-1B [SEQ ID No. 90], 42-5B [SEQ ID No. 91], 43-1 [SEQ ID No. 92], 43-12 [SEQ ID No. 93] , 43-5 [SEQ ID No. 94], 43-21 [SEQ ID No. 96], 43-25 [SEQ ID No. 97], 43-20 [SEQ ID No. 99], 24.1 [SEQ ID No. 101], 42.2 [SEQ ID No. 102], 7.2 [SEQ ID No. 103], 27.3 [SEQ ID No. 104], 16.3 [SEQ ID No. 105], 42,10 [SEQ ID No. 106], 42-3B [SEQ ID No. 107], 42-11 [SEQ ID No. 108], Fl [SEQ ID No. 10 9], F5 [SEQ ID No. 110], F3 [SEQ ID No. 111], 42-6B [SEQ ID No. 112] and/or 42-12 [SEQ ID No. 113] and artificial AAV serotypes that are generated using these sequences and/or unique fragments thereof.

Som benyttet her inkluderer kunstige AAV serotyper uten begrensning AAV med et ikke-naturlig forekommende capsid protein. Et slikt kunstig capsid kan generere ved en hvilken som helst egnet teknikk ved bruk av en ny AAV sekvens ifølge oppfinnelsen (for eksempel et fragment av et vpl capsid protein) i kombinasjon med heterologe sekvenser som kan oppnås fra en annen AAV serotype (kjent eller ny), ikke-kontigøse deler av den samme AAV serotype, fra en ikke-AAV viral kilde, eller fra en ikke-viral kilde. En kunstig AAV serotype kan uten begrensning være et kimerisk AAV capsid, et rekombinant AAV capsid eller et "humanisert" AAV capsid. As used herein, artificial AAV serotypes include without limitation AAV with a non-naturally occurring capsid protein. Such an artificial capsid can be generated by any suitable technique using a new AAV sequence according to the invention (for example a fragment of a vpl capsid protein) in combination with heterologous sequences that can be obtained from another AAV serotype (known or new ), non-contiguous parts of the same AAV serotype, from a non-AAV viral source, or from a non-viral source. An artificial AAV serotype can be, without limitation, a chimeric AAV capsid, a recombinant AAV capsid, or a "humanized" AAV capsid.

B. AAV aminosyresekvenser, proteiner og peptiderB. AAV amino acid sequences, proteins and peptides

Oppfinnelsen tilveiebringer proteiner og fragmenter derav som kodes av nukleinsyresekvensen av de her identifiserte nye AAV serotyper inkludert for eksempel AAV7 [nt 825 til 3049 av AAV7, SEQ ID nr. 1], de andre nye serotyper som beskrevet her. Således kan capsidproteinene av de nye serotyper ifølge oppfinnelsen, inkludert: H6 [SEQ ID nr. 25], H2 [SEQ ID nr. 26], 42-2 [SEQ ID nr. 9], 42-8 [SEQ ID nr. 27], 42-15 [SEQ ID nr. 28], 42-5b [SEQ ID nr. 29], 42-lb [SEQ ID nr. 30], 42-13 [SEQ ID nr. 31], 42-3a [SEQ ID nr. 32], 42-4 [SEQ ID nr. 33], 42-5a [SEQ ID nr. 34], 42-10 [SEQ ID nr. 35], 42-3b [SEQ ID nr. 36], 42-11 [SEQ ID nr. 37], 42-6b [SEQ ID nr. 38], 43-1 [SEQ ID nr. 39], 43-5 [SEQ ID nr. 40], 43-12 [SEQ ID nr. 41], 43-20 [SEQ ID nr. 42], 43-21 [SEQ ID nr. 43], 43-23 [SEQ ID nr. 44], 43-25 [SEQ ID nr. 45], 44.1 [SEQ ID nr. 47], 44.5 [SEQ ID nr. 47], 223.10 [SEQ ID nr. 48], 223.2 [SEQ ID nr. 49], 223.4 [SEQ ID nr. 50], 223.5 [SEQ ID nr. 51], 223.6 [SEQ ID nr. 52], 223.7 [SEQ ID nr. 53], A3.4 [SEQ ID nr. 54], A3.5 [SEQ ID nr. 55], A3.7 [SEQ ID nr. 56], A3.3 [SEQ ID nr. 57], 42.12 [SEQ ID nr. 58] og 44.2 [SEQ ID nr. 59], lett genereres ved bruk av konvensjonelle teknikker fra de åpne leserammer som tilveiebringes for de ovenfor anførte kloner. The invention provides proteins and fragments thereof encoded by the nucleic acid sequence of the novel AAV serotypes identified herein including, for example, AAV7 [nt 825 to 3049 of AAV7, SEQ ID No. 1], the other novel serotypes as described herein. Thus, the capsid proteins of the new serotypes according to the invention, including: H6 [SEQ ID No. 25], H2 [SEQ ID No. 26], 42-2 [SEQ ID No. 9], 42-8 [SEQ ID No. 27 ], 42-15 [SEQ ID No. 28], 42-5b [SEQ ID No. 29], 42-lb [SEQ ID No. 30], 42-13 [SEQ ID No. 31], 42-3a [ SEQ ID No. 32], 42-4 [SEQ ID No. 33], 42-5a [SEQ ID No. 34], 42-10 [SEQ ID No. 35], 42-3b [SEQ ID No. 36] , 42-11 [SEQ ID No. 37], 42-6b [SEQ ID No. 38], 43-1 [SEQ ID No. 39], 43-5 [SEQ ID No. 40], 43-12 [SEQ ID No. 41], 43-20 [SEQ ID No. 42], 43-21 [SEQ ID No. 43], 43-23 [SEQ ID No. 44], 43-25 [SEQ ID No. 45], 44.1 [SEQ ID No. 47], 44.5 [SEQ ID No. 47], 223.10 [SEQ ID No. 48], 223.2 [SEQ ID No. 49], 223.4 [SEQ ID No. 50], 223.5 [SEQ ID No. .51], 223.6 [SEQ ID No. 52], 223.7 [SEQ ID No. 53], A3.4 [SEQ ID No. 54], A3.5 [SEQ ID No. 55], A3.7 [SEQ ID No. 56], A3.3 [SEQ ID No. 57], 42.12 [SEQ ID No. 58] and 44.2 [SEQ ID No. 59], are readily generated using conventional techniques from the open reading frames provided for the above r listed clones.

Oppfinnelsen omfatter videre AAV serotyper som er generert ved bruk av sekvenser av de nye AAV serotyper ifølge oppfinnelsen og som er generert ved bruk av syntetiske, rekombinante eller andre teknikker som velkjente for fagmannen. Oppfinnelsen er ikke begrenset til nye AAV aminosyresekvenser, peptider og proteiner som er uttrykt fra de nye AAV nukleinsyresekvenser ifølge oppfinnelsen og omfatter aminosyresekvenser, peptider og proteiner som er generert ved andre metoder som kjent i teknikken, inkludert for eksempel ved kjemisk syntese, eller ved andre syntetiske teknikker, eller ved andre metoder. For eksempel kan sekvensene av en hvilken som helst av Cl [SEQ ID nr. 60], C2 [SEQ ID nr. 61], C5 [SEQ Id nr. 62], A3-3 [SEQ ID nr. 66], A3-7 [SEQ ID nr. 67], A3-4 [SEQ ID nr. 68], A3-5 [SEQ ID nr. 69], 3.3b [SEQ ID nr. 62], 223.4 [SEQ ID nr.73], 223-5 [SEQ ID nr. 74], 223-10 [SEQ ID nr. 75], 223-2 [SEQ ID nr. 76], 223-7 [SEQ ID nr. 77], 223-6 [SEQ ID nr. 78], 44-1 [SEQ ID nr. 79], 44-5 [SEQ ID nr. 80], 44-2 [SEQ ID nr. 81], 42-15 [SEQ ID nr. 84], 42-8 [SEQ ID nr. 85], 42-13 [SEQ ID nr. 86], 42-3A [SEQ ID nr. 87], 42-4 [SEQ ID nr. 88], 42-5A [SEQ ID nr. 89], 42-1B [SEQ ID nr. 90], 42-5B [SEQ ID nr. 91], 43-1 [SEQ ID nr. 92], 43-12 [SEQ ID nr. 93], 43-5 [SEQ ID nr. 94], 43-21 [SEQ ID nr. 96], 43-25 [SEQ ID nr. 97], 43-20 [SEQ ID nr. 99], 24.1 [SEQ ID nr. 101], 42.2 [SEQ ID nr. 102], 7.2 [SEQ ID nr. 103], 27.3 [SEQ ID nr. 104], 16.3 [SEQ ID nr. 105], 42.10 [SEQ ID nr. 106], 42-3B [SEQ ID nr. 107], 42-11 [SEQ ID nr. 108], Fl [SEQ ID nr. 109], F5 [SEQ ID nr. 110], F3 [SEQ ID nr. 111], 42-6B [SEQ ID nr. 112], og/eller 42-12 [SEQ ID nr. 113] lett genereres ved bruk av et antall teknikker. The invention further encompasses AAV serotypes which are generated using sequences of the new AAV serotypes according to the invention and which are generated using synthetic, recombinant or other techniques well known to those skilled in the art. The invention is not limited to new AAV amino acid sequences, peptides and proteins that are expressed from the new AAV nucleic acid sequences according to the invention and includes amino acid sequences, peptides and proteins that are generated by other methods known in the art, including for example by chemical synthesis, or by other synthetic techniques, or by other methods. For example, the sequences of any one of C1 [SEQ ID NO: 60], C2 [SEQ ID NO: 61], C5 [SEQ ID NO: 62], A3-3 [SEQ ID NO: 66], A3- 7 [SEQ ID No. 67], A3-4 [SEQ ID No. 68], A3-5 [SEQ ID No. 69], 3.3b [SEQ ID No. 62], 223.4 [SEQ ID No. 73], 223-5 [SEQ ID No. 74], 223-10 [SEQ ID No. 75], 223-2 [SEQ ID No. 76], 223-7 [SEQ ID No. 77], 223-6 [SEQ ID No. 78], 44-1 [SEQ ID No. 79], 44-5 [SEQ ID No. 80], 44-2 [SEQ ID No. 81], 42-15 [SEQ ID No. 84], 42 -8 [SEQ ID No. 85], 42-13 [SEQ ID No. 86], 42-3A [SEQ ID No. 87], 42-4 [SEQ ID No. 88], 42-5A [SEQ ID No. .89], 42-1B [SEQ ID No. 90], 42-5B [SEQ ID No. 91], 43-1 [SEQ ID No. 92], 43-12 [SEQ ID No. 93], 43- 5 [SEQ ID No. 94], 43-21 [SEQ ID No. 96], 43-25 [SEQ ID No. 97], 43-20 [SEQ ID No. 99], 24.1 [SEQ ID No. 101] , 42.2 [SEQ ID No. 102], 7.2 [SEQ ID No. 103], 27.3 [SEQ ID No. 104], 16.3 [SEQ ID No. 105], 42.10 [SEQ ID No. 106], 42-3B [ SEQ ID No. 107], 42-11 [SEQ ID No. 108], Fl [SEQ ID No. 109], F5 [SEQ ID No. 110], F3 [SEQ ID No. 111], 42-6 B [SEQ ID NO: 112], and/or 42-12 [SEQ ID NO: 113] are readily generated using a number of techniques.

Egnede produksjonsteknikker er velkjente for fagfolk på området, se for eksempel Sambrook et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Press (Cold Spring Harbor, NY). Alternativt kan peptider også syntetiseres ved den godt kjente fastfasepeptidsyntesemetode (Merrifield, "J. Am. Chem. Soc", 85:2149 (1962); Stewart og Young, "Solid PhasePeptide Synthesis" (Freeman, San Francisco, 1969),s. 27-62). Disse og andre egnede produksjonsmetoder ligger innenfor fagmannens kunn-skapsområde og er ingen begrensning av oppfinnelsen. Suitable production techniques are well known to those skilled in the art, see, for example, Sambrook et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Press (Cold Spring Harbor, NY). Alternatively, peptides can also be synthesized by the well-known solid phase peptide synthesis method (Merrifield, "J. Am. Chem. Soc", 85:2149 (1962); Stewart and Young, "Solid PhasePeptide Synthesis" (Freeman, San Francisco, 1969), p. 27-62). These and other suitable production methods are within the expert's area of knowledge and are not a limitation of the invention.

Spesielt ønskelige proteiner inkluderer AAV capsidproteinene som kodes av nukleotid-sekvensene som identifisert ovenfor. Sekvensene av mange av capsidproteinene ifølge oppfinnelsen er tilveiebragt i en innretning i figur 12 og/eller i sekvenslistene, SEQ ID nr. 2 og 60 til 115 hvortil det vises når det gjelder detaljer. AAV capsidet består av tre proteiner, vpl, vp2 og vp3, som er alternative spleisevarianter. Full-lengde sekvensen som tilveiebringes i disse figurer er den til vpl. Basert på nummereringen av AAV7 capsidet [SEQ ID nr. 2] spenner sekvensene av vp2 over aminosyre 138 - 737 av AAV7 og sekvensene av vp3 spenner over aminosyrene 203 - 737 av AAV7. Med denne informasjon kan fagmannen lett bestemme lokasjonen for vp2- og vp3-proteinene for de andre nye serotyper ifølge oppfinnelsen. Particularly desirable proteins include the AAV capsid proteins encoded by the nucleotide sequences identified above. The sequences of many of the capsid proteins according to the invention are provided in a device in Figure 12 and/or in the sequence lists, SEQ ID No. 2 and 60 to 115 to which reference is made when it comes to details. The AAV capsid consists of three proteins, vpl, vp2 and vp3, which are alternative splice variants. The full-length sequence provided in these figures is that of vpl. Based on the numbering of the AAV7 capsid [SEQ ID No. 2], the sequences of vp2 span amino acids 138 - 737 of AAV7 and the sequences of vp3 span amino acids 203 - 737 of AAV7. With this information, the person skilled in the art can easily determine the location of the vp2 and vp3 proteins for the other new serotypes according to the invention.

Andre ønskelige proteiner og fragmenter av capsidproteinet inkluderer de konstante og variable områder, lokalisert mellom hypervariable områder (HPV) og sekvensene av HPV områdene selv. En algoritme utviklet for å bestemme arealer med sekvensdivergens i AAV2 har gitt 12 hypervariable områder (HVR) av hvilke 5 overlapper eller er del av de fire tidligere beskrevne variable områder, se Chiorini et al, "J. Virol", 73:1309-19 (1999), Rutledge et al, "J. Virol.", 72:309-319. Ved bruk av denne algoritme og/eller innretningsteknikkene som beskrevet her bestemmes HVR av de nye AAV serotyper. Med henblikk på numre av AAV2 vpl [SEQ ID nr. 70], er for eksempel HVR lokalisert som følger: HVR1, aa 146-152; HVR2, aa 182-186; HVR3, aa 262-264, HVR4, aa 381-383, HVR5, aa 450-474; HVR6, aa 490-495; HVR7, aa 500-504; HVR8, aa 514-522; HVR9, aa 534-555; HVR10, aa 581-594; HVR11, aa 658-667; ogHVR12, aa 705-719. Ved bruk av en innretning fremstilt i henhold til konvensjonelle metoder og de nye sekvenser som er gitt her, se for eksempel figur 2, kan man lett bestemme lokasjonen av denne HVR i de nye AAV serotyper ifølge oppfinnelsen. Ved bruk for eksempel av figur 2 kan man lett bestemme at for AAV7 [SEQ ID nr. 2] er HVRl lokalisert ved aa 146 - 152; er HVR2 lokalisert ved 182-187; er HVR3 lokalisert ved 263-266, er HVR4 lokalisert ved aa 383-385, er HVR5 lokalisert ved aa 451-475; er HVR6 lokalisert ved aa 491-496, er HVR7 lokalisert ved aa 501-505; er HVR8 lokalisert ved aa 513-521; erHVR9 lokalisert ved 533-554; erHVRlO lokalisert ved aa 583-596; er HVRl 1 lokalisert ved aa 660-669, er HVR12 lokalisert ved 707-721. Ved bruk av den her gitte informasjon kan HVR'ene for de andre nye serotyper ifølge oppfinnelsen lett bestemmes. Other desirable proteins and fragments of the capsid protein include the constant and variable regions, located between hypervariable regions (HPV) and the sequences of the HPV regions themselves. An algorithm developed to determine areas of sequence divergence in AAV2 has yielded 12 hypervariable regions (HVR) of which 5 overlap or are part of the four previously described variable regions, see Chiorini et al, "J. Virol", 73:1309-19 (1999), Rutledge et al, "J. Virol.", 72:309-319. Using this algorithm and/or the setup techniques as described here, the HVR of the new AAV serotypes is determined. With respect to numbers of AAV2 vpl [SEQ ID No. 70], for example, the HVR is located as follows: HVR1, aa 146-152; HVR2, aa 182-186; HVR3, aa 262-264, HVR4, aa 381-383, HVR5, aa 450-474; HVR6, aa 490-495; HVR7, aa 500-504; HVR8, aa 514-522; HVR9, aa 534-555; HVR10, aa 581-594; HVR11, aa 658-667; andHVR12, aa 705-719. By using a device produced according to conventional methods and the new sequences given here, see for example Figure 2, the location of this HVR in the new AAV serotypes according to the invention can be easily determined. Using, for example, Figure 2, one can easily determine that for AAV7 [SEQ ID no. 2] HVR1 is located at aa 146 - 152; HVR2 is located at 182-187; HVR3 is located at 263-266, HVR4 is located at aa 383-385, HVR5 is located at aa 451-475; HVR6 is located at aa 491-496, HVR7 is located at aa 501-505; HVR8 is located at aa 513-521; isHVR9 located at 533-554; isHVRlO located at aa 583-596; HVR1 1 is located at aa 660-669, HVR12 is located at 707-721. Using the information provided here, the HVRs for the other new serotypes according to the invention can be easily determined.

I tillegg er, i capsidet, aminosyreidentitetskassettene identifisert. Disse kassetter er av spesiell interesse da de er brukbare ved konstruering av kunstige serotyper, for eksempel ved å erstatte en HVRl kassett av en valgt serotype med en HVRl kassett av en annen serotype. Visse av disse identitetskassetter er angitt i figur 2, se figur 2, som tilveiebringer Clustal X innretningen som har en lineal vist under sekvensen og som star-ter ved 1 for posisjonen for den første rest. Linjen over lineal en benyttes for å markere sterkt konserverte posisjoner. Tegnene (<*>, :,.) benyttes. "<*>" antyder posisjoner som har en enkelt, helt konservert rest.":" antyder at en "sterk" gruppe er helt bevart."." indikerer at en "svakere" gruppe er fullt konservert. Dette er alle positivt bedømmende grupper som opptrer i Gonnet Pam250 matrisen. De sterke grupper er definert som en sterk bedømmelse >0,5 og de svake grupper er definert som svak bedømmelse <0,5. In addition, in the capsid, the amino acid identity cassettes are identified. These cassettes are of particular interest as they are useful in the construction of artificial serotypes, for example by replacing an HVR1 cassette of a selected serotype with an HVR1 cassette of another serotype. Some of these identity cassettes are indicated in Figure 2, see Figure 2, which provides the Clustal X device which has a ruler shown below the sequence and which starts at 1 for the position of the first residue. The line above ruler one is used to mark highly conserved positions. The characters (<*>, :,.) are used. "<*>" suggests positions that have a single, fully conserved residue.":" suggests that a "strong" group is fully conserved."." indicates that a "weaker" group is fully conserved. These are all positively judging groups that appear in the Gonnet Pam250 matrix. The strong groups are defined as a strong assessment >0.5 and the weak groups are defined as a weak assessment <0.5.

I tillegg inkluderer eksempler på andre egnede fragmenter av AAV capsider, med henblikk på nummerering av AAV2 [SEQ ID nr. 70], aa 24 - 42, aa 25- 28; aa 81 - 85; Aal33-165; aa 134- 165; aa 137-143; aa 154-156; aa 194-208; aa 261-274; aa262-274; aa 171-173; aa 413-417; aa 449-478; aa 494-525; aa 534-571; aa 581-601; aa 660-671; aa 709-723. Ytterligere andre ønskelige fragmenter inkluderer for eksempel, i AAV7, aminosyrene 1 til 184 av SEQ ID nr. 2, aminosyrene 199 til 259; aminosyrene 274 til 446; aminosyrene 603 til 659; aminosyrene 670 til 706; aminosyrene 724 til 736; aa 185 til 198; aa 260 til 273; aa 447 til 477; aa 495 til 602; aa 660 til 669; og aa 707 til 723. Ytterligere andre ønskelige områder, basert på nummereringen av AAV7 [SEQ ID nr. 2] er valgt fra gruppen bestående av aa 185 til 198; aa 260 til 273; aa 447 til 477; aa 495 til 602; aa 660 til 669; og aa 707 til 723. Ved bruk av innretningen som tilveiebragt her, oppnådd ved bruk av Clustal X programmet ved default innstillinger, eller ved bruk av andre kommersielt eller ålment tilgjengelige innretningsprogrammer ved default innstillinger, kan fagmannen lett bestemme tilsvarende fragmenter av de nye AAV capsider ifølge oppfinnelsen. In addition, examples of other suitable fragments of AAV capsids include, for the purpose of numbering AAV2 [SEQ ID No. 70], aa 24-42, aa 25-28; aa 81 - 85; Aal33-165; aa 134-165; aa 137-143; aa 154-156; aa 194-208; aa 261-274; aa262-274; aa 171-173; aa 413-417; aa 449-478; aa 494-525; aa 534-571; aa 581-601; aa 660-671; aa 709-723. Additional other desirable fragments include, for example, in AAV7, amino acids 1 to 184 of SEQ ID NO: 2, amino acids 199 to 259; amino acids 274 to 446; amino acids 603 to 659; amino acids 670 to 706; amino acids 724 to 736; aa 185 to 198; aa 260 to 273; aa 447 to 477; aa 495 to 602; aa 660 to 669; and aa 707 to 723. Additional other desirable regions, based on the numbering of AAV7 [SEQ ID NO: 2] are selected from the group consisting of aa 185 to 198; aa 260 to 273; aa 447 to 477; aa 495 to 602; aa 660 to 669; and aa 707 to 723. By using the device provided here, obtained by using the Clustal X program at default settings, or by using other commercially or commonly available device programs at default settings, the person skilled in the art can easily determine corresponding fragments of the new AAV capsids according to the invention.

Andre ønskelige proteiner er AAV rep proteinene [aa 1 til623 av SEQ ID nr. 3 for AAV7] og funksjonelle fragmenter derav inkludert for eksempel aa 1 til 171, aa 172 til 372, aa 373 til 444, aa 445 til 623 av SEQ ID nr. 3, blant andre. Hensiktsmessig er disse fragmenter minst 8 aminosyrer lange, se figur 3. Sammenlignbare områder kan identifiseres i proteinene av andre nye AAVer ifølge oppfinnelsen ved bruk av de her beskrevne teknikker og de som er kjente i teknikken. I tillegg kan fragmenter av andre ønskede lengder lett benyttes. Slike fragmenter kan produseres rekombinant eller ved andre egnede midler, for eksempel kjemisk syntese. Other desirable proteins are the AAV rep proteins [aa 1 to 623 of SEQ ID No. 3 for AAV7] and functional fragments thereof including, for example, aa 1 to 171, aa 172 to 372, aa 373 to 444, aa 445 to 623 of SEQ ID No. 3, among others. Appropriately, these fragments are at least 8 amino acids long, see Figure 3. Comparable regions can be identified in the proteins of other new AAVs according to the invention using the techniques described here and those known in the art. In addition, fragments of other desired lengths can easily be used. Such fragments can be produced recombinantly or by other suitable means, for example chemical synthesis.

Sekvensene, proteinene og fragmentene ifølge oppfinnelsen kan fremstilles på en hvilken som helst egnet måte inkludert rekombinantproduksjon, kjemisk syntese eller andre syntetiske midler. Slike produksjonsmetoder ligger innenfor fagmannens kunnskapsom-råde og er ingen begrensning av oppfinnelsen. The sequences, proteins and fragments of the invention may be prepared by any suitable means including recombinant production, chemical synthesis or other synthetic means. Such production methods are within the expert's area of knowledge and are not a limitation of the invention.

IV. Produksjon av rAAV med nye AAV capsiderIV. Production of rAAV with new AAV capsids

Oppfinnelsen omfatter nye, vill-type AAV serotyper som er identifisert ifølge oppfinnelsen, der sekvensene av disse vill-type AAV serotyper er frie for DNA og/eller cellu-lært materiale som disse vimser er forbundet med i naturen. I et annet aspekt tilveiebringer oppfinnelsen molekyler som benytter de nye AAV sekvenser ifølge oppfinnelsen, inkludert fragmenter derav, for fremstilling av molekyler som er brukbare ved avlevering av et heterologt gen eller andre nukleinsyresekvenser til en målcelle. The invention includes new, wild-type AAV serotypes that have been identified according to the invention, where the sequences of these wild-type AAV serotypes are free of DNA and/or cellular material with which these viruses are associated in nature. In another aspect, the invention provides molecules that use the new AAV sequences according to the invention, including fragments thereof, for the production of molecules that are usable when delivering a heterologous gene or other nucleic acid sequences to a target cell.

Molekylene ifølge oppfinnelsen som inneholder sekvenser av en ny AAV serotype iføl-ge oppfinnelsen inkluderer et hvilket som helst genetisk element (vektor) som kan avgis til en vertscelle, for eksempel naken DNA, et plasmid, en fag, en transposon, et cosmid, et episom, et protein i en ikke-viral avleveringsbærer (for eksempel en lipidbasert bærer), en vims og så videre som overfører sekvensen som bæres derpå. Den valgte vektor kan avleveres ved hjelp av en hvilken som helst egnet metode inkludert transfeksjon, elektroporering, liposomavlevering, membranfusjonsteknikker, høyhastighets DNA-belagte pellets, viralinfeksjon og protoplastfusjon. Metodene som benyttes for å konstruere enhver utførelsesform av oppfinnelsen er velkjente for fagmannen på nukleinsy-remanipulering og inkluderer genetisk konstruksjon, rekombinant konstruksjon og syn-teseteknikker, se for eksempel Sambrook et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor, N. Y. The molecules according to the invention which contain sequences of a new AAV serotype according to the invention include any genetic element (vector) which can be delivered to a host cell, for example naked DNA, a plasmid, a phage, a transposon, a cosmid, a episome, a protein in a non-viral delivery vehicle (eg, a lipid-based vehicle), a vims, and so on that transfers the sequence carried thereon. The selected vector can be delivered by any suitable method including transfection, electroporation, liposome delivery, membrane fusion techniques, high speed DNA coated pellets, viral infection and protoplast fusion. The methods used to construct any embodiment of the invention are well known to those skilled in the art of nucleic acid re-engineering and include genetic engineering, recombinant engineering and synthetic techniques, see, for example, Sambrook et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor, N. Y.

I en utførelsesform inneholder vektorene ifølge oppfinnelsens sekvenser som koder et nytt AAV capsid ifølge oppfinnelsen (for eksempel AAV7 capsid, AAV 44-2 (rh.10), et AAV10 capsid, et AAV11 capsid, et AAV12 capsid), eller et fragment av et eller flere av disse AAV capsider. Alternativt kan vektorene selv inneholde capsidproteinet eller et fragment derav. In one embodiment, the vectors according to the invention contain sequences that encode a new AAV capsid according to the invention (for example AAV7 capsid, AAV 44-2 (rh.10), an AAV10 capsid, an AAV11 capsid, an AAV12 capsid), or a fragment of a or more of these AAV capsids. Alternatively, the vectors themselves may contain the capsid protein or a fragment thereof.

Eventuelt kan vektorene ifølge oppfinnelsen inneholde sekvenser som koder AAV rep proteiner. Slike rep sekvenser kan være fra den samme AAV serotype som tilveiebringer cap sekvensen. Alternativt tilveiebringer oppfinnelsen vektorer hvor rep sekvensen er fra en AAV serotype som skiller seg fra den som tilveiebringer cap sekvensene. I en utførelsesform blir rep- og cap-sekvensene uttrykt fra separate kilder (for eksempel separate vektorer, eller en vertscelle og en vektor). I en annen utførelsesform blir disse rep sekvenser uttrykt fra den samme kilde som cap sekvensene. I denne utførelsesform kan rep sekvensene fuseres i rammen til cap sekvensene av en forskjellig AAV serotype for å danne en kimer AAV vektor. Eventuelt kan vektorene ifølge oppfinnelsen videre inneholder et minigen omfattende et valgt transgen som er flankert av AAV5' ITR og Optionally, the vectors according to the invention may contain sequences that encode AAV rep proteins. Such rep sequences can be from the same AAV serotype that provides the cap sequence. Alternatively, the invention provides vectors where the rep sequence is from an AAV serotype that differs from that which provides the cap sequences. In one embodiment, the rep and cap sequences are expressed from separate sources (eg, separate vectors, or a host cell and a vector). In another embodiment, these rep sequences are expressed from the same source as the cap sequences. In this embodiment, the rep sequences can be fused in frame to the cap sequences of a different AAV serotype to form a chimeric AAV vector. Optionally, the vectors according to the invention can further contain a minigene comprising a selected transgene which is flanked by the AAV5' ITR and

AAV3'ITR.AAV3'ITR.

Således inneholder i en utførelsesform de her beskrevne vektorer nukleinsyresekvenser som koder et intakt AAV capsid som kan være fra en enkelt AAV serotype (for eksempel AAV7 eller en annen ny AVV). Alternativt inneholder disse vektorer sekvenser som koder kunstige capsider som inneholder ett eller fleres fragmenter av AAV7 (eller en annen ny AAV capsid) fusert til heterologe AAV- eller ikke-AAV capsidproteiner eller fragmenter derav. Disse kunstige capsidproteiner er valgt blant ikke-kontigøse deler av AAV7 (eller en annen ny AAV) capsid eller fra capsider av andre AAV serotyper. For eksempel kan det være ønskelig å modifisere de kodende områder av en eller flere av AAV vpl, for eksempel i ett eller flere av de hypervariable områder (det vil si HPV1-12), eller vp2 og/eller vp3.1 et annet eksempel kan det være ønskelig å endre startcodonen for vp3 proteinet til GTG. Disse modifikasjoner kan skje for å øke ekspresjon, utbytte og/eller forbedre rensing i de valgte ekspresjonssystemer, eller for et annet ønsket formål (for eksempel for å endre tropismen eller endre nøytraliseringsantistoffepito-pene). Thus, in one embodiment, the vectors described here contain nucleic acid sequences that encode an intact AAV capsid which may be from a single AAV serotype (for example AAV7 or another new AVV). Alternatively, these vectors contain sequences encoding artificial capsids containing one or more fragments of AAV7 (or another novel AAV capsid) fused to heterologous AAV or non-AAV capsid proteins or fragments thereof. These artificial capsid proteins are selected from non-contiguous portions of the AAV7 (or another new AAV) capsid or from capsids of other AAV serotypes. For example, it may be desirable to modify the coding regions of one or more of the AAV vpl, for example in one or more of the hypervariable regions (ie HPV1-12), or vp2 and/or vp3.1 another example may it may be desirable to change the start codon for the vp3 protein to GTG. These modifications can occur to increase expression, yield and/or improve purification in the chosen expression systems, or for another desired purpose (for example to change the tropism or change the neutralizing antibody epitopes).

Vektorene som beskrives her, for eksempel et plasmid, er brukbare for et antall formål men er spesielt godt egnet for bruk ved produksjon av en rAAV inneholdende et capsid omfattende AAV sekvenser eller et fragment derav. Disse vektorer, inkludert rAAV, deres elementer, konstruksjon og anvendelse er beskrevet i detalj her. The vectors described here, for example a plasmid, are usable for a number of purposes but are particularly well suited for use in the production of an rAAV containing a capsid comprising AAV sequences or a fragment thereof. These vectors, including rAAV, their elements, construction and application are described in detail here.

I ett aspekt tilveiebringer oppfinnelsen en fremgangsmåte for å generere en rekombinant, adenoassosiert virus (AAV) med et AAV serotype 7 (eller et annet nytt AAV) capsid, eller en del derav. En slik metode involverer dyrking av en vertscelle som inneholder en nukleinsyresekvens som koder et adenoassosiert virus (AAV) serotype 7 (eller et annen nytt AAV) capsid protein eller et fragment derav, som definert her; et funksjonelt rep gen; et minigen bestående minimum av AAV inverterte terminal repeater (ITR'er) og et transgen; og tilstrekkelig med hjelperfunksjoner til å tillate pakking av minigenet inn i AAV7 (eller et annet nytt AAV) capsid protein. In one aspect, the invention provides a method for generating a recombinant adeno-associated virus (AAV) with an AAV serotype 7 (or other novel AAV) capsid, or a portion thereof. One such method involves culturing a host cell containing a nucleic acid sequence encoding an adeno-associated virus (AAV) serotype 7 (or other novel AAV) capsid protein or fragment thereof, as defined herein; a functional rep gene; a minigene consisting of a minimum of AAV inverted terminal repeaters (ITRs) and a transgene; and sufficient helper functions to allow packaging of the minigene into the AAV7 (or another new AAV) capsid protein.

Komponentene som kreves for dyrking i vertscellen for pakking av et AAV minigen i et AAV capsid kan tilveiebringes i vertscellen in trans. Alternativt kan hvilke som helst en eller flere av de krevede komponenter (for eksempel minigen, rep sekvenser, cap sekvenser, og/eller hjelperfunksjoner) tilveiebringes av en stabil vertscelle som er konstruert til å inneholde en eller flere av de nødvendige komponenter ved bruk av i og for seg kjente metoder for fagmannen. Helst vil en slik stabil vertscelle inneholde den eller de krevede komponenter under kontroll av en induserbar promoter. Imidlertid kan den eller de krevede komponenter være under kontroll av en konstitutiv promoter. Eksempler på egnede induserbare og konstitutive promotere gis her i diskusjonen av regulatoriske elementer som er egnet for bruk med transgenet. I nok et alternativ kan en valgt, stabil vertscelle inneholde en eller flere valgte komponenter under kontroll av en konstitutiv promoter og en eller flere andre valgte komponenter under kontroll av en eller flere induserbare promotere. For eksempel kan en stabil vertscelle genereres avledet fra 293 celler (som inneholder El hjelperfunksjoner under kontroll av en konstitutiv promoter), men som inneholder rep- og/eller cap proteinene under kontroll av induserbare promotere. Ytterligere andre stabile vertsceller kan genereres av fagmannen på området. The components required for cultivation in the host cell for packaging of an AAV minigene into an AAV capsid can be provided in the host cell in trans. Alternatively, any one or more of the required components (eg, minigene, rep sequences, cap sequences, and/or helper functions) can be provided by a stable host cell engineered to contain one or more of the required components using i and methods known to the person skilled in the art. Preferably, such a stable host cell will contain the required component(s) under the control of an inducible promoter. However, the required component(s) may be under the control of a constitutive promoter. Examples of suitable inducible and constitutive promoters are provided herein in the discussion of regulatory elements suitable for use with the transgene. In yet another alternative, a selected stable host cell may contain one or more selected components under the control of a constitutive promoter and one or more other selected components under the control of one or more inducible promoters. For example, a stable host cell can be generated derived from 293 cells (which contain E1 helper functions under the control of a constitutive promoter), but which contain the rep and/or cap proteins under the control of inducible promoters. Additional other stable host cells can be generated by one skilled in the art.

Minigenet, rep sekvensene, cap sekvensene og hjelperfunksj onene som er nødvendige for å produsere oppfinnelsens rAAV kan avleveres til den pakkende vertscelle i form av et hvilket som helst genetisk element som overfører sekvensene som bæres derpå. Det valgte, genetiske element kan avleveres ved en hvilken som helst egnet metode inkludert de som er beskrevet her. Metodene som benyttes for å konstruere en hvilken som helst utførelsesform av oppfinnelsen er velkjente for fagmannen på området nukleinsy-remanipulering og inkluderer genetisk konstruksjon, rekombinant konstruksjon og syntetiske teknikker, se for eksempel Sambrook et al. i "Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY. På tilsvarende måte er metoder for generering av rAAV virioner velkjent og valget av en egnet metode er ingen begrensning for oppfinnelsen, se for eksempel K. Fisher et al. i "J. Virol.", 70:520-532 (1993) samt US 5 478 745. The minigene, the rep sequences, the cap sequences and the helper functions necessary to produce the rAAV of the invention can be delivered to the packaging host cell in the form of any genetic element that transmits the sequences carried thereon. The selected genetic element may be delivered by any suitable method including those described herein. The methods used to construct any embodiment of the invention are well known to those skilled in the art of nucleic acid re-engineering and include genetic engineering, recombinant engineering and synthetic techniques, see, for example, Sambrook et al. in "Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY. Similarly, methods for generating rAAV virions are well known and the choice of a suitable method is not a limitation of the invention, see for example K. Fisher et al. in "J. Virol.", 70:520-532 (1993) as well as US 5,478,745.

A. MinigenA. Minigen

Minigenet består minimum av et transgen og dettes regulatoriske sekvenser, og 5'- og 3' AAV inverterte terminal repeater (ITR'er). Det er dette minigen som pakkes inn i et capsidprotein og avgis til en valgt vertscelle. The minigene consists as a minimum of a transgene and its regulatory sequences, and 5' and 3' AAV inverted terminal repeaters (ITRs). It is this minigene that is packaged into a capsid protein and delivered to a selected host cell.

1. Transgen1. Transgenic

Transgenet er en nukleinsyresekvens, heterolog til vektorsekvensene som flankerer transgenet, som koder et polypeptid, et protein eller et annet produkt av interesse. Den nukleinsyrekodende sekvens er operativt forbundet med regulatoriske komponenter på en måte som tillater transgen transkripsjon, translasjon og/eller ekspresjon i en vertscelle. The transgene is a nucleic acid sequence, heterologous to the vector sequences flanking the transgene, which encodes a polypeptide, protein or other product of interest. The nucleic acid coding sequence is operably linked to regulatory components in a manner that allows transgenic transcription, translation and/or expression in a host cell.

Sammensetningen av transgensekvensen vil avhenge av den anvendelse den resulterende vektor vil brukes for. For eksempel inkluderer en type transgensekvens en rapportør-sekvens som ved ekspresjon produserer et detekterbart signal. Slike rapportørsekvenser inkluderer uten begrensning DNA sekvenser som koder fJ-laktamase, P-galaktosidase The composition of the transgene sequence will depend on the application for which the resulting vector will be used. For example, one type of transgene sequence includes a reporter sequence that upon expression produces a detectable signal. Such reporter sequences include without limitation DNA sequences encoding β-lactamase, β-galactosidase

(LacZ), alkalisk fosfatase, tymidinkinase, grønt fluorescent protein (GFP), kloramfeni-kol acetyltransferase (CAT), luciferase, membranbundne proteiner inkludert for eksempel CD2, CD4, CD8, influensa hemagglutininproteinet, og andre som er velkjente i teknikken, til hvilke det foreligger høyaffinitetsantistoff rettet mot det eller kan produseres ved konvensjonelle midler, og fusjonsproteiner omfattende et membranbundet protein som på egnet måte er fusert til et anti-gen tag domene fra blant annet hemagglutinin eller Mye. (LacZ), alkaline phosphatase, thymidine kinase, green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), luciferase, membrane-bound proteins including, for example, CD2, CD4, CD8, the influenza hemagglutinin protein, and others well known in the art, to which there is a high-affinity antibody directed against it or can be produced by conventional means, and fusion proteins comprising a membrane-bound protein which is suitably fused to an antigen tag domain from, among other things, hemagglutinin or Mye.

Disse kodende sekvenser, assosiert med regulatoriske elementer som driver deres ekspresjon, gir signaler som er detekterbare ved konvensjonelle midler inkludert enzyma-tiske, radiografiske, kolorimetriske, fluoressens- eller andre spektrografiske analyser, fluorescentaktiverende cellesorteringsanalyser og immunologiske analyser, inkludert enzymlinket immunoabsorbentanalyse (ELISA), radioimmunoanalyse (RIA) og im-munohistokjemi. Der for eksempel markørsekvensen er LacZ genet blir nærværet av vektoren som bærer signalet detektert ved analyser på P-galaktosidaseaktivitet. Der transgenet er grønt fluorescent protein eller luciferase kan vektoren som bærer signalet måles visuelt ved farve- eller lysproduksjon i et luminometer. These coding sequences, associated with regulatory elements that drive their expression, provide signals detectable by conventional means including enzymatic, radiographic, colorimetric, fluorescence or other spectrographic assays, fluorescent-activating cell sorting assays, and immunological assays, including enzyme-linked immunoabsorbent assay (ELISA), radioimmunoassay (RIA) and immunohistochemistry. Where, for example, the marker sequence is the LacZ gene, the presence of the vector carrying the signal is detected by analyzes of β-galactosidase activity. Where the transgene is green fluorescent protein or luciferase, the vector carrying the signal can be measured visually by color or light production in a luminometer.

Imidlertid er transgenet helst en ikke-markør sekvens som koder et produkt som er brukbart i biologi og medisin som proteiner, peptider, RNA, enzymer, eller katalytiske RNA'er. Øskede RNA molekyler inkluderer tRNA, dsRNA, ribosomal RNA, katalytiske RNA'er og antisense RNA'er. Et eksempel på en brukbar RNA sekvens er en sekvens som sletter ekspresjon av en innsiktet nukleinsyresekvens i det behandlede dyr. However, the transgene is preferably a non-marker sequence that encodes a product useful in biology and medicine such as proteins, peptides, RNA, enzymes, or catalytic RNAs. Desired RNA molecules include tRNA, dsRNA, ribosomal RNA, catalytic RNAs and antisense RNAs. An example of a usable RNA sequence is a sequence which deletes expression of a target nucleic acid sequence in the treated animal.

Transgenet kan benyttes for å korrigere eller forbedre gendefekt og som kan inkludere defekter der normale gener uttrykkes i mindre enn normale nivåer eller defekter der det funksjonelle genprodukt ikke uttrykkes. En foretrukken type transgensekvenser koder et terapeutisk protein eller et polypeptid som uttrykkes i en vertscelle. Oppfinnelsen inkluderer videre bruken av multiple transgener, for eksempel for å korrigere eller forbedre en gendefekt forårsaket av et multisubenhetprotein. I visse situasjoner kan et forskjellig transgen benyttes for å kode hver subenhet av et protein, eller for å kode forskjellige peptider eller proteiner. Dette er ønskelig når størrelsen av det DNA som koder protein-subenheten er stor, for eksempel for et immunoglobulin, den plateavledede vekstfaktor, eller et dystrofint protein. For at cellen skal produsere multisubenhetproteinet blir cellen fisert med den rekombinante virus inneholdende hver av de forskjellige subenheter. Alternativt kan forskjellige subenheter av et protein kodes av det samme transgen. I dette tilfelle inkluderer et enkelt transgen det DNA som koder hver av subenhetene med DNA for hver subenhet separert av et indre ribozym inngangssete (IRES). Det er ønskelig når størrelsen for det DNA som koder hver av subenhetene er liten, for eksempel at den totale størrelse for det DNA som koder subenhetene og IRES er mindre enn fem kilobaser. Som et alternativ til en IRES kan det angjeldende DNA være separert av sekvenser som koder et 2A peptid, som er selvspaltende i et post-translasjonelt evenement, se for eksempel M L. Donnelly et al. i "J. Gen. Virol.", 78(Pt 1): 13-21 (Jan 1997); S Furier et al. i "Gene Ther.", 8(ll):864-873 (Juni 2001); H Klump et al. i "Gene Ther.", 8(10:811-817 (Mai 2001). Dette 2A peptid er signifikant mindre enn en IRES, noe som gjør det velegnet for bruk når rommet er en begrensende faktor. Imidlertid kan det valgte transgen kode et hvilket som helst, biologisk aktivt produkt eller et annet produkt, for eksempel et produkt som er ønskelig for studier. The transgene can be used to correct or improve gene defects and that can include defects where normal genes are expressed at less than normal levels or defects where the functional gene product is not expressed. A preferred type of transgene sequences encodes a therapeutic protein or polypeptide that is expressed in a host cell. The invention further includes the use of multiple transgenes, for example to correct or improve a gene defect caused by a multisubunit protein. In certain situations, a different transgene can be used to encode each subunit of a protein, or to encode different peptides or proteins. This is desirable when the size of the DNA encoding the protein subunit is large, for example for an immunoglobulin, the platelet-derived growth factor, or a dystrophin protein. In order for the cell to produce the multisubunit protein, the cell is infected with the recombinant virus containing each of the different subunits. Alternatively, different subunits of a protein may be encoded by the same transgene. In this case, a single transgene includes the DNA encoding each of the subunits with DNA for each subunit separated by an internal ribozyme entry site (IRES). It is desirable when the size of the DNA encoding each of the subunits is small, for example that the total size of the DNA encoding the subunits and the IRES is less than five kilobases. As an alternative to an IRES, the relevant DNA can be separated by sequences encoding a 2A peptide, which is self-cleaving in a post-translational event, see for example M L. Donnelly et al. in "J. Gen. Virol.", 78(Pt 1): 13-21 (Jan 1997); S Fourier et al. in "Gene Ther.", 8(ll):864-873 (June 2001); H Klump et al. in "Gene Ther.", 8(10:811-817 (May 2001). This 2A peptide is significantly smaller than an IRES, making it suitable for use when space is a limiting factor. However, the selected transgene may encode a any biologically active product or other product, for example a product desirable for studies.

Egnede transgener kan lett velges av fagmannen på området. Valget av transgen er ikke ansett som en begrensende faktor for oppfinnelsen. Suitable transgenes can be easily selected by the person skilled in the art. The choice of transgene is not considered a limiting factor for the invention.

2. Regulatoriske elementer2. Regulatory elements

I tillegg til hovedelementene som er identifisert ovenfor for minigenet inkluderer vektoren også nødvendige, konvensjonelle kontrollelementer som operativt er forbundet til transgenet på en måte som tillater dets transkripsjon, translasjon og/eller ekspresjon i en celle som er transfektert med plasmidvektoren eller infisert med virusen som produseres ifølge oppfinnelsen. Som benyttet her inkluderer "operativt forbundne" sekvenser både ekspresjonskontrollsekvenser som er tilstøtende genet av interesse og ekspresjonskontrollsekvenser som virker in trans eller i en avstand for å kontrollere genet av interesse. In addition to the major elements identified above for the minigene, the vector also includes necessary conventional control elements operably linked to the transgene in a manner that permits its transcription, translation and/or expression in a cell transfected with the plasmid vector or infected with the virus produced according to the invention. As used herein, "operably linked" sequences include both expression control sequences that are adjacent to the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest.

Ekspresjonskontroll sekvenser inkluderer egnede transkripsjonsinitierings-, -terminerings-, promoter- og enhancersekvenser; effektive RNA prosesseringssignaler som spleise- og polyadenylerings (poly A) signaler, sekvenser som stabiliserer cyto-plasmiske mRNA; sekvenser som forbedrer translasjonseffektiviteten (det vil si Kozak konsensus sekvens); sekvenser som forbedrer proteinstabiliteten; og, hvis ønskelig, sekvenser som forbedrer sekresjonen av det kodede produkt. Et stort antall ekspresjonskontroll sekvenser, inkludert promotere som er native, konstitutive, induserbare og/eller vevspesifikke, er velkjente i teknikken og kan benyttes. Expression control sequences include suitable transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (poly A) signals, sequences that stabilize cytoplasmic mRNAs; sequences that improve translational efficiency (that is, the Kozak consensus sequence); sequences that improve protein stability; and, if desired, sequences that enhance secretion of the encoded product. A large number of expression control sequences, including promoters that are native, constitutive, inducible and/or tissue specific, are well known in the art and can be used.

Eksempler på konstitutive promotere inkluderer, uten begrensning, den retrovirale Rous sarkoma virus (RSV) LTR promoter (eventuelt med RSV enhanceren), cytomegalovirus (CMV) promoteren (eventuelt med CMV enhanceren), [se for eksempel Boshart et al. i "Cell", 41:521-530 (1985)], SV40 promoteren, dihydrofolatreduktasepromoteren, p-aktivpromoteren, fosfoglycerol kinase (PGK) promoteren, og EF la promoteren [Invitrogen]. Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer), [see, for example, Boshart et al. in "Cell", 41:521-530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the β-active promoter, the phosphoglycerol kinase (PGK) promoter, and the EF la promoter [Invitrogen].

Induserbare promotere tillater regulering av genekspresjon og kan reguleres ved eksogent tilførte forbindelser, miljøfaktorer som temperatur, eller nærværet av en spesifikk fysiologisk tilstand, for eksempel akuttfase, en spesiell differensieringstilstand for cellen, eller kun i replikerende celler. Induserbare promotere og induserbare systemer er tilgjengelige fra et antall kommersielle kilder inkludert, uten begrensning, Invitrogen, Clontech og Ariad. Mange andre systemer er beskrevet og kan lett velges av fagmannen. Eksempler på induserbare promotere som reguleres av eksogent tilførte promotere inkluderer den sinkinduserbare saue metallotionin (MT) promoter, den deksametason (Dex)-induserbare musebrysttumorvirus (MMTV) promoter, T7 polymerase promoter system [WO 98/10088]; ekdyson insektpromoteren [No et al. "Proe. Nati. Acad. Sei. USA", 93:3346-3351 (1996)], det tetracyklinrepresserbare system [Gossen et al., "Proe. Nati. Acad. Sei. USA", 89:5547-5551] (1992)], det tetracyklininduserbare system [Gossen et al. "Science", 268:1766-1769 (1995), se også Harvey et al. "Curr. Opin. Chem. Biol.", 2:512-518 (1998)], det RU486-induserbare system [Wang et al., "Nat. Biotech.", 15:239-243 (1997) og Wang et al., "Gene Ther.", 4:432-441 (1997)] og det rapamycin-induserbare system [Magari et al., "J. Clin. Invest", 100:2865-2872 (1997)]. Ytterligere andre typer av induserbare promotere som kan være brukbare i denne kontekst er de som reguleres av en spesifikk, fysiologisk tilstand, for eksempel temperatur, akuttfase, en spesiell differensieringstilstand hos cellen eller kun i replikerende celler. Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as temperature, or the presence of a specific physiological state, for example acute phase, a particular differentiation state of the cell, or only in replicating cells. Inducible promoters and inducible systems are available from a number of commercial sources including, without limitation, Invitrogen, Clontech, and Ariad. Many other systems are described and can be easily selected by the person skilled in the art. Examples of inducible promoters regulated by exogenously supplied promoters include the zinc-inducible ovine metallothionein (MT) promoter, the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter, T7 polymerase promoter system [WO 98/10088]; the ecdysone insect promoter [No et al. "Proe. Nati. Acad. Sei. USA", 93:3346-3351 (1996)], the tetracycline-repressible system [Gossen et al., "Proe. Nati. Acad. Sei. USA", 89:5547-5551] ( 1992)], the tetracycline-inducible system [Gossen et al. "Science", 268:1766-1769 (1995), see also Harvey et al. "Curr. Opin. Chem. Biol.", 2:512-518 (1998)], the RU486-inducible system [Wang et al., "Nat. Biotech.", 15:239-243 (1997) and Wang et al. al., "Gene Ther.", 4:432-441 (1997)] and the rapamycin-inducible system [Magari et al., "J. Clin. Invest", 100:2865-2872 (1997)]. Still other types of inducible promoters which may be useful in this context are those which are regulated by a specific physiological condition, for example temperature, acute phase, a particular differentiation state of the cell or only in replicating cells.

I en annen utførelsesformer vil man benytte den native promoter for transgenet. Den native promoter kan være foretrukket når det er ønskelig at ekspresjonen av transgen In another embodiment, the native promoter for the transgene will be used. The native promoter may be preferred when it is desired that the expression of the transgene

etterligner den native ekspresjon. Den native promoter kan benyttes når ekspresjonen av transgenet må reguleres temporært eller utviklingsmessig, eller i en vevspesifikk modus, eller som respons på spesifikke transkripsjonelle stimuli. I en ytterligere utførelsesform kan andre native ekspresjonskontrollelementer som enhancerelementer, polyadenyle-ringsseter eller Kozak konsensus sekvenser også benyttes for å etterligne den native ekspresjon. mimics the native expression. The native promoter can be used when the expression of the transgene must be regulated temporally or developmentally, or in a tissue-specific mode, or in response to specific transcriptional stimuli. In a further embodiment, other native expression control elements such as enhancer elements, polyadenylation sites or Kozak consensus sequences can also be used to mimic the native expression.

En annen utførelsesform av transgenet inkluderer et transgen som operativt er forbundet med en vevspesfikk promoter. Hvis det for eksempel er ønskelig med ekspresjon i ge-lettmuskelen bør det benyttes en promoter som er aktiv i muskler. Disse inkluderer promotere fra gener som koder skjelett P-aktin, myosin lettkjedet 2A, dystofin, muskel - kreatin kinase, så vel som syntetiske muskelpromotere som aktiverer høyere enn naturlig forekommende promotere, (se Li et al. i "Nat. Biotech.", 17:241-245 (1999)). Eksempler på promotere som er vevspesifikke er kjente for leveren (albumin, Miyatake et al. i "J. Virol.", 71:5124-32 (1997); hepatitt B virus kjernepromoter, Sandig et al. i "Ge-ne Ther.", 3:1002-9 (1996); a-fetoprotein (AFP); Arbuthnot et al. i "Hum. Gene Ther.", 7:1503-14 (1996)), benosteokalcin (Stein et al. i "Mol. Biol. Rep." 24:185-96 (1997)), bensialoprotein (Chen et al. i "J. Bone Miner. Res.", 11:654-64 (1996)), lymfocytter (CD2, Hansal et al. i "J. Immunol.", 161:1063-8 (1998), immunoglobulin tungkjede; T celle receptor a kjede), neuronal som neuron-spesifikk enolase (NSE) promoter (Ander- sen et al. i "Cell. Mol. Neurobiol.", 13:503-15 (1993)), neurofilament lett-kjede gen (Piccioli et al. i "Proe. Nati. Acad. Sei. USA", 88:5611-5 (1991)) og det neuro-spesifikke vgf gen (Piccioli et al. i "Neuron", 15:373-84 (1995)), blant andre. Another embodiment of the transgene includes a transgene operably linked to a tissue-specific promoter. If, for example, expression in the gill muscle is desired, a promoter that is active in muscles should be used. These include promoters from genes encoding skeletal P-actin, myosin light chain 2A, dystofin, muscle - creatine kinase, as well as synthetic muscle promoters that activate higher than naturally occurring promoters, (see Li et al. in "Nat. Biotech.", 17:241-245 (1999)). Examples of promoters that are tissue specific are known for the liver (albumin, Miyatake et al. in "J. Virol.", 71:5124-32 (1997); hepatitis B virus core promoter, Sandig et al. in "Ge-ne Ther. ", 3:1002-9 (1996); α-fetoprotein (AFP); Arbuthnot et al. in "Hum. Gene Ther.", 7:1503-14 (1996)), benoosteocalcin (Stein et al. in "Mol . Biol. Rep." 24:185-96 (1997)), benzyloprotein (Chen et al. in "J. Bone Miner. Res.", 11:654-64 (1996)), lymphocytes (CD2, Hansal et al . in "J. Immunol.", 161:1063-8 (1998), immunoglobulin heavy chain; T cell receptor a chain), neuronal as neuron-specific enolase (NSE) promoter (Andersen et al. in "Cell. Mol . Neurobiol.", 13:503-15 (1993)), neurofilament light-chain gene (Piccioli et al. in "Proe. Nati. Acad. Sei. USA", 88:5611-5 (1991)) and the neuro -specific vgf gene (Piccioli et al. in "Neuron", 15:373-84 (1995)), among others.

Eventuelt kan plasmider som bærer terapeutisk brukbare transgener også inkludere valgbare markører eller rapportørgener kan inkludere sekvenser som koder geneticin-, hygromicin- eller purimycinresistens, blant andre. Slike valgbare rapportører eller mar-kørgener (fortrinnsvis lokalisert utenfor det virale genom som skal tilveiebringes via oppfinnelsens metode) kan benyttes for å signalisere nærværet av plasmidene i bakterieceller, som ampicillinresistens. Andre komponenter av plasmidet kan inkludere en replikasjonsopprinnelse. Valget av disse og andre promotere og vektorelementer er konvensjonelle og mange slike sekvenser er tilgjengelige, se for eksempel Sambrook et al. og de deri angitte referanser. Optionally, plasmids carrying therapeutically useful transgenes may also include selectable markers or reporter genes may include sequences encoding geneticin, hygromycin or purimycin resistance, among others. Such selectable reporters or marker genes (preferably located outside the viral genome to be provided via the method of the invention) can be used to signal the presence of the plasmids in bacterial cells, such as ampicillin resistance. Other components of the plasmid may include an origin of replication. The choice of these and other promoters and vector elements is conventional and many such sequences are available, see for example Sambrook et al. and the references stated therein.

Kombinasjonen av transgenet, promoter/enhancer, og 5- og 3' ITR'ene angis som et "minigen" for hensiktsmessighetens skyld i foreliggende beskrivelse. Tilveiebragt sammen med læren ifølge oppfinnelsen vil konstruksjonen av et slikt minigen lett kunne foretas ved å ty til konvensjonelle teknikker. The combination of the transgene, promoter/enhancer, and the 5 and 3' ITRs is referred to as a "minigene" for convenience in the present description. Provided together with the teachings according to the invention, the construction of such a minigene will be easily accomplished by resorting to conventional techniques.

3. Avlevering av minigenet til en pakkende vertscelle3. Delivery of the minigene to a packaging host cell

Minigenet kan bæres på en hvilken som helst egnet vektor, for eksempel et plasmid, som avgis til en vertscelle. Plasmider som er brukbare ifølge oppfinnelsen kan konstrueres slik at de er egnet for replikasjon og eventuelt integrasjon i prokaryotiske celler, pattedyrceller eller begge deler. Disse plasmider (eller andre vektorer som bærer de 5' AAV ITR-heterolog molekyl-3' ITR) inneholder sekvenser som tillater replikasjon av minigenet i eukaryoter og/eller prokaryoter og seleksjonsmarkører for disse systemer. Valgbare markører eller rapportørgener kan inkludere sekvenser som koder genetisin-, hygromicin- eller purimycinresistens, blant andre. Plasmidene kan også inneholde visse valgbare rapportører eller markørgener som kan benyttes for å signalisere nærværet av vektoren i bakterieceller, som ampicillinresistens. Andre komponenter av plasmidet kan inkludere en replikasjonsopprinnelse og et amplikon, for eksempel det amplikonsystem som benytter Epstein Barr virus nukleær antigenet. Dette amplikon system, eller andre tilsvarende amplikon komponenter, tillater høy kopi episomal replikasjon i cellene. Fortrinnsvis blir molekylet som bærer minigenet transfektert inn i cellen der det kan eksistere transient. Alternativt kan minigenet (som bærer den angjeldende 5' AAV ITR-heterologmolekyl-3' ITR) stabilt være integrert i genomet av vertscellen, enten kromo-somalt eller som et episom. I visse utførelsesformer kan minigenet være til stede i mul tiple kopier, eventuelt i hode-mot-hode-, hode-mot-hale- eller hale-mot-hale kontakta-merer. Egnede transfeksjonsteknikker er velkjente og kan lett benyttes for å avgi minigenet til vertscellen. The minigene can be carried on any suitable vector, for example a plasmid, which is delivered to a host cell. Plasmids which are usable according to the invention can be constructed so that they are suitable for replication and possibly integration in prokaryotic cells, mammalian cells or both. These plasmids (or other vectors carrying the 5' AAV ITR-heterologous molecule-3' ITR) contain sequences that allow replication of the minigene in eukaryotes and/or prokaryotes and selection markers for these systems. Selectable markers or reporter genes may include sequences encoding geneticin, hygromycin, or purimycin resistance, among others. The plasmids may also contain certain selectable reporters or marker genes that can be used to signal the presence of the vector in bacterial cells, such as ampicillin resistance. Other components of the plasmid may include an origin of replication and an amplicon, for example the amplicon system using the Epstein Barr virus nuclear antigen. This amplicon system, or other similar amplicon components, allows high copy episomal replication in the cells. Preferably, the molecule carrying the minigene is transfected into the cell where it can exist transiently. Alternatively, the minigene (carrying the relevant 5' AAV ITR heterologous molecule-3' ITR) may be stably integrated into the genome of the host cell, either chromosomally or as an episome. In certain embodiments, the minigene may be present in multiple copies, possibly in head-to-head, head-to-tail or tail-to-tail contact mers. Suitable transfection techniques are well known and can be easily used to deliver the minigene to the host cell.

Ved avlevering av vektoren omfattende minigenet ved transfeksjon blir generelt vektoren avgitt i en mengde fra rundt 5 ug til rundt 100 ug DNA og fortrinnsvis rundt 10 til rundt 50 ug DNA til rundt 1 x IO<4>celler til rundt 1 x IO13 celler og fortrinnsvis rundt 10<5>celler. Imidlertid kan de relative mengder av vektor DNA i forhold til vertsceller justeres, tatt i betraktning faktorer som valgt vektor, avleveringsmetode og de valgte vertsceller. Upon delivery of the vector comprising the minigene by transfection, the vector is generally delivered in an amount of from about 5 µg to about 100 µg DNA and preferably about 10 to about 50 µg DNA to about 1 x 10<4> cells to about 1 x 1013 cells and preferably around 10<5> cells. However, the relative amounts of vector DNA in relation to host cells can be adjusted, taking into account factors such as the chosen vector, delivery method and the chosen host cells.

B. Rep- og Cap sekvenserB. Rep and Cap sequences

I tillegg til minigenet inneholder vertscellen de sekvenser som driver ekspresjonen av det nye AAV capsid protein (for eksempel AAV7- eller annet nytt AAV capsid eller et kunstig capsid protein omfattende et fragment av ett eller flere av disse capsider) i vertscellen og rep sekvenser av den samme serotype som serotypen av de AAV ITR'er som ble funnet i minigenet. AAV cap- og -rep sekvensene kan uavhengig oppnås fra en AAV kilde som beskrevet ovenfor og kan innføres i vertscellen på en hvilken som helst kjent måte for fagmannen som beskrevet ovenfor. I tillegg og ved pseudotyping av et nytt AAV capsid ifølge oppfinnelsen kan sekvensene som koder hvert av de essensielle rep proteiner suppleres med den samme AAV serotype, eller sekvensene som koder rep proteinene kan suppleres med forskjellige AAV serotyper (for eksempel AAV1, AAV2, AAV3, AAV4, AAV5, AAV6 eller en av de nye serotyper som er identifisert her). For eksempel kan rep78/68 sekvensene være fra AAV2 mens rep52/40 sekvensene kan være fraAAVl. In addition to the minigene, the host cell contains the sequences that drive the expression of the new AAV capsid protein (for example AAV7 or another new AAV capsid or an artificial capsid protein comprising a fragment of one or more of these capsids) in the host cell and rep sequences of the same serotype as the serotype of the AAV ITRs found in the minigene. The AAV cap and -rep sequences can be independently obtained from an AAV source as described above and can be introduced into the host cell in any manner known to the person skilled in the art as described above. In addition and when pseudotyping a new AAV capsid according to the invention, the sequences that encode each of the essential rep proteins can be supplemented with the same AAV serotype, or the sequences that encode the rep proteins can be supplemented with different AAV serotypes (for example AAV1, AAV2, AAV3, AAV4, AAV5, AAV6 or one of the new serotypes identified here). For example, the rep78/68 sequences may be from AAV2 while the rep52/40 sequences may be from AAV1.

I en utførelsesform inneholder vertscellen stabilt capsidprotein under kontroll av en egnet promoter, for eksempel de som er beskrevet ovenfor. Aller helst og i denne utførel-sesform uttrykkes capsidproteinet under kontroll av en induserbar promoter. I en annen utførelsesform bringes capsidproteinet til veie til vertscellen in trans. Avgitt til vertscellen in trans kan capsidproteinet avgis via et plasmid som inneholder se sekvenser som er nødvendige for å styre ekspresjonen av det valgte capsidprotein i vertscellen. Helst bærer plasmidet som bærer capsidproteinet, når det avgis til vertscellen in trans, også andre sekvenser som er nødvendige for pakking av den angjeldende rAAV, for eksempel rep sekvensene. In one embodiment, the host cell contains stable capsid protein under the control of a suitable promoter, such as those described above. Most preferably, and in this embodiment, the capsid protein is expressed under the control of an inducible promoter. In another embodiment, the capsid protein is delivered to the host cell in trans. Delivered to the host cell in trans, the capsid protein can be delivered via a plasmid containing se sequences necessary to control the expression of the selected capsid protein in the host cell. Preferably, the plasmid which carries the capsid protein, when delivered to the host cell in trans, also carries other sequences which are necessary for packaging the rAAV in question, for example the rep sequences.

I en annen utførelsesform inneholder vertscellen stabilt rep sekvensene under kontroll av en egnet promoter som de som er beskrevet ovenfor. Helst blir de essensielle rep proteiner, i denne utførelsesform, uttrykt under kontroll av en induserbar promoter. I en annen utførelsesform tilveiebringes rep proteinene til vertscellene in trans. Avgitt til vertscellen in trans kan rep proteinene avlevers via et plasmid som inneholder de sekvenser som er nødvendige for å styre ekspresjonen av de valgte rep proteiner i vertscellen. Aller helst bærer plasmidet som bærer capsidet, når det avgis til vertscellen in trans, også andre sekvenser som er nødvendige for å pakke den angjeldende rAAV, for eksempel rep- og cap sekvensene. In another embodiment, the host cell stably contains the rep sequences under the control of a suitable promoter such as those described above. Preferably, the essential rep proteins, in this embodiment, are expressed under the control of an inducible promoter. In another embodiment, the rep proteins are provided to the host cells in trans. Delivered to the host cell in trans, the rep proteins can be delivered via a plasmid that contains the sequences necessary to control the expression of the selected rep proteins in the host cell. Most preferably, the plasmid carrying the capsid, when delivered to the host cell in trans, also carries other sequences that are necessary to package the rAAV in question, for example the rep and cap sequences.

I en utførelsesform kan således rep- og cap-sekvensene transfekteres inn i vertscellen på et enkelt nukleinsyremolekyl og eksistere stabilt i cellen som et episom. I en annen utfø-relsesform blir rep- og cap sekvensene stabilt integrert inn i genomet av cellen. En annen utførelsesform har rep- og trans sekvensene transient uttrykt i vertscellen. For eksempel omfatter et brukbart nukleinsyremolekyl for slik transfeksjon, fra 5'til 3', en promoter, en eventuell spacer anordnet mellom promoteren og startsetet for rep gen sekvensen, en AAV rep gen sekvens, og en AAV cap gen sekvens. Thus, in one embodiment, the rep and cap sequences can be transfected into the host cell on a single nucleic acid molecule and exist stably in the cell as an episome. In another embodiment, the rep and cap sequences are stably integrated into the genome of the cell. Another embodiment has the rep and trans sequences transiently expressed in the host cell. For example, a usable nucleic acid molecule for such transfection comprises, from 5' to 3', a promoter, any spacer arranged between the promoter and the starting site for the rep gene sequence, an AAV rep gene sequence, and an AAV cap gene sequence.

Eventuelt kan rep- og/eller cap sekvensene tilveiebringes på en vektor som inneholder andre DNA sekvenser som skal innføres i vertscellen. For eksempel kan vektoren inneholde rAAV konstruktet omfattende minigenet. Vektoren kan omfatte ett eller flere gener som koder hjelperfunksjonene, for eksempel de adenovirale proteiner El, E2a, og E40RF6, og genet for VAI RNA. Optionally, the rep and/or cap sequences can be provided on a vector that contains other DNA sequences to be introduced into the host cell. For example, the vector may contain the rAAV construct comprising the minigene. The vector may comprise one or more genes encoding the helper functions, for example the adenoviral proteins E1, E2a, and E40RF6, and the gene for VAI RNA.

Fortrinnsvis kan promoteren som brukes i dette konstrukt være en hvilken som helst av de konstitutive, induserbare eller native promotere som er velkjente for fagmannen på området eller som diskutert ovenfor. I en utførelsesform benyttes en AAV P5 promoter sekvens. Valget av AAVen for å tilveiebringe en hvilken som helst av disse sekvenser er ikke en begrensning for oppfinnelsen. Preferably, the promoter used in this construct can be any of the constitutive, inducible or native promoters well known to those skilled in the art or as discussed above. In one embodiment, an AAV P5 promoter sequence is used. The choice of the AAV to provide any of these sequences is not a limitation of the invention.

I en annen foretrukken utførelsesform er promoteren for rep en induserbar promoter som diskutert ovenfor i forbindelse med de transgenregulatoriske elementer. En foretrukken promoter for repekspresjon er T7 promoteren. Vektoren omfattende rep genet som reguleres av T7 promoteren og cap genet transfekteres eller transformeres inn i en celle som enten konstitutivt eller induserbart uttrykker T7 polymerasen, se WO 98/10088, publisert 12. mars 1998. In another preferred embodiment, the promoter for rep is an inducible promoter as discussed above in connection with the transgene regulatory elements. A preferred promoter for reexpression is the T7 promoter. The vector comprising the rep gene regulated by the T7 promoter and the cap gene is transfected or transformed into a cell which either constitutively or inducibly expresses the T7 polymerase, see WO 98/10088, published March 12, 1998.

Spaceren er et eventuelt element i konstruksjonen av vektoren. Spaceren er en DNA sekvens som er anbragt mellom promoteren og rep genet ATG startsete. Spaceren kan ha en hvilken som helst ønsket konstruksjon, det vil si at den kan være en vilkårlig sekvens av nukleotider eller kan eventuelt kode et genprodukt, for eksempel et markørgen. Spaceren kan inneholde gener som typisk inkorporerer start/stopp- og polyA seter. Spaceren kan være en ikke-kodende DNA sekvens fra en prokaryot eller en eukaryot, en repetitiv ikke-kodende sekvens, en kodende sekvens uten transkripsjonene kontroller eller en kodende sekvens med transkripsjonene kontroller. To eksempelkilder for spa-cersekvensen er a fag stigesekvens eller gjærstigesekvensen, som er kommersielt tilgjengelige, for eksempel blant annet fra Gibco eller Invitrogen. Spaceren kan være av en hvilken som helst størrelse tilstrekkelig til å redusere ekspresjonen av rep78- og rep68 genproduktene og etterlate rep52-, rep40- og cap gen produktene uttrykt i normale nivåer. Lengden av spaceren kan derfor ligge fra rundt 10 bp til rundt 10,0 kbp, fortrinnsvis i ormådet rundt lOObp til rundt 8,0 kbp. For å redusere muligheten for rekom-binasjon har spaceren fortrinnsvis en lengde kortere enn 2 kbp, imidlertid er oppfinnelsen ikke begrenset av dette. The spacer is an optional element in the construction of the vector. The spacer is a DNA sequence that is placed between the promoter and the rep gene ATG start site. The spacer can have any desired construction, i.e. it can be an arbitrary sequence of nucleotides or can optionally encode a gene product, for example a marker gene. The spacer may contain genes that typically incorporate start/stop and polyA sites. The spacer can be a non-coding DNA sequence from a prokaryote or a eukaryote, a repetitive non-coding sequence, a coding sequence without the transcription controls or a coding sequence with the transcription controls. Two example sources for the spacer sequence are a phage ladder sequence or the yeast ladder sequence, which are commercially available, for example from Gibco or Invitrogen, among others. The spacer can be of any size sufficient to reduce expression of the rep78 and rep68 gene products and leave the rep52, rep40 and cap gene products expressed at normal levels. The length of the spacer can therefore be from around 10 bp to around 10.0 kbp, preferably in the worm mode around 100 bp to around 8.0 kbp. In order to reduce the possibility of recombination, the spacer preferably has a length shorter than 2 kbp, however, the invention is not limited by this.

Selv o molekylet eller molekylene som tilveiebringer rep og cap kan eksistere i vertscellen transient (det vil si ved transfeksjon), er det foretrukket at en eller begge av rep- og cap proteinene og promoteren eller promoterne som kontrollerer deres ekspresjon, stabilt uttrykkes i vertscellen, for eksempel som et episom eller ved integrering i kromo-somet av vertscellen. Metodene som benyttes for å konstruere utførelsesformer av oppfinnelsen er konvensjonelle genetiske konstruksjons- eller rekombinante konstruksjons-teknikker som de som er beskrevet i referansene ovenfor. Mens foreliggende beskrivelse gir illustrerende eksempler på de spesifikke konstrukter vil fagmannen ved bruk av den her gitte informasjon kunne velge å konstruere hvilke som helst andre egnede konstrukter ved bruk av et utvalg av spacere, P5 promotere og andre elementer, inkludert minst ett translasjonelt start- og stoppsignal, og den eventuelle addisjon av polyadenylerings-seter. Although the molecule or molecules providing rep and cap may exist in the host cell transiently (that is, by transfection), it is preferred that one or both of the rep and cap proteins and the promoter or promoters controlling their expression are stably expressed in the host cell, for example as an episome or by integration into the chromosome of the host cell. The methods used to construct embodiments of the invention are conventional genetic engineering or recombinant engineering techniques such as those described in the above references. While the present description provides illustrative examples of the specific constructs, the person skilled in the art using the information provided here will be able to choose to construct any other suitable constructs using a selection of spacers, P5 promoters and other elements, including at least one translational start and stop signal, and the eventual addition of polyadenylation sites.

I en annen utførelsesform av oppfinnelsen kan rep- eller cap proteinet tilveiebringes stabilt av en vertscelle. In another embodiment of the invention, the rep or cap protein can be provided stably by a host cell.

C. HjelperfunksjonerC. Auxiliary functions

Den pakkende vertscelle krever også hjelperfunksjoner for å pakke oppfinnelsens rAAV. Disse funksjoner kan eventuelt leveres av en herpesvirus. Helst blir de nødven-dige hjelperfunksjoner alle tilveiebragt fra en human eller ikke-human primatadenovi- ruskilde som de som er beskrevet ovenfor og/eller som er tilgjengelige fra et antall kilder inkludert "American Type Culture Collection" (ATCC), Manassas, VA (US). I en i dag foretrukken utførelsesform tilveiebringes vertscellen med og/eller inneholder et Ela genprodukt, et Elb genprodukt, et E2a genprodukt og/eller et E4 ORF6 genprodukt. Vertscellen kan inneholde andre adenovirale gener som VAI RNA men disse gener er ikke nødvendige. I en foretrukken utførelsesform er ingen andre adenovirusgener eller The packaging host cell also requires helper functions to package the rAAV of the invention. These functions can possibly be provided by a herpes virus. Preferably, the necessary helper functions are all provided from a human or non-human primate adenovirus source such as those described above and/or which are available from a number of sources including the American Type Culture Collection (ATCC), Manassas, VA ( US). In a currently preferred embodiment, the host cell is provided with and/or contains an Ela gene product, an Elb gene product, an E2a gene product and/or an E4 ORF6 gene product. The host cell may contain other adenoviral genes such as VAI RNA, but these genes are not necessary. In a preferred embodiment, no other adenovirus genes or

-genfunksj oner til stede i vertscellen.-gene functions present in the host cell.

Med "adenoviral DNA som uttrykker Ela genproduktet" menes en hvilken som helst adenovirussekvens som koder Ela eller en hvilken som helst funksjonell Ela del. Adenoviral DNA som uttrykker E2a genprodukt og adenoviral DNA som uttrykker E4 ORF6 genprodukt defineres på tilsvarende måte. Også inkludert er hvilke som helst alleler eller andre modifikasjoner av det adenovirale gen eller funksjonelle deler derav. Slike modifikasjoner kan med hensikt innføres ved å ty til konvensjonelle genetiske konstruksjons- eller mutagene teknikker for å øke den adenovirale funksjon på en eller annen måte så vel som naturlig forekommende allelvarianter derav. Slike modifikasjoner og metoder for å manipulere DNA for å oppå disse adenovirusgenfunksjoner er velkjente for fagmannen. By "adenoviral DNA expressing the Ela gene product" is meant any adenoviral sequence encoding Ela or any functional Ela part. Adenoviral DNA expressing E2a gene product and adenoviral DNA expressing E4 ORF6 gene product are defined in a similar way. Also included are any alleles or other modifications of the adenoviral gene or functional portions thereof. Such modifications can be intentionally introduced by resorting to conventional genetic engineering or mutagenic techniques to somehow increase adenoviral function as well as naturally occurring allelic variants thereof. Such modifications and methods of manipulating DNA to enhance these adenovirus gene functions are well known to those skilled in the art.

Adenovirus Ela-, -Elb-, -E2a- og/eller E40RF6 genprodukt, såvel som hvilke som helst andre ønskede hjelperfunksjoner, kan tilveiebringes på en hvilken som helst måte som tillater deres ekspresjon i en celle. Hver av sekvensene som koder disse produkter kan være på en separat vektor, eller et eller flere gener kan være på samme vektor. Vektoren kan være en hvilken som helst vektor som er kjent i teknikken eller beskrevet her inkludert plasmider, kosmider og vimser. Innføring i vertscellen av vektoren kan oppnås på en hvilken som helst kjent måte i teknikken eller som beskrevet ovenfor, inkludert transfeksjon, infeksjon, elektroporasjon, liposomavlevering, membranfusjonsteknikker, høyhastighets DNA-belagte pellets, viralinfeksjon og protoplastfusjon blant andre. Ett eller flere av de adenovirale gener kan stabilt være integrert i genomet av vertscellen, stabilt uttrykkes som episomer eller uttrykkes transient. Genproduktene kan alle uttrykkes transient, på et episom eller integreres stabilt, eller noen av genproduktene kan uttrykkes stabilt mens andre uttrykkes transient. Videre kan promoterne for hvert av de adenovirale gener velges uavhengig fra en konstitutiv promoter, en induserbar promoter eller en nativ adenoviral promoter. Disse promotere kan reguleres via en spesifikk, fysiologisk tilstand hos organismen eller cellen (for eksempel ved differensieringstilstan-der eller i replikerende eller hvilende celler) eller ved eksogent tilsatte faktorer, som eksempler. Adenovirus Ela, -Elb, -E2a, and/or E40RF6 gene product, as well as any other desired helper functions, can be provided in any manner that allows their expression in a cell. Each of the sequences encoding these products may be on a separate vector, or one or more genes may be on the same vector. The vector can be any vector known in the art or described herein including plasmids, cosmids and vims. Introduction into the host cell of the vector can be achieved by any means known in the art or as described above, including transfection, infection, electroporation, liposome delivery, membrane fusion techniques, high speed DNA coated pellets, viral infection and protoplast fusion among others. One or more of the adenoviral genes can be stably integrated into the genome of the host cell, stably expressed as episomes or expressed transiently. The gene products may all be expressed transiently, on an episome or stably integrated, or some of the gene products may be stably expressed while others are transiently expressed. Furthermore, the promoters for each of the adenoviral genes can be independently selected from a constitutive promoter, an inducible promoter or a native adenoviral promoter. These promoters can be regulated via a specific, physiological state of the organism or cell (for example in differentiation states or in replicating or resting cells) or by exogenously added factors, as examples.

D. Vertsceller og pakkende cellelinjerD. Host cells and packaging cell lines

Vertscellen kan per se være valgt fra en hvilken som helst biologisk organisme inkludert prokaryotiske (for eksempel bakterielle) celler, og eukaryotiske celler inkludert insekt-, gjær- og pattedyrceller. Spesielt ønskelige vertsceller er valgt blant hvilke som helst pattedyrceller inkludert, uten begrensning, celler som A549-, WEFfl-, 3T3-, 10T1/2-, BHK-, MDCK-, COS 1-, COS 7-, BSC 1-, BSC 40-, BMT 10-, VERO-, WI38- HeLa-eller 293 celler (som uttrykker funksjonell adenoviral El), Saos-, C2C12- eller L-celler, HT1080-, HepG2- og primær fibroblast-, hepatocyt- og myoblastceller avledet fra pattedyr inkludert mennesker, aper, mus, rotter, kaniner og hamstere. Valget av en patte-dyrspesie for å tilveiebringe cellene er ingen begrensning av oppfinnelsen og heller ikke er typen pattedyrceller det, for eksempel fibroblast-, hepatocyt-, tumorceller og så videre. De mest ønskede celler bærer ingen adenovirusgener andre enn El, E2a og/eller E4 ORF6; heller ikke inneholder de noen andre virusgener som kunne resultere i homolog rekombinering av en kontaminerende virus under produksjonen av rAAV; og den er i stand til infeksjon eller transfeksjon av DNA og ekspresjon av den transfekterte DNA. I en foretrukken utførelsesform er vertscellen en som har rep og cap stabilt transfektert i cellen. The host cell may per se be selected from any biological organism including prokaryotic (eg bacterial) cells, and eukaryotic cells including insect, yeast and mammalian cells. Particularly desirable host cells are selected from any mammalian cells including, without limitation, cells such as A549, WEFfl, 3T3, 10T1/2, BHK, MDCK, COS 1, COS 7, BSC 1, BSC 40, BMT 10, VERO, WI38 HeLa or 293 cells (expressing functional adenoviral E1), Saos, C2C12 or L cells, HT1080, HepG2 and primary fibroblast, hepatocyte and myoblast cells derived from mammals including humans, monkeys, mice, rats, rabbits and hamsters. The choice of a mammalian species to provide the cells is not a limitation of the invention nor is the type of mammalian cells, for example fibroblast, hepatocyte, tumor cells and so on. The most desired cells carry no adenovirus genes other than E1, E2a and/or E4 ORF6; nor do they contain any other viral genes that could result in homologous recombination of a contaminating virus during the production of rAAV; and it is capable of infection or transfection of DNA and expression of the transfected DNA. In a preferred embodiment, the host cell is one that has rep and cap stably transfected into the cell.

En vertscelle som er brukbar ifølge oppfinnelsen er en vertscelle som stabilt er transformert med sekvensene som koder rep og cap og som er transfektert med den angjeldende adenovirus El-, -E2a- og -E40RF6 DNA og et konstrukt som bærer minigenet som beskrevet ovenfor. Stabile rep- og/eller cap uttrykkende cellelinjer som B-50 A host cell that is usable according to the invention is a host cell that is stably transformed with the sequences encoding rep and cap and that is transfected with the relevant adenovirus E1-, -E2a- and -E40RF6 DNA and a construct carrying the minigene as described above. Stable rep- and/or cap-expressing cell lines such as B-50

(PCT/US98) 19463) og de som er beskrevet i US 5 658 785, kan også benyttes på tilsvarende måte. Andre ønskelige vertsceller inneholder den minimale adenovirale DNA som er tilstrekkelig til å uttrykke E4 ORF6. Ytterligere andre cellelinjer kan konstrueres ved bruk av de nye AAV rep- og/eller nye AAV cap sekvenser ifølge oppfinnelsen. (PCT/US98) 19463) and those described in US 5 658 785 can also be used in a similar way. Other desirable host cells contain the minimal adenoviral DNA sufficient to express E4 ORF6. Further other cell lines can be constructed using the new AAV rep and/or new AAV cap sequences according to the invention.

Fremstillingen av en vertscelle ifølge oppfinnelsen involverer teknikker som sammensetning av valgte DNA sekvenser. Denne sammensetning kan gjennomføres ved å benytte konvensjonelle teknikker. Slike teknikker inkluderer cDNA- og genomiske kloner, noe som er velkjent for fagmannen og beskrevet av Sambrook et al. supra, ved bruk av overlappende oligonukleotidsekvenser av adenovirusen og AAV genomene, kombinert med polymerasekjedereaksjon, syntetiske metoder og hvilke som helst andre egnede metoder som gir de ønskede nukleotidsekvenser. The production of a host cell according to the invention involves techniques such as composition of selected DNA sequences. This composition can be carried out using conventional techniques. Such techniques include cDNA and genomic clones, which are well known to those skilled in the art and described by Sambrook et al. supra, using overlapping oligonucleotide sequences of the adenovirus and AAV genomes, combined with polymerase chain reaction, synthetic methods and any other suitable methods that provide the desired nucleotide sequences.

Innføring av molekylene (som plasmider eller vimser) i vertscellen kan også gjennom-føres ved bmk av teknikker som er kjente for fagmannen og som diskutert i foreliggende beskrivelse. I en foretrukken utførelsesform benyttes det standard transfeksjonsteknikker, for eksempel CaPC^transfeksjon eller elektroporering, og/eller infeksjon ved hybrid adenovims/AAV vektorer inn i cellelinjene som den humane embryoniske nyrecellelinje HEK 293 (en human nyrecellelinje inneholdende funksjonelle adenovims El gener som gir transvirkende El proteiner). Introduction of the molecules (such as plasmids or vims) into the host cell can also be carried out using techniques known to the person skilled in the art and as discussed in the present description. In a preferred embodiment, standard transfection techniques are used, for example CaPC^transfection or electroporation, and/or infection by hybrid adenovims/AAV vectors into the cell lines such as the human embryonic kidney cell line HEK 293 (a human kidney cell line containing functional adenovims E1 genes that provide transacting E1 proteins).

Disse nye AAV-baserte vektorer som genereres av fagmannen på området er fordelakti-ge for genavlevering til valgte vertsceller og genterapipasienter fordi ingen nøytralise-rende antistoffer til AAV7 er funnet i den humane populasjon. Videre viser tidlige studier ingen nøytraliserende antistoffer i cyno ape- eller sjimpansepopulasjoner og mindre enn 15 % kryss-reaktivitet av AAV7 i rhesus aper, spesiene hvorfra serotypen ble isolert. Fagmannen på området kan lett fremstille andre rAAV virale vektorer inneholdende AAV7 capsidproteinene som tilveiebringes der ved bmk av et antall teknikker som er velkjente for fagmannen. Man kan ganske enkelt fremstille ytterligere andre rAAV virale vektorer inneholdende AAV7 sekvensene og AAV capsidene av en annen serotype. Tilsvarende fordeler oppnås ved vektorene som er basert på andre nye AAVer ifølge oppfinnelsen. These new AAV-based vectors generated by the person skilled in the art are advantageous for gene delivery to selected host cells and gene therapy patients because no neutralizing antibodies to AAV7 have been found in the human population. Furthermore, early studies show no neutralizing antibodies in cyno monkey or chimpanzee populations and less than 15% cross-reactivity of AAV7 in rhesus monkeys, the species from which the serotype was isolated. Those skilled in the art can readily prepare other rAAV viral vectors containing the AAV7 capsid proteins provided therein by bmk by a number of techniques well known to those skilled in the art. One can simply prepare further other rAAV viral vectors containing the AAV7 sequences and the AAV capsids of another serotype. Corresponding advantages are achieved with the vectors which are based on other new AAVs according to the invention.

Således vil fagmannen på området lett forstå at AAV7 sekvensene ifølge oppfinnelsen lett kan tilpasses for bmk i disse og andre virale vektorsystemer for in vitro-, ex vivo-eller in vivo-genavlevering. Tilsvarende kan fagmannen på området lett velge andre fragmenter av det nye AAV genom ifølge oppfinnelsen for bmk i et antall rAAV- og ikke-rAAV vektorsystemer. Slike vektorsystemer kan blant andre for eksempel inkludere lentivimser, retrovimser, poxvimser, vaksinevimser og adenovirale systemer. Valg blant disse vektorsystemer er ingen begrensning for oppfinnelsen. Thus, the expert in the field will easily understand that the AAV7 sequences according to the invention can be easily adapted for bmk in these and other viral vector systems for in vitro, ex vivo or in vivo gene delivery. Correspondingly, the person skilled in the art can easily select other fragments of the new AAV genome according to the invention for bmk in a number of rAAV and non-rAAV vector systems. Such vector systems may include, for example, lentivims, retrovims, poxvims, vaccine vims and adenoviral systems. Choice among these vector systems is not a limitation of the invention.

Således tilveiebringer oppfinnelsen videre vektorer generert ved bmk av nukleinsyren og aminosyresekvensen av den nye AAV ifølge oppfinnelsen. Slike vektorer er brukbare for et antall formål, inkludert for avlevering av terapeutiske molekyler og for bmk i vaksineregimer. Særlig ønskelige for avlevering av terapeutiske molekyler er rekombinant AAV holdige capsider av de nye AAVer ifølge oppfinnelsen. Disse eller andre vek-torkonstrukter inneholdende nye AAV sekvenser ifølge oppfinnelsen kan benyttes i vaksineregimer, for eksempel for samtidig avlevering av et cytokin, eller for avlevering av immunogenet per se. Thus, the invention further provides vectors generated by bmk of the nucleic acid and amino acid sequence of the new AAV according to the invention. Such vectors are useful for a number of purposes, including for delivery of therapeutic molecules and for bmk in vaccine regimens. Particularly desirable for delivery of therapeutic molecules are recombinant AAV containing capsids of the new AAVs according to the invention. These or other vector constructs containing new AAV sequences according to the invention can be used in vaccine regimens, for example for simultaneous delivery of a cytokine, or for delivery of the immunogen per se.

V. Rekombinante vimser og anvendelse derav.V. Recombinant genes and their application.

Ved bmk av de her beskrevne teknikker kan fagmannen på området generere en rAAV med et capsid av en ny serotype ifølge oppfinnelsen, eller et nytt capsid inneholdende ett eller flere fragmenter av en AAV serotype identifisert ved oppfinnelsens metode. I en utførelsesform kan det benyttes et full-lengde capsid fra en enkelt serotype, for eksempel AAV7 [SEQ ID nr. 2]. I en annen utførelsesform kan et full-lengde capsid genereres inneholdende ett eller flere fragmenter av en ny serotype ifølge oppfinnelsen, fusert i ramme med sekvenser fra en annen, valgt AAV serotype. For eksempel kan en rAAV inneholde en eller flere av de nye hypervariabelområdesekvenser av en AAV serotype ifølge oppfinnelsen. Alternativt kan de unike AAV serotyper ifølge oppfinnelsen benyttes i konstrukter inneholdende andre virale eller ikke-virale sekvenser. By using the techniques described here, the expert in the field can generate an rAAV with a capsid of a new serotype according to the invention, or a new capsid containing one or more fragments of an AAV serotype identified by the method of the invention. In one embodiment, a full-length capsid from a single serotype can be used, for example AAV7 [SEQ ID No. 2]. In another embodiment, a full-length capsid can be generated containing one or more fragments of a new serotype according to the invention, fused in frame with sequences from another, selected AAV serotype. For example, an rAAV may contain one or more of the new hypervariable region sequences of an AAV serotype according to the invention. Alternatively, the unique AAV serotypes according to the invention can be used in constructs containing other viral or non-viral sequences.

Det vil lett fremgå for fagmannen at i en utførelsesform vil visse serotyper ifølge oppfinnelsen være spesielt egnet for visse anvendelser. For eksempel er vektorer basert på AAV7 capsider ifølge oppfinnelsen spesielt godt egnet for anvendelse i muskler mens vektorer basert på rh.10 (44-2) capsider ifølge oppfinnelsen er spesielt godt egnet for bmk i lungen. Bmken av slike vektorer er ikke begrenset og fagmannen kan benytte disse vektorer for avlevering til andre celletyper, vev eller organer. Videre kan vektorer basert på andre capsider ifølge oppfinnelsen benyttes for avlevering til disse eller andre celler, vev eller organer. It will be readily apparent to the person skilled in the art that, in one embodiment, certain serotypes according to the invention will be particularly suitable for certain applications. For example, vectors based on AAV7 capsids according to the invention are particularly well suited for use in muscles, while vectors based on rh.10 (44-2) capsids according to the invention are particularly well suited for bmk in the lung. The use of such vectors is not limited and the person skilled in the art can use these vectors for delivery to other cell types, tissues or organs. Furthermore, vectors based on other capsids according to the invention can be used for delivery to these or other cells, tissues or organs.

A. Avlevering av et transgenA. Delivery of a transgene

I et annet aspekt tilveiebringer foreliggende oppfinnelse en fremgangsmåte for avlevering av et transgen til en vert som involverer transfektering eller infisering av en valgt vertscelle med en vektor generert med sekvensene av oppfinnelsens AAV. Metoder for avlevering er velkjente for fagmannen på området og er ingen begrensning av oppfinnelsen. In another aspect, the present invention provides a method for delivering a transgene to a host which involves transfecting or infecting a selected host cell with a vector generated with the sequences of the AAV of the invention. Methods of delivery are well known to those skilled in the art and are not a limitation of the invention.

I en ønsket utførelsesform tilveiebringer oppfinnelsen en fremgangsmåte for AAV-mediert avlevering av et transgen til en vert. Metoden involverer transfektering eller infisering av en valgt vertscelle med en rekombinant viral vektor inneholdende et valgt transgen under kontroll av sekvenser som styrer ekspresjonen derav og AAV capsid proteinene. In a desired embodiment, the invention provides a method for AAV-mediated delivery of a transgene to a host. The method involves the transfection or infection of a selected host cell with a recombinant viral vector containing a selected transgene under the control of sequences that direct the expression thereof and the AAV capsid proteins.

Eventuelt kan en prøve fra verten først analyseres på nærvære av antistoffer mot en valgt AAV serotype. Et antall analyseformater for detektering av nøytraliserende anti stoffer er velkjente for fagmannen. Valget av en slik analyse er ingen begrensning av oppfinnelsen, se for eksempel Fisher et al. i "Nature Med.", 3(3):306-312 (Mars, 1997) samt W.C. Manning et al. i "Human Gene Therapy", 9:477-485 (Mars 1, 1998). Resultatene av denne analyse kan benyttes for å bestemme hvorvidt AAV vektorholdige capsidproteiner av en spesiell serotype er foretrukket for avlevering, for eksempel ved fravær av nøytraliserende antistoffer som er spesifikke for denne capsid serotype. Optionally, a sample from the host can first be analyzed for the presence of antibodies against a selected AAV serotype. A number of analysis formats for the detection of neutralizing antibodies are well known to those skilled in the art. The choice of such an analysis is not a limitation of the invention, see for example Fisher et al. in "Nature Med.", 3(3):306-312 (March, 1997) as well as W.C. Manning et al. in "Human Gene Therapy", 9:477-485 (March 1, 1998). The results of this analysis can be used to determine whether AAV vector-containing capsid proteins of a particular serotype are preferred for delivery, for example in the absence of neutralizing antibodies specific for this capsid serotype.

I ett aspekt ved denne metode kan avleveringen av en vektor med et valgt AAV capsidprotein gå foran eller følge etter avlevering av et gen via en vektor med et forskjellig serotype AAV capsidprotein. Tilsvarende kan avleveringen av vektor med andre nye AAV capsidproteiner ifølge oppfinnelsen gå foran eller følge etter avlevering av et gen via en vektor med et forskjellig serotype AAV capsidprotein. Således kan genavlevering via rAAV vektorer benyttes for gjentatt genavlevering til en valgt vertscelle. Ønskelig bærer senere administrerte rAAV vektorer det samme transgen som den første rAAV vektor mens de etterfølgende administrerte vektorer inneholder capsidproteiner av serotyper som er forskjellige fra den første vektor. Hvis for eksempel en første vektor har AAV7 capsidproteiner [SEQ ID nr. 2] kan senere administrerte vektorer ha capsidproteiner som er valgt blant andre serotyper inkludert AAV1, AAV2, AAV3A, AAV3B, AAV4, AAV6, AAV10, AAV11, og AAV 12, eller et hvilket som helst av de andre nye AAV capsider som er identifisert her, uten begrensning inkludert: A3.1, H2, H6, Cl, C2, C5, A3-3, A3-7, A3-4, A3-5, 3.3b, 223.4, 223-5, 223-10, 223-2, 223-7, 223-6, 44-1, 44.5, 44_2, 42-15, 42-8, 42-13, 42-3A, 42-4, 42-5A, 42-1B, 42-5B, 43-1, 43-12, 43-5, 43-21, 43-25, 43-20, 24.1, 42.2., 7.2., 27.3, 16.3, 42.10. 42-3B, 42-11, Fl, F5, F3, 42-6B, og eller 42-12. In one aspect of this method, delivery of a vector with a selected AAV capsid protein may precede or follow delivery of a gene via a vector with a different serotype AAV capsid protein. Correspondingly, the delivery of a vector with other new AAV capsid proteins according to the invention can precede or follow the delivery of a gene via a vector with a different serotype AAV capsid protein. Thus, gene delivery via rAAV vectors can be used for repeated gene delivery to a selected host cell. Desirably, subsequently administered rAAV vectors carry the same transgene as the first rAAV vector while the subsequently administered vectors contain capsid proteins of serotypes different from the first vector. For example, if a first vector has AAV7 capsid proteins [SEQ ID NO: 2], later administered vectors may have capsid proteins selected from among other serotypes including AAV1, AAV2, AAV3A, AAV3B, AAV4, AAV6, AAV10, AAV11, and AAV 12, or any of the other novel AAV capsids identified herein, including without limitation: A3.1, H2, H6, Cl, C2, C5, A3-3, A3-7, A3-4, A3-5, 3.3 b, 223.4, 223-5, 223-10, 223-2, 223-7, 223-6, 44-1, 44.5, 44_2, 42-15, 42-8, 42-13, 42-3A, 42- 4, 42-5A, 42-1B, 42-5B, 43-1, 43-12, 43-5, 43-21, 43-25, 43-20, 24.1, 42.2., 7.2., 27.3, 16.3, 42.10. 42-3B, 42-11, Fl, F5, F3, 42-6B, and or 42-12.

De ovenfor beskrevne, rekombinante vektorer kan avleveres til vertsceller i henhold til publiserte metoder. Den angjeldende rAAV, fortrinnsvis suspendert i en fysiologisk akseptabel bærer, kan administreres til en human eller ikke-human pattedyrpasient. Egnede bærere kan lett velges av fagmannen på området i lys av den indikasjon for hvilken overføringsvirusen bestemmes. For eksempel inkluderer en egnet bærer saltoppløsning som kan formuleres med et antall bufferoppløsninger (for eksempel fosfatbufret saltopp-løsning). Andre eksempler på bærere er sterile saltoppløsninger, laktose, sukrose, kal-siumfosfat, gelatin, dekstran, agar, pektin, jordnøtt- eller sesamolje, samt vann. Valget av bærer er ingen begrensning for oppfinnelsen. The recombinant vectors described above can be delivered to host cells according to published methods. The rAAV in question, preferably suspended in a physiologically acceptable carrier, can be administered to a human or non-human mammalian patient. Suitable carriers can be readily selected by one skilled in the art in light of the indication for which the transmission virus is being determined. For example, a suitable carrier includes saline which can be formulated with a number of buffer solutions (eg, phosphate buffered saline). Other examples of carriers are sterile saline solutions, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut or sesame oil, as well as water. The choice of carrier is not a limitation of the invention.

Eentuelt kan preparatene ifølge oppfinnelsen i tillegg til rAAV og en eller flere bærere inneholde andre konvensjonelle, farmasøytiske bestanddeler som preserveringsmidler eller kjemiske stabilisatorer. Egnede eksempler på preserveringsmidler er klorbutanol, kaliumsorbat, sorbinsyre, svoveldioksyd, propylgallat, parabener, etylvanillin, glycerin, fenol og paraklorfenol. Egnede kjemiske stabilisatorer er gelatin og albumin. Alternatively, in addition to rAAV and one or more carriers, the preparations according to the invention may contain other conventional pharmaceutical ingredients such as preservatives or chemical stabilizers. Suitable examples of preservatives are chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, parabens, ethyl vanillin, glycerin, phenol and parachlorophenol. Suitable chemical stabilizers are gelatin and albumin.

De virale vektorer administreres i mengder tilstrekkelig til å transfektere cellen og å tilveiebringe tilstrekkelige nivåer av genoverføring og ekspresjon for derved å tilveiebringe en terapeutisk fordel uten urimelige negative effekter, eller med medisinsk akseptable fysiologiske effekter, som kan bestemmes av fagmannen på området. Konvensjonelle og farmasøytisk akseptable administeringsveier er, uten begrensning, å rette avleveringen til det valgte organ (for eksempel intraportal avlevering til leveren), oral, inhalering (inkludert intranasal og intratrakeal avlevering), intraokkulær, intravenøs, intramuskulær, subkutan, intradermal og andre parenterale administreringsveier. Admi-nistreringsveiene kan hvis ønskelig kombineres. The viral vectors are administered in amounts sufficient to transfect the cell and to provide sufficient levels of gene transfer and expression to thereby provide a therapeutic benefit without undue adverse effects, or with medically acceptable physiological effects, as can be determined by one skilled in the art. Conventional and pharmaceutically acceptable routes of administration include, without limitation, direct delivery to the organ of choice (for example, intraportal delivery to the liver), oral, inhalation (including intranasal and intratracheal delivery), intraocular, intravenous, intramuscular, subcutaneous, intradermal and other parenteral routes of administration . The administration routes can be combined if desired.

Doser av den virale vektor vil primært avhenge av faktorer som den tilstand hos indivi-det som skal behandles, vider alder, vekt og helse og kan således variere blant forskjellige pasienter. For eksempel ligger en terapeutisk effektiv, human dose av den virale vektor generelt i området fra rundt 1 ml til rundt 100 ml oppløsning inneholdende kon-sentrasjoner fra rundt 1 x IO<9>til 1 x IO<16>genomer virus vektor. En foretrukken human-dosering kan være fra rundt 1 x IO<13>til 1 x IO<16>AAV genomer. Doseringen vil justeres for å balansere den terapeutiske fordel mot eventuelle bivirkninger og slike doseringer kan variere avhengig av den terapeutiske anvendelse for hvilken den rekombinante vektor benyttes. Ekspresjonsnivåene for transgenet kan overvåkes for å bestemme frekven-sen av dosering som resulterer i virale vektorer, fortrinnsvis AAV vektorer inneholdende minigenet. Eventuelt kan doseringsregimer tilsvarende det som er beskrevet for terapeutiske formål benyttes for immunisering ved bruk av oppfinnelsens preparater. Doses of the viral vector will primarily depend on factors such as the condition of the individual to be treated, age, weight and health and can thus vary among different patients. For example, a therapeutically effective human dose of the viral vector generally ranges from about 1 ml to about 100 ml of solution containing concentrations of about 1 x 10<9> to 1 x 10<16> genomes of viral vector. A preferred human dosage may be from about 1 x 10<13> to 1 x 10<16> AAV genomes. The dosage will be adjusted to balance the therapeutic benefit against any side effects and such dosages may vary depending on the therapeutic application for which the recombinant vector is used. The expression levels of the transgene can be monitored to determine the frequency of dosing resulting in viral vectors, preferably AAV vectors containing the minigene. Optionally, dosage regimens corresponding to that described for therapeutic purposes can be used for immunization using the preparations of the invention.

Eksempler på terapeutiske produkter og immunogene produkter for avlevering via AAV-holdige vektorer ifølge oppfinnelsen skal beskrives nedenfor. Disse vektorer kan benyttes ved et antall terapeutiske eller vaksineformål som beskrevet her. I tillegg kan disse vektorer avleveres i kombinasjon med en eller flere andre vektorer eller aktive bestanddeler i et ønsket terapeutisk og/eller vaksineregjme. Examples of therapeutic products and immunogenic products for delivery via AAV-containing vectors according to the invention will be described below. These vectors can be used for a number of therapeutic or vaccine purposes as described here. In addition, these vectors can be delivered in combination with one or more other vectors or active ingredients in a desired therapeutic and/or vaccine regimen.

B. Terapeutiske transgenerB. Therapeutic transgenes

Brukbare, terapeutiske produkter som kodes av transgenet inkluderer hormoner og vekst- og differensieringsfaktorer inkludert, uten begrensning, insulin, glukagon, vekst-hormon (GH), paratyoridhormon (PTH), vektshormonfrigivende faktor (GRF), follikel- stimulerende hormon (FSH), luteiniserende hormon (LH), humankorionisk gonadotropin (hCG), vaskulær endotelial vekstfaktor (VEGF), angiopoietiner, angiostatin, granau-locyttkolonistimulerende faktor (GCSF), erytropoietin (EPO), bindevevsvektfaktor (CTGF), basisk fibroblast vekstfaktor (bFGF), sur fibroblast vekstfaktor (aFGF), epi-dermal vekstfaktor (EGF), transformerende vekstfaktor a (TGFa), plateavledet vekstfaktor (PDGF), insulin vekstfaktorene I og II (IGF-I og IGF-II), en hvilken som helst fra den transformerende vekstfaktor P superfamilie inkludert TGF P, aktiviner, inhibiner, eller et hvilket som helst av de benmorfogeniske proteiner (BMP) BMPs 1-15, en hvilken som helst fra heregluin/neuregulin/ARIA<y>nydifferenseieringsfaktor (NDF) familien av vekstsfaktorer, nervevekstfaktor (NGF), hjerne-avledet neurotropisk faktor (BDNF), neurotrofiner NT-3 og NT-4/5, ciliær neurotrofisk faktor (CNTF), glialcelleavledet neurotrofisk faktor (GDNF), neurturin, agrin, et hvilket som helst fra familien av sema-foriner/kollapsiner, netrin-1 og netrin-2, hepatocyt vekstfaktor (HGF), efriner, noggjn, sonisk hedgehod- og tyrosinhydroksylase. Useful therapeutic products encoded by the transgene include hormones and growth and differentiation factors including, without limitation, insulin, glucagon, growth hormone (GH), parathyroid hormone (PTH), weight hormone-releasing factor (GRF), follicle-stimulating hormone (FSH), luteinizing hormone (LH), human chorionic gonadotropin (hCG), vascular endothelial growth factor (VEGF), angiopoietins, angiostatin, granulocyte colony-stimulating factor (GCSF), erythropoietin (EPO), connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), epidermal growth factor (EGF), transforming growth factor a (TGFa), platelet-derived growth factor (PDGF), insulin growth factors I and II (IGF-I and IGF-II), any of the transforming growth factor P superfamily including TGF P, activins, inhibins, or any of the bone morphogenic proteins (BMPs) BMPs 1-15, any of heregluin/neuregulin/ARIA<y>neodifferentiation factor (ND F) the family of growth factors, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins NT-3 and NT-4/5, ciliary neurotrophic factor (CNTF), glial cell-derived neurotrophic factor (GDNF), neurturin, agrin, et any of the family of semaphorins/collapsins, netrin-1 and netrin-2, hepatocyte growth factor (HGF), ephrins, noggjn, sonic hedgehog and tyrosine hydroxylase.

Andre, brukbare transgene produkter inkluderer proteiner som regulerer immunsystemet inkludert, uten begrensning, cytokiner og lymfokiner som trombopoietin (TPO), inter-leukiner (IL) IL-1 til og med IL-25 (inkludert IL-2, IL-4, IL-12, og IL-18), monocytt kjemoattraktantprotein, leukemiinhibitorisk faktor, granulocytt-makrofagkolonistimu-lerende faktor, Fas ligand, tumor nekrosefaktor a og -P, interferoner a, p og y, stamcel-lefaktor, flk-2/flt3 ligand. Genprodukter som produseres av immunsystemet er også brukbare ifølge oppfinnelsen. Disse inkluderer, uten begrensning, immunoglobuliner IgG, IgM, IgA, IgD og IgE, kimeriske immunoglobuliner, humaniserte antistoffer, en-keltkjedeantistoffer,T-celle receptorer, kimeriske T-celle receptorer, enkeltkjede T-celle receptorer, klasse I- og klasse IIMHC molekyler, så vel som konstruerte immunoglobuliner og MHC molekyler. Brukbare genprodukter inkluderer også komplementregulato-riske proteiner som komplettmentregulatoriske proteiner, membran kofaktor protein (MCP), nedbrytningsaksellererende faktor (DAF), CR1, CF2 og CD59. Other useful transgenic products include proteins that regulate the immune system including, without limitation, cytokines and lymphokines such as thrombopoietin (TPO), inter-leukins (IL) IL-1 through IL-25 (including IL-2, IL-4, IL -12, and IL-18), monocyte chemoattractant protein, leukemia inhibitory factor, granulocyte-macrophage colony-stimulating factor, Fas ligand, tumor necrosis factor a and -P, interferons a, p and y, stem cell factor, flk-2/flt3 ligand. Gene products produced by the immune system are also usable according to the invention. These include, without limitation, immunoglobulins IgG, IgM, IgA, IgD and IgE, chimeric immunoglobulins, humanized antibodies, single-chain antibodies, T-cell receptors, chimeric T-cell receptors, single-chain T-cell receptors, class I and class IIMHC molecules, as well as engineered immunoglobulins and MHC molecules. Useful gene products also include complement regulatory proteins such as complement regulatory proteins, membrane cofactor protein (MCP), degradation accelerating factor (DAF), CR1, CF2 and CD59.

Ytterligere andre brukbare genprodukter inkluderer en hvilken som helst av receptorene for hormonene, vekstfaktorene, cytokinene, lymfokinene, de regulatoriske proteiner og immunsystemproteinene. Oppfinnelsen omfatter receptorer for kolesterolregulering inkludert lavdensitets lipoprotein (LDL) receptoren, høydensitets lipoprotein (HDL), meget lav densitets lipoprotein (VLDL) receptoren samt oppfanger (scavenger) receptoren. Oppfinnelsen omfatter også genprodukter som medlemmer av steroidhormon receptor superfamilien inkludert glukokortikoidreceptorer og østrogenreceptorer, vitamin D receptorer og andre nukleære receptorer. I tillegg inkluderer brukbare genprodukter tran- skripsjonsfaktorer som jun, fos, max, mad, serumresponsfaktor (SRF), aP-1, AP2, myb, Myod og myogenin, ETS-boksholdige proteiner, TFE3, E2F, ATF1, ATF2, ATF3, ATF4, ZF5, NFAT, CREB, HNF-4, C/EBP, SP1, CCAAT-boksbindende proteiner, interferonreguleringsfaktor (TRF-1), Wilms tumor protein, ETS-bindingsprotein, STAT, GATA-boksbindingsproteiner, for eksempel GATA-3, og gaffelfamilien av vingede heliksproteiner. Still other useful gene products include any of the receptors for the hormones, growth factors, cytokines, lymphokines, regulatory proteins and immune system proteins. The invention includes receptors for cholesterol regulation including the low-density lipoprotein (LDL) receptor, high-density lipoprotein (HDL), very low-density lipoprotein (VLDL) receptor and the scavenger receptor. The invention also encompasses gene products as members of the steroid hormone receptor superfamily including glucocorticoid receptors and estrogen receptors, vitamin D receptors and other nuclear receptors. In addition, usable gene products include transcription factors such as jun, fos, max, mad, serum response factor (SRF), aP-1, AP2, myb, Myod and myogenin, ETS box-containing proteins, TFE3, E2F, ATF1, ATF2, ATF3, ATF4 , ZF5, NFAT, CREB, HNF-4, C/EBP, SP1, CCAAT box binding proteins, interferon regulatory factor (TRF-1), Wilms tumor protein, ETS binding protein, STAT, GATA box binding proteins, such as GATA-3, and the forkhead family of winged helix proteins.

Andre brukbare genprodukter inkluderer carbamoylsyntase I, ornitin transkarbamylase, argjnosuccinatsyntease, arginosuccinatlyase, arginase, fumarylacetacetathydrolase, fenylalaninhydroksylase, a-1 antitrypsin, glukose-6-fosfatase, porfobilinogen deamina-se, faktor VJJI, faktor IX, cystation P-syntase, forgrenetkjede ketosyre dekarboksylase, albumin, isovaleryl-coA dehydrogenase, propionyl CoA karboksylase, metylmalonyl CoA mustase, glutaryl CoA dehydrogenase, insulin, P-glukosidase, pyruvatkarboksylat, hepatisk fosforylase, fosforylasekinase, glycin dekarboksylase, H-protein, T-protein, en cystisk fibrose transmembranregulator (CFTR) sekvens og en en dystrofin cDNA sekvens. Ytterligere andre brukbare genprodukter inkluderer enzymer som de som kan være brukbare ved enzymerstatningsterapi som er brukbar ved et antall tilstander som skyldes defekt enzymaktivitet. For eksempel kan enzymer som inneholder mannose-6-fosfat benyttes i terapier for lysosomal lagringssykdommer (for eksempel et egnet gen inkludert det som koder P-glukoronidase (GUSB)). Other useful gene products include carbamoyl synthase I, ornithine transcarbamylase, arginosuccinate synthetase, arginosuccinate lyase, arginase, fumarylacetate hydrolase, phenylalanine hydroxylase, α-1 antitrypsin, glucose-6-phosphatase, porphobilinogen deaminase, factor VJJI, factor IX, cystathion P synthase, branched-chain keto acid decarboxylase , albumin, isovaleryl-coA dehydrogenase, propionyl CoA carboxylase, methylmalonyl CoA mustase, glutaryl CoA dehydrogenase, insulin, P-glucosidase, pyruvate carboxylate, hepatic phosphorylase, phosphorylase kinase, glycine decarboxylase, H protein, T protein, a cystic fibrosis transmembrane regulator (CFTR ) sequence and a dystrophin cDNA sequence. Still other useful gene products include enzymes such as those that may be useful in enzyme replacement therapy useful in a number of conditions resulting from defective enzyme activity. For example, enzymes containing mannose-6-phosphate can be used in therapies for lysosomal storage diseases (eg, a suitable gene including that encoding P-glucoronidase (GUSB)).

Andre brukbare genprodukter inkluderer ikke-naturlig forekommende polypeptider som kimeriske eller hybride polypeptider med en ikke-naturlig forekommende aminosyresekvens inneholdende innskudd, delesjoner eller aminosyresubstitusjoner. For eksempel kan enkeltkjedekonstruerte immunoglobuliner være brukbare hos visse immunokom-promitterte pasienter. Andre typer ikke-naturlig forekommende gensekvenser inkluderer antisense molekyler og katalytiske nukleinsyrer som ribozymer, som kan benyttes for å redusere overekspresjon av et mål. Other useful gene products include non-naturally occurring polypeptides such as chimeric or hybrid polypeptides with a non-naturally occurring amino acid sequence containing insertions, deletions or amino acid substitutions. For example, single-chain engineered immunoglobulins may be useful in certain immunocompromised patients. Other types of non-naturally occurring gene sequences include antisense molecules and catalytic nucleic acids such as ribozymes, which can be used to reduce overexpression of a target.

Reduksjon og/eller modulering av ekspresjonen av et gen er spesielt ønskelig for behandling av hyperproliferative tilstander som karakteriseres ved hyperprolifererende celler, som cancere og psoriasis. Målpolypeptider inkluderer de polypeptider som produseres utelukkende eller ved høyere nivåer i hyperproliferative celler sammenlignet med normale celler. Målantigener inkluderer polypeptider som kodes av onkogener som myb, mye, fyn, og translokasjonsgenet bcr/abl, ras, src, P53, neu, trk og EGRF. I tillegg til onkogenprodukter som målantigener inkluderer målpolypeptidet for anticancerbe-handling og protektive regimer variable områder av antistoffer lavet av B-celle lymfo mer og variable områder av T-celle receptorer av T-celle lymfomer som, ved enkelt utførelsesformer, også benyttes som målantigener for autoimmunsykdom. Andre tumor-assosierte polypeptider kan benyttes som målpolypeptider, for eksempel polypeptider som finnes ved høyere nivåer i tumorceller inkludert det polypeptid som gjengkjennes av monoklonalt antistoff 17-1A og folatbindingspolypeptider. Reduction and/or modulation of the expression of a gene is particularly desirable for the treatment of hyperproliferative conditions characterized by hyperproliferating cells, such as cancer and psoriasis. Target polypeptides include those polypeptides produced exclusively or at higher levels in hyperproliferative cells compared to normal cells. Target antigens include polypeptides encoded by oncogenes such as myb, mye, fyn, and the translocation gene bcr/abl, ras, src, P53, neu, trk, and EGRF. In addition to oncogene products as target antigens, the target polypeptide for anticancer treatment and protective regimens includes variable regions of antibodies made by B-cell lymphomas and variable regions of T-cell receptors of T-cell lymphomas which, in some embodiments, are also used as target antigens for autoimmune disease. Other tumor-associated polypeptides can be used as target polypeptides, for example polypeptides found at higher levels in tumor cells including the polypeptide recognized by monoclonal antibody 17-1A and folate binding polypeptides.

Andre egnede, terapeutiske polypeptider og proteiner inkluderer de som kan være brukbare for behandling av individer som lider av autoimmune sykdommer og lidelser ved å tilveiebringe en bredt basert, protektiv immunrespons mot mål som er assosiert med autoimmunitet inkludert cellereceptorer og celler som produserer "selv"-styrte antistoffer. T-celle medierte autoimmunsykdommer inkluderer rheumatoid aitritt (RA), multippel sklerose (MS), Sjøgrens syndrom, sarkoidose, insulinavhengig diabetes mellitus (JDDM), autoimmun tyroiditt, reaktiv aitritt, anyloserende spondylitt, skleroderma, po-lymyositt, dermatomyositt, psoriasis, vaskulitt, Wegeners granulomatose, Chrons sykdom og ulcerativ kolitt. Hver av disse sykdommer karakteriseres ved T-celle receptorer (TCRer) som binder til endogene antigener og initierer den inflammatoriske kaskade som assosieres med autoimmune sykdommer. Other suitable therapeutic polypeptides and proteins include those that may be useful for treating individuals suffering from autoimmune diseases and disorders by eliciting a broad-based, protective immune response against targets associated with autoimmunity including cell receptors and cells that produce "self"- directed antibodies. T-cell mediated autoimmune diseases include rheumatoid arthritis (RA), multiple sclerosis (MS), Sjogren's syndrome, sarcoidosis, insulin-dependent diabetes mellitus (JDDM), autoimmune thyroiditis, reactive arthritis, ankylosing spondylitis, scleroderma, polymyositis, dermatomyositis, psoriasis, vasculitis , Wegener's granulomatosis, Crohn's disease and ulcerative colitis. Each of these diseases is characterized by T-cell receptors (TCRs) that bind to endogenous antigens and initiate the inflammatory cascade associated with autoimmune diseases.

C. Immunogene transgenerC. Immunogenic transgenes

Alternativt, eller i tillegg, kan vektorene ifølge oppfinnelsen inneholde AAV sekvenser ifølge oppfinnelsen og et transgen som koder et peptid, polypeptid eller protein som induserer en immunrespons mot et valgt immunogen. For eksempel kan immunogenene være valgt fra et antall virale familier. Eksempler på ønskede virale familier mot hvilken en immunrespons ville være ønskelig inkluderer pikornavirusfamilien som inkluderer genera rhinoviruser, som er ansvarlige for en 50 % av tilfellene av vanlig forkjølelse; genera enteroviruser som inkluderer polioviruser, coxsackieviruser, echoviruser og human enteroviruser som hepatitt A virus; og genera aptoviruser som er ansvarlige for munn- og klovsyke, primært hos ikke-humane dyr. Innen picornavirusfamilien av vimser inkluderer målantigener VP1, VP2, VP3, VP4 og VPG. En annen viral familie inkluderer calcivirusfamilien som omfatter Norwalkgruppen av vimser som er et viktig kausativt middel for epidemisk gastroenteritt. En ytterligere viral familie som er ønskelig for bmk i innsikting av antigener for å indusere immunresponser hos mennesker og ikke-humane dyr er togavirusfamilien som inkluderer genera a-virus som inkluderer Sindbis vimser, RossRiver vimser og venezuelansk, øst- og vest-ekvin encefalitt, og mbivims inkludert Rubella vims. Flaviviridaefamilien inkluderer dengue-, gulfeber-, japansk encefalitt-, St. Louis encefalitt- og flottbåret encefalitt vimser. Andre målantigener kan genereres fra hepatitis C- eller coronavirusfamilien som inkluderer et antall ikke-humane vimser som infektiøs bronkitt vims (fjærfe), porcin transmitterbar gastroenterisk vims (svin), porcin hemagglutinerende encfalomyelitt vims (svin), felin infektiøss pritonitt vims (katter), felin enterisk koronavims (katter), canine koronavims (hunder), og humanrespiratoriske koronavimser som kan forårsake vanlig forkjølelse og/eller ikke-A, B eller C hepatitt. Innen koronavimsfamilien inkluderer målantigenene El (også kalt M eller matriksprotein), E2 (også kalt S- eller Spike protein), E3 (også kalt HE eller hemagglutin-elterose), glykoprotein (ikke til stede i alle koronavimser), eller N (nukleocapsid). Ytterligere andre antigener kan innsiktes mot rhabdovirusfamilien som inkluderer genera vesikulovirus (for eksempel Vesicular Stomatit vims) og den generelle lyssavims (for eksempel rabies). Innen rhabdovirusfamilien kan egnede antigener avledes fra G-proteinet eller N-proteinet. Familien filoviridae som inkluderer he-moragjsk febervirus som Marburg- og Ebolavims kan være en egnet kilde for antigener. Paramyksovirusfamilien inkluderer parainfluensa vims type 1, parainfluensa vims type 3, bovin parainfluensa vims type 3, mbulavims (kusmavims, parainfluensa vims type 2, parainfluensa vims type 4, Newcastle sykdom vims (kyllinger), kvegpest, morbillivirus, som inkluderer meslinger og kanindistemper, og pneumovims som inkluderer respiratorisk syncytisk vims. Influensavirus er klassifisert innen familien orotomyksoviurs og er en egnet kilde for antigen (for eksempel HA proteinet, NI proteinet). Bunyavirusfami-lien inkluderer genera bunyavims (Californai encefalitt, La Crosose), flebovirus (Rift Valley Feber), hantavirus (puremala er en hemahagin feber vims), nairovims (Nairobi sauesykdom) og forskjellige ikketilskreve bungavimser. Arenavirusfamiline tilveiebringer en kilde for antigener mot LCM- og Lassa feber vims. Reovimsfamilien inkluderer genera reovims, rotavims (som forårsaker akutt gastroenteritt hos barn), orbivim-ser og kultiviruser (Colorado Flott feber, Lebombo (mennesker), ekvin encefalose, blå-tunge). Alternatively, or in addition, the vectors according to the invention may contain AAV sequences according to the invention and a transgene which codes for a peptide, polypeptide or protein which induces an immune response against a selected immunogen. For example, the immunogens may be selected from a number of viral families. Examples of desired viral families against which an immune response would be desirable include the picornavirus family which includes genera rhinoviruses, which are responsible for 50% of cases of the common cold; genera enteroviruses that include polioviruses, coxsackieviruses, echoviruses and human enteroviruses such as hepatitis A virus; and genera aptoviruses responsible for foot-and-mouth disease, primarily in non-human animals. Within the picornavirus family of vimser, target antigens include VP1, VP2, VP3, VP4 and VPG. Another viral family includes the calcivirus family comprising the Norwalk group of viruses that are an important causative agent of epidemic gastroenteritis. An additional viral family desirable for bmk in the recognition of antigens to induce immune responses in humans and non-human animals is the togavirus family which includes genera a viruses which include Sindbis vimser, RossRiver vimser and Venezuelan, Eastern and Western equine encephalitis, and mbivims including Rubella vims. The Flaviviridae family includes dengue, yellow fever, Japanese encephalitis, St. Louis encephalitis, and waterborne encephalitis viruses. Other target antigens can be generated from the hepatitis C or coronavirus family which includes a number of non-human VIMs such as infectious bronchitis VIMs (poultry), porcine transmissible gastroenteric VIMs (pigs), porcine hemagglutinating encephalomyelitis VIMs (pigs), feline infectious peritonitis VIMs (cats), feline enteric coronaviruses (cats), canine coronaviruses (dogs), and human respiratory coronaviruses that can cause the common cold and/or non-A, B, or C hepatitis. Within the coronavim family, the target antigens include E1 (also called M or matrix protein), E2 (also called S or Spike protein), E3 (also called HE or hemagglutin-elterosis), glycoprotein (not present in all coronavims), or N (nucleocapsid) . Still other antigens can be seen against the rhabdovirus family which includes genera vesiculoviruses (eg Vesicular Stomatitis viruses) and the general lyssavimes (eg rabies). Within the rhabdovirus family, suitable antigens can be derived from the G protein or the N protein. The family filoviridae which includes haemorrhagic fever viruses such as Marburg and Ebola viruses may be a suitable source of antigens. The paramyxovirus family includes parainfluenza vims type 1, parainfluenza vims type 3, bovine parainfluenza vims type 3, mbulavims (mumpavims, parainfluenza vims type 2, parainfluenza vims type 4, Newcastle disease vims (chickens), rinderpest, morbillivirus, which includes measles and rabbit distemper, and pneumovims which includes respiratory syncytial vims. Influenza virus is classified within the family orotomyxoviurs and is a suitable source of antigen (eg HA protein, NI protein). Bunyavirus family includes genera bunyavims (Californai encephalitis, La Crosose), phlebovirus (Rift Valley Fever) , hantavirus (puremala is a hemahaginous fever vims), nairovims (Nairobi sheep disease) and various unattributed bungavims. Arenavirus family provides a source of antigens against LCM and Lassa fever vims. The reovims family includes the genera reovims, rotavims (causing acute gastroenteritis in children), orbivims and cultiviruses (Colorado Great fever, Lebombo (humans), ek wine encephalosis, blue-tongue).

Retrovirusfamilien inkluder subfamilien onkorivirinal som omfatter slike human- og veterinærsykdommer som felinleukemivirus, HTLVI og HTLVTI, lentivirinal (som inkluderer human immunodefektiv vims (HIV), simian immunodefekt vims (SIV), felin immunodefekt vims (FIV), ekvin efektiøs anemi vims og spumavirinal). Mellom HIV og SIV er mange egnede antigener beskrevet og kan lett velges. Eksempler på egnede HIV- og SIV antigener inkluderer uten begrensning gag, pol, Vif, Vpx, VPR, Env, Tat og Rev proteinene så vel som forskjellige fragmenter derav. I tillegg er et antall modifikasjoner til disse antigener beskrevet. Egnede antigener for dette formål er velkjente for fagmanne. For eksempel kan man velge en sekvens som koder gag, pol, Vif og Vpr, Env, Tat og Rev, blant andre proteiner, se for eksempel det modifiserte gag protein som er beskrevet i US 5 972 596. Se videre de HIV- og SIV proteiner som er beskrevet av D.H. Barouch et al. i "J: Virol.", 75(5):2462-2467 (Mars 20001), samt av R.R. Amara et al. i "Science", 292:69-74 (6 April 2002). Disse proteiner eller subenheter derav kan avleveres alene, eller i kombinasjon via separate vektorer eller fra en enkelt vektor. The retrovirus family includes the subfamily oncorivirinal which includes such human and veterinary diseases as feline leukemia virus, HTLVI and HTLVTI, lentivirinal (which includes human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), equine effectual anemia virus and spumavirinal) . Between HIV and SIV, many suitable antigens have been described and can be easily selected. Examples of suitable HIV and SIV antigens include without limitation the gag, pol, Vif, Vpx, VPR, Env, Tat and Rev proteins as well as various fragments thereof. In addition, a number of modifications to these antigens have been described. Suitable antigens for this purpose are well known to those skilled in the art. For example, one can choose a sequence that codes for gag, pol, Vif and Vpr, Env, Tat and Rev, among other proteins, see for example the modified gag protein described in US 5,972,596. See also the HIV and SIV proteins described by D.H. Barouch et al. in "J: Virol.", 75(5):2462-2467 (March 20001), as well as by R.R. Amara et al. in "Science", 292:69-74 (April 6, 2002). These proteins or subunits thereof can be delivered alone, or in combination via separate vectors or from a single vector.

Papovavirusfamilien inkluderer subfamilien polyomaviruser (BKU- og JCU vimser) og subfamilien papillomavimser (assosiert med cancere og malignant progresjon av papill-oma). Adenovimsfamilien inkluderer vimser ((EX, AD7, ARD, O.B.) som forårsaker respiratorisk sykdom og/eller enteritt. Parvovimsfamilien inkluderer felin parvovims (felinenteritt); felin panleukopeniavims, canine parvovims og porcine parvovims. Her-pesvimsfamilien inkluderer sub-familien alfaherpesvirinae, som omfatter genera sim-plexvims (HSVL HSVIT), varicellovims (pseudorabies, varicella zoster) og sub-familien betaherpesvirinae, som inkluderer genera cytomegalovirus (HCMV, muromegalovims) og sub-familien gammeherpesvirinae som inkluderer genera lymfokryptovirus, EBV (Burkitts lymfom), infektiør rhinotrakeitt, Mareks sykdomsvims og rhadinovims. Poxvimsfamilien inkluderer sub-familien kordopoxvirinae som omfatter genera orto-poxvims (Variola (småkopper) og vaksinia (kukopper)), parapoxvims, avipoxvims, capripoxvims, leporipoxvims, suipoxvims og sub-familien entomopoxvirinae. Hepad-nvavimsfamilien inkluderer hepatitt B vimsen. En ikke-klassifisert vims som kan være en egnet kilde for antigener er Hepatitis delta vimsen. Ytterligere andre virale kilder kan inkludere avian infektiøs bursal sykdoms vims og porcin respiratorisk og reproduktiv syndromvims. Alfavimsfamilien inkluderer ekvin arteritis vims og forskjellige Encefa-litis vimser. The papovavirus family includes the subfamily polyomaviruses (BKU and JCU viruses) and the subfamily papillomaviruses (associated with cancer and malignant progression of papillomas). The adenovim family includes vims (EX, AD7, ARD, O.B.) which cause respiratory disease and/or enteritis. The parvovim family includes feline parvovims (feline enteritis); feline panleukopenia vims, canine parvovims, and porcine parvovims. The herpesvim family includes the subfamily alphaherpesvirinae, which includes genera sim-plexvims (HSVL HSVIT), varicellovims (pseudorabies, varicella zoster) and the sub-family betaherpesvirinae, which includes the genera cytomegalovirus (HCMV, muromegalovims) and the sub-family gammeherpesvirinae which includes the genera lymphocryptovirus, EBV (Burkitt's lymphoma), infectious rhinotracheitis, Marek's disease vims and rhadinovims. The poxvim family includes the subfamily cordopoxvirinae which includes the genera ortho-poxvims (Variola (smallpox) and vaccinia (cowpox)), parapoxvims, avipoxvims, capripoxvims, leporipoxvims, suipoxvims and the subfamily entomopoxvirinae. The hepadnvavims family includes hepatitis B vimsen An unclassified vims that may be a suitable source for antige ner is Hepatitis delta vimsen. Additional viral sources may include avian infectious bursal disease viruses and porcine respiratory and reproductive syndrome viruses. The alpha vims family includes equine arteritis vims and various Encefa-litis vims.

Foreliggende oppfinnelse kan også omfatte immunogener som er brukbare for å immun-iser et menneske eller ikke-humant dyr mot andre patogener inkludert bakteria, fungj, parasittiske mikroorganismer eller multicellulære parasitter som infiserer humane og ikke-humane vertebrater, eller danner en cancercelle eller tumorcelle. Eksempler på bakterielle patogener inkluderer patogenisk gram-positive kokki inkludert pneumo-kokki; stafylokokki; og streptokokki. Patogeniske, gram-negative kokki inkluderer me-ningokokkus; gonokokkus. Patogeniske, enteriske gram-negative bacilli inkluderer en-terobacteriaceae; psudomonas, acinetobacteia og eikenella; melioidosis, salmonella; shigella; haemophilus; moraxella; H. Ducreyi (som forårsaker chancroid); bmcella; Franisealla tularensis (som forårsaker tularemia); yersinia (pasteurella); streptobacillus moniliformis og spirillum; Gram-positive bacilli inkluderer listeria monocytogeners; erypsipelotrhrix rhusopathiae; Corynebacterium diphteria (difteri), kloera; B. Anthracis (anthrax); donovanosis (granuloma inguinale); og bartonellose. Sykdommer forårsaket av patogeniske, anaerobe bakterier inkluderer tetanus; botulisme; andre clostridia; tu- berkulose; leprosi; og andre mykobakteria. Patogeniske, spiroketale sykdommer inkluderer syfilis; treponematoser; yaws, pinta og endemisk syfilis; og leptospirose. Andre infeksjoner forårsaket av høyere patogenbakteria og patogeniske fungi inkluderer akti-nomykose, nokardiose; kryptokokkose, blastomykose, histoplasmose og kokkidiomyko-se; candidiase, aspergillose, og mukormykose; sportotrikose; parakokkidiodomykose, petriellidiose, torulopsose, mycetoma og kromomykose; og dermatofytose. Ricketsielle infeksjoner inkluder Tyfusfeber, Rocky Mountain flekkfeber, Q feber og Rickettsial-opox. Eksempler på mykoplasma og klamydiale infeksjoner inkluderer: mycoplasma pneumoniae; lympfogranuloma venereum, psittakose; og perinatal klamydiale infeksjoner. Patogeniske eukaryoter omfatter patogeniske protozoaner og helminter og infeksjoner fra disse inkluderer: amebiaser, malaria, leishamiase; trypanosomiase; toxoplasmo-se; Pneumocystis carinii; Trikaner, Toxoplasmo gondii; babesiose; giardiase; trikinose; filariase; schistosomiase; nematoder; trematoder eller "flukes"; og cestose (bendelorm) infeksjoner. The present invention may also include immunogens that are useful for immunizing a human or non-human animal against other pathogens including bacteria, fungi, parasitic microorganisms or multicellular parasites that infect human and non-human vertebrates, or form a cancer cell or tumor cell. Examples of bacterial pathogens include pathogenic gram-positive cocci including pneumococci; staphylococci; and streptococci. Pathogenic gram-negative cocci include meningococcus; gonococcus. Pathogenic enteric gram-negative bacilli include enterobacteriaceae; psudomonas, acinetobacteia and eikenella; melioidosis, salmonella; shigella; haemophilus; moraxella; H. Ducreyi (which causes chancroid); bmcella; Franisealla tularensis (which causes tularemia); yersinia (pasteurella); streptobacillus moniliformis and spirillum; Gram-positive bacilli include listeria monocytogenes; erypsipelotrhrix rhusopathye; Corynebacterium diphtheria (diphtheria), klaara; B. Anthracis (anthrax); donovanosis (granuloma inguinale); and bartonellosis. Diseases caused by pathogenic, anaerobic bacteria include tetanus; botulism; other clostridia; tuberculosis; leprosy; and other mycobacteria. Pathogenic, spirochetal diseases include syphilis; treponematoses; yaws, pinta and endemic syphilis; and leptospirosis. Other infections caused by higher pathogenic bacteria and pathogenic fungi include actinomycosis, nocardiosis; cryptococcosis, blastomycosis, histoplasmosis and coccidiomycosis; candidiasis, aspergillosis, and mucormycosis; sports tricot; paracocci idiodomycosis, petriellidiosis, torulopsosis, mycetoma and chromomycosis; and dermatophytosis. Rickettsial infections include typhoid fever, Rocky Mountain spotted fever, Q fever, and Rickettsial-opox. Examples of mycoplasma and chlamydial infections include: mycoplasma pneumoniae; lymphogranuloma venereum, psittacosis; and perinatal chlamydial infections. Pathogenic eukaryotes include pathogenic protozoans and helminths and infections from these include: amoebiasis, malaria, leishmaniasis; trypanosomiasis; toxoplasmosis; Pneumocystis carinii; Tricanes, Toxoplasmo gondii; babesiosis; giardiasis; trichinosis; filariasis; schistosomiasis; nematodes; trematodes or "flukes"; and cestosis (tapeworm) infections.

Mange av disse organismer og/eller toksiner som produsere av disse er identifisert av "Centers for Disease Control" [(CDC), Department of Health and Human Services, USA], som midler som har potensiale for bruk ved biologiske angrep. For eksempel inkluderer noen av disse biologiske midler Bacillus anthracis (antrax), Clostridium bo-tulinum og dettes toksin (botulisme), Yersinia pestis (pest) vari ola major (småkopper), Francisella tularensis (tularemi), og viral hemoragisk feber, alt i dag klassifisert som Kategori A midler; Coxiella burnetti (Q feber); Brucella species (brucellose), Burkhol-deria matlei (snive), Ricinus communis og dettes toksin (ricintoksin), Clostridium per-jringens og dettes toksin (e-toksin ), Stahylococcus spesier og deres toksiner (enterotok-sin B), alt i dag klassifisert som Kategori B midler; og Nipan virus og hantaviruser som i dag er klassifisert som Kategori C midler. I tillegg kan andre organismer som er klassifisert slik eller forskjellig, identifiseres og/eller benyttes for et slikt formål i fremtiden. Det vil være lett å forstå at de virale vektorer og andre konstrukter som beskrevet her er brukbare for å avlevere antigener fra disse organismer, vimser og deres toksiner eller andre biprodukter, som vil forhindre og/eller behandle infeksjon eller andre ugunstige reaksjoner med disse biologiske midler. Many of these organisms and/or toxins produced by them have been identified by the Centers for Disease Control [(CDC), Department of Health and Human Services, USA] as having potential for use in biological attacks. For example, some of these biological agents include Bacillus anthracis (anthrax), Clostridium botulinum and its toxin (botulism), Yersinia pestis (plague) variola major (smallpox), Francisella tularensis (tularemia), and viral hemorrhagic fever, all in day classified as Category A funds; Coxiella burnetti (Q fever); Brucella species (brucellosis), Burkhol-deria matlei (snive), Ricinus communis and its toxin (ricintoxin), Clostridium per-jringens and its toxin (e-toxin), Stahylococcus species and their toxins (enterotoxin B), all in day classified as Category B funds; and Nipan virus and hantaviruses which are currently classified as Category C agents. In addition, other organisms classified as such or differently may be identified and/or used for such a purpose in the future. It will be readily understood that the viral vectors and other constructs described herein are useful for delivering antigens from these organisms, vims and their toxins or other by-products, which will prevent and/or treat infection or other adverse reactions with these biological agents .

Administrering av vektorene ifølge oppfinnelsen for å avlevere immunogener mot det variable området av T-cellen utløser en immunrespons inkludert CTL'er for å eliminere disse T-celler. Ved rheumatoid aitritt (RA) er diverse spesifikke, variable områder av T-celle receptorer (TCR'er) som er involvert i sykdommen,karakterisert. Disse TCR'er inkluderer V-3, V-14, V-17 og Va-17. Således vil avlevering av en nukleinsyresekvens som koder minst ett av disse polypeptider utløse en immunrespons som vil ta sikte på T-celler involvert ved RA. Ved multippel sklerose (MS) er flere spesifikke, variable områder av TCR'er som er involvert i sykdommen,karakterisert. Disse TCR'er inkluderer V-7 og Va-10. Således vil avlevering av en nukleinsyresekvens som koder minst ett av disse polypeptider elicitere en immunrespons som vil ta sikte på T-celler involvert i MS. Ved skleroderma er detkarakterisertflere spesifikke, variable områder av TCR'er som er involvert i sykdommen. Disse TCR'er inkluderer V-6, V8, V-14 og Va-16, Va-3C, Va-7, Va-14, Va-15, Va-16, Va-28 og Va-12. Således vil avlevering av et nukleinsyremolekyl som koder minst ett av disse polypeptider utløse en immunrespons som vil ta sikte på T-celler involvert i skleroderma. Administration of the vectors according to the invention to deliver immunogens against the variable region of the T cell triggers an immune response including CTLs to eliminate these T cells. In rheumatoid arthritis (RA), various specific, variable areas of T-cell receptors (TCRs) that are involved in the disease have been characterized. These TCRs include V-3, V-14, V-17 and Va-17. Thus, delivery of a nucleic acid sequence encoding at least one of these polypeptides will trigger an immune response that will target T cells involved in RA. In multiple sclerosis (MS), several specific, variable regions of TCRs involved in the disease have been characterized. These TCRs include the V-7 and Va-10. Thus, delivery of a nucleic acid sequence encoding at least one of these polypeptides will elicit an immune response that will target T cells involved in MS. In scleroderma, several specific, variable regions of TCRs have been characterized that are involved in the disease. These TCRs include V-6, V8, V-14 and Va-16, Va-3C, Va-7, Va-14, Va-15, Va-16, Va-28 and Va-12. Thus, delivery of a nucleic acid molecule encoding at least one of these polypeptides will trigger an immune response that will target T cells involved in scleroderma.

Eventuelt kan vektorer inneholdende AAV sekvenser ifølge oppfinnelsen avleveres ved bruk av et prime-boost regime. En antall slike regimer er beskrevet i teknikken og kan lett velges, se for eksempel TO 00/11140, publisert 2. mars 2000, hvortil det vises når det gjelder detaljer. Optionally, vectors containing AAV sequences according to the invention can be delivered using a prime-boost regime. A number of such regimes are described in the art and may be readily selected, see for example TO 00/11140, published March 2, 2000, to which reference is made for details.

Slike prime-boost regimer involverer karakteristisk administrering av en DNA (for eksempel plasmid) basert vektor for å prime immunsystemet til andre, booster, administrering med et tradisjonelt antigen som et protein eller en rekombinant virus som bærer sekvensene som koder et slikt antigen. I en slik utførelsesform tilveiebringer oppfinnelsen en fremgangsmåte for priming og boosting av en immunrespons mot et valgt anti-gen ved avlevering av en plasmid DNA vektor som bærer nevnte antigen, fulgt av boosting, for eksempel med en vektor inneholdende AAV sekvenser ifølge oppfinnelsen. Such prime-boost regimens typically involve the administration of a DNA (eg, plasmid) based vector to prime the immune system of others, booster, administration with a traditional antigen such as a protein or a recombinant virus carrying the sequences encoding such an antigen. In such an embodiment, the invention provides a method for priming and boosting an immune response against a selected antigen by delivery of a plasmid DNA vector carrying said antigen, followed by boosting, for example with a vector containing AAV sequences according to the invention.

I en utførelsesform involverer prime-boost regimet ekspresjonene av multiproteiner fra prime- og/eller boost bærerer, se for eksempel R.R. Amara i "Science", 292:69-74 (6 april 2001) som beskriver et multiproteinregime for ekspresjon av proteinsubenheter som kan brukes for generering av en immunrespons mot HIV og SIV. For eksempel kan en DNA prime avlevere Gag, Pol, Vif, VPX og Vpr og Env, Tat, og Rev fra et enkelt transkript. Alternativt avgis SIV Gag, Pol og HIV-1 Env. In one embodiment, the prime-boost regimen involves the expression of multiproteins from prime and/or boost carriers, see, for example, R.R. Amara in "Science", 292:69-74 (April 6, 2001) which describes a multiprotein regimen for the expression of protein subunits that can be used to generate an immune response against HIV and SIV. For example, a DNA prime can deliver Gag, Pol, Vif, VPX, and Vpr and Env, Tat, and Rev from a single transcript. Alternatively, SIV Gag, Pol and HIV-1 Env are released.

Imidlertid er prime-boost regimene ikke begrenset til immunisering for HIV eller for avlevering av disse antigener. For eksempel kan priming involvere avlevering med en første chimp vektor ifølge oppfinnelsen fulgt av boosting med en andre chimp vektor, eller med et preparat inneholdende antigenet per se i protein form. I ett eksempel kan prime-boost regimet tilveiebringe en protektiv immunrespons mot virusen, bakterien eller en annen organisme hvorfra antigenet avleveres. I en annen ønsket utførelsesform tilveiebringer prime-boost regimet en terapeutisk effekt som kan måles ved bruk av konvensjonelle analyser for detektering av nærvær av tilstanden for hvilken terapien administreres. However, the prime-boost regimens are not limited to immunization for HIV or to the delivery of these antigens. For example, priming may involve delivery with a first chimp vector according to the invention followed by boosting with a second chimp vector, or with a preparation containing the antigen per se in protein form. In one example, the prime-boost regimen may provide a protective immune response against the virus, bacteria, or other organism from which the antigen is delivered. In another desired embodiment, the prime-boost regimen provides a therapeutic effect that can be measured using conventional assays for detecting the presence of the condition for which the therapy is administered.

Primingvaksinen kan administreres på forskjellige seter i kroppen i en doseavhengig modus som avhenger av antigenet mot hvilket den ønskede immunrespons innsiktes. Oppfinnelsen er ikke begrenset til mengden injeksjonsseter eller til farmasøytisk bærer. Tvert imot inkluderer primingstrinn behandlingsregimer som inkluderer en enkelt dose eller dosering som administreres per time, per dag, per uke, per måned eller per år. Som et eksempel kan pattedyr motta en eller to primingjnjeksjoner inneholdende mellom 10 ug og 50 ug plasmid i bærer. En ønsket primingmengde eller dosering for priming DNA vaksinepreparater ligger mellom rundt 1 ug og 10.000 ug av DNA vaksinen. Dose-ringene kan variere fra 1 ug til 1.000 ug DNA per kg individ kroppsvekt. Mengden eller injeksjonssetet velges fortrinnsvis basert på identitet og tilstand hos det pattedyr som behandles. The priming vaccine can be administered at different sites in the body in a dose-dependent mode that depends on the antigen against which the desired immune response is elicited. The invention is not limited to the amount of injection sites or to the pharmaceutical carrier. Rather, priming steps include treatment regimens that include a single dose or dosage that is administered hourly, daily, weekly, monthly, or annually. As an example, mammals may receive one or two priming injections containing between 10 µg and 50 µg of plasmid in carrier. A desired priming amount or dosage for priming DNA vaccine preparations is between around 1 ug and 10,000 ug of the DNA vaccine. The dosage rings can vary from 1 ug to 1,000 ug DNA per kg individual body weight. The amount or injection site is preferably selected based on the identity and condition of the mammal being treated.

Doseringsenheten for DNA vaksinen som er egnet for avlevering av antigenet til patte-dyret, beskrives her. DNA vaksinen fremstilles for administrering med suspendering eller oppløsning i en farmasøytisk eller fysiologisk akseptabel bærer som isotonisk salt-oppløsning, isotoniske salter i oppløsning eller andre formuleringer som vil være åpenbare for fagmannen på området. Den egnede bærer vil være åpenbar for fagmannen og vil avhenge for det meste av administreringsveien. Preparatene ifølge oppfinnelsen kan administreres til et pattedyr i henhold til de ovenfor beskrevne veier i form av en formu-lering med opprettholdt frigivning ved bruk av en bionedbrytbar biokompatibel poly-mer, eller ved avlevering på setet ved bruk av miceller, geler og liposomer. The dosage unit for the DNA vaccine, which is suitable for delivering the antigen to the mammal, is described here. The DNA vaccine is prepared for administration by suspension or solution in a pharmaceutical or physiologically acceptable carrier such as isotonic salt solution, isotonic salts in solution or other formulations that will be obvious to the person skilled in the art. The suitable carrier will be obvious to the person skilled in the art and will depend largely on the route of administration. The preparations according to the invention can be administered to a mammal according to the routes described above in the form of a formulation with sustained release using a biodegradable biocompatible polymer, or by delivery on the seat using micelles, gels and liposomes.

Eventuelt kan primingtrinnet ifølge oppfinnelsen også inkludere, sammen med administreringen av priming DNA vaksinepreparatet, en egnet mengde av en adj uvant som definert her. Optionally, the priming step according to the invention can also include, together with the administration of the priming DNA vaccine preparation, a suitable amount of an adjuvant as defined here.

Fortrinnsvis blir et boostingpreparat administrert rundt 2 til rundt 27 uker etter administrering av priming DNA vaksinen til mammalindividet. Administreringen av boostingpreparatet gjennomføres ved bruk av en effektiv mengde av et boostingvaksinepreparat inneholdende eller i stand til å avgi det samme antigen som administrert av priming DNA vaksinen. Boostingpreparatet kan bestå av en rekombinant, viral vektor avledet fra den samme virale kilde eller fra en annen kilde. Alternativt kan "boostingpreparatet" være et preparat inneholdende det samme antigen som kodet i priming DNA vaksinen men i form av et protein eller peptid, hvilket preparat induserer en immunrespons hos verten. I en annen utførelsesform inkluderer boostingvaksinepreparatet et preparat inneholdende en DNA sekvens som koder antigenet under kontroll av en regulatorisk sekvens som styrer dens ekspresjon i en pattedyrcelle, for eksempel vektorer som velkjente bakterielle eller virale vektorer. De primære krav for boostingvaksinepreparatet er at antigenet av vaksinepreparatet er det samme antigen, eller et kryssreaktivt antigen, som kodet av DNA vaksinen. Preferably, a boosting preparation is administered about 2 to about 27 weeks after administration of the priming DNA vaccine to the mammalian subject. The administration of the boosting preparation is carried out using an effective amount of a boosting vaccine preparation containing or able to deliver the same antigen as administered by the priming DNA vaccine. The boosting preparation may consist of a recombinant viral vector derived from the same viral source or from another source. Alternatively, the "boosting preparation" can be a preparation containing the same antigen as encoded in the priming DNA vaccine but in the form of a protein or peptide, which preparation induces an immune response in the host. In another embodiment, the boosting vaccine preparation includes a preparation containing a DNA sequence that encodes the antigen under the control of a regulatory sequence that directs its expression in a mammalian cell, for example vectors such as well-known bacterial or viral vectors. The primary requirements for the boosting vaccine preparation are that the antigen of the vaccine preparation is the same antigen, or a cross-reactive antigen, as encoded by the DNA vaccine.

Fortrinnsvis er vektorene ifølge oppfinnelsen også velegnet for bruk i regimer som benytter ikke-AAV vektorer så vel som proteiner, peptider og/eller andre biologisk brukbare terapeutiske eller immunogeniske forbindelser. Disse regimer er spesielt velegnet for genavlevering for terapeutiske formål og for immunisering, inkludert indusering av protektiv immunitet. Slike anvendelser vil lett være åpenbare for fagmannen. Preferably, the vectors according to the invention are also suitable for use in regimens that use non-AAV vectors as well as proteins, peptides and/or other biologically usable therapeutic or immunogenic compounds. These regimens are particularly suitable for gene delivery for therapeutic purposes and for immunization, including the induction of protective immunity. Such applications will be readily apparent to those skilled in the art.

Videre tilveiebringer en vektor ifølge oppfinnelsen en effektiv genoverføringstranspor-tør som kan avlevere et valgt transgen til en valgt vertscelle in vivo eller ex vivo også der organismen har nøytraliserende antistoffer mot en eller flere AAV serotyper. I en utførelsesform blir vektoren (for eksempel en rAAV) og cellene blandet ex vivo; de infi-serte celler dyrkes ved bruk av konvensjonelle metoder; og de transduserte celler reinfu-seres i pasienten. Videre kan vektorene ifølge oppfinnelsen også benyttes for fremstilling av et ønsket genprodukt in vitro. For in vitro produksjon kan et ønsket produkt (for eksempel et protein) oppnås fra en ønsket kultur etter transfeksjon av vertsceller med en rAAV inneholdende molekylet som koder det ønskede produkt og dyrking av cellekul-turen under betingelser som tillater ekspresjon. Det uttrykte produkt kan så renses og isoleres etter ønske. Egnede teknikker for transfeksjon, celledyrking, rensing og isolasjon er velkjent for fagmannen. Furthermore, a vector according to the invention provides an efficient gene transfer transporter that can deliver a selected transgene to a selected host cell in vivo or ex vivo also where the organism has neutralizing antibodies against one or more AAV serotypes. In one embodiment, the vector (eg, an rAAV) and the cells are mixed ex vivo; the infected cells are cultured using conventional methods; and the transduced cells are reinfused into the patient. Furthermore, the vectors according to the invention can also be used for the production of a desired gene product in vitro. For in vitro production, a desired product (for example a protein) can be obtained from a desired culture after transfection of host cells with an rAAV containing the molecule encoding the desired product and cultivation of the cell culture under conditions that allow expression. The expressed product can then be purified and isolated as desired. Suitable techniques for transfection, cell cultivation, purification and isolation are well known to those skilled in the art.

De følgende eksempler skal illustrere forskjellige aspekter og utførelsesformer av oppfinnelsen. The following examples shall illustrate various aspects and embodiments of the invention.

EKSEMPLEREXAMPLES

Eksempel 1:Example 1:

PCR forsterkning, kloning og karakterisering av nye AAV sekvenser.PCR amplification, cloning and characterization of new AAV sequences.

Vev fra ikke-humane primater avsøkes på AAV sekvenser ved bruk av en PCR metode basert på oligonukleotider til sterkt konserverte områder av kjente AAVer. En strekning av AAV sekvens som spennes over 2886 til 3143 bp av AAV1 [SEQ ID nr. 6] ble valgt som en PCR amplikon der et hypervariabelt område av capsidproteinet (Cap) som er unikt for hver kjente AAV serotype, og som her angis som et "signaturområde", er flankert av konserverte sekvenser. I senere analyser ble dette signaturområdet vist å være lokalisert mellom konserverte rester som spente over hypervariabelt område 3. Tissues from non-human primates are scanned for AAV sequences using a PCR method based on oligonucleotides to highly conserved regions of known AAVs. A stretch of AAV sequence spanning 2886 to 3143 bp of AAV1 [SEQ ID no. 6] was chosen as a PCR amplicon in which a hypervariable region of the capsid protein (Cap) which is unique to each known AAV serotype, and which is here indicated as a "signature region", is flanked by conserved sequences. In later analyses, this signature region was shown to be located between conserved residues spanning hypervariable region 3.

En første undersøkelse av perifert blod fra et antall ikke-human primat spesier avdekket detekterbar AAV i et subsett av dyr fra spesier som rhesus macaquer, cynomologe macaquer, sjimpanser og bavianer. Imidlertid var det ingen AAV sekvens detektert i noen av de andre testede spesier inkludet rjapanske macaquer, grisehalemacaquer og ekorna-per. En mer utstrakt analyse av vektorfordelingen ble gjennomført i vev av Rhesusaper ved University of Pennsylvania and Tulane-kolonier gjenvunnet ved nekropsi. Dette avdekket AAV sekvens gjennom et vidt mønster av vev. An initial examination of peripheral blood from a number of non-human primate species revealed detectable AAV in a subset of animals from species such as rhesus macaques, cynomolgus macaques, chimpanzees and baboons. However, there was no AAV sequence detected in any of the other tested species including Japanese macaques, pig-tailed macaques and squirrel monkeys. A more extensive analysis of vector distribution was conducted in tissue from rhesus monkeys at the University of Pennsylvania and Tulane colonies recovered at necropsy. This revealed AAV sequence through a wide pattern of tissue.

A. Forsterkning av et AA V signaturområdeA. Amplification of an AA V signature area

DNA sekvenser av AAV1-6 og AAVer isolert fra gjess og ender ble innrettet ved siden av hverandre ved bruk av "Clustal W" ved default innstilling. Innretningen for AAV1-6 og inkludering av informasjon for den nye AAV7 er gitt i figur 1. Sekvenslikheter blant AAVene ble sammenlignet. DNA sequences of AAV1-6 and AAVs isolated from geese and ducks were aligned next to each other using "Clustal W" at default settings. The arrangement for AAV1-6 and inclusion of information for the new AAV7 is given in Figure 1. Sequence similarities among the AAVs were compared.

Ved denne studie ble et 257 bp område som spente over 2886 bp til 3143 bp av AAV1 [SEQ ID nr. 6], og det tilsvarende område i genomene av AAV 2-6 genomene [se figur 1] identifisert av oppfinnerne. Dette område er lokalisert ved AAV capsid genet og har sterkt konserverte sekvenser både ved 5- og 3' endene og har en relativt variabel sekvens i midten. I tillegg inneholder dette området et DralU restriksjons enzymsete (CACCACGTC, SEQ ID nr. 15). Oppfinnerne har funnet at dette området tjener som spesifikk signatur for hver kjente type av AAV DNA. Ved med andre ord å følge PCR reaksjoner, digestering med endonukleaser som er spesifikke for hver kjente serotype, og gel elektroforeseanalyse kan dette området benyttes for definitivt å identifisere forsterkede DNA til å være fra serotype 1, 2, 3, 4, 5, 6, eller en annen serotype. In this study, a 257 bp region spanning 2886 bp to 3143 bp of AAV1 [SEQ ID No. 6], and the corresponding region in the genomes of the AAV 2-6 genomes [see Figure 1] were identified by the inventors. This area is located at the AAV capsid gene and has highly conserved sequences at both the 5- and 3' ends and has a relatively variable sequence in the middle. In addition, this region contains a DralU restriction enzyme site (CACCACGTC, SEQ ID No. 15). The inventors have found that this region serves as a specific signature for each known type of AAV DNA. In other words, by following PCR reactions, digestion with endonucleases that are specific for each known serotype, and gel electrophoresis analysis, this area can be used to definitively identify amplified DNA as being from serotypes 1, 2, 3, 4, 5, 6, or another serotype.

Primerne ble designert, validert og PCR betingelsene optimalisert med AAV1, 2 og 5 DNA kontroller. Primerne var basert på sekvensene av AAV2: 5'primeren, IS: bp 2867-2891 av AAV2 (SEQ ID nr. 7) og 3'primeren, 18as, bp 3095-3121 av AAV2 (SEQ ID nr. 7). The primers were designed, validated and the PCR conditions optimized with AAV1, 2 and 5 DNA controls. The primers were based on the sequences of AAV2: the 5' primer, IS: bp 2867-2891 of AAV2 (SEQ ID No. 7) and the 3' primer, 18as, bp 3095-3121 of AAV2 (SEQ ID No. 7).

Cellulære DNA'er fra forskjellige vev inkludert blod, hjerne, lever, lunge, testis og så videre fra forskjellige rhesusaper ble studert ved bruk av strategien som beskrevet ovenfor. Resultatene viste at DNA'er fra forskjellige vev av disse aper gav grunn til sterke PCR forsterkninger. Ytterligere restriksjonsanalyser av PCR produkter indikerte at de ble forsterket fra AAV sekvenser som var forskjellige fra alle publiserte AAV sekvenser. Cellular DNAs from various tissues including blood, brain, liver, lung, testis and so on from various rhesus monkeys were studied using the strategy described above. The results showed that DNAs from different tissues of these monkeys gave rise to strong PCR amplifications. Further restriction analyzes of the PCR products indicated that they were amplified from AAV sequences that differed from all published AAV sequences.

PCR produkter (med størrelse rundt 255 bp) fra DNA'er fra en varietet av apevev er klonet og sekvensert. Bioinformasjonsstudier over disse nye AAV sekvenser antydet at de er nye AAV sekvenser av capsid gen og distinkte fra hverandre. Figur 1 inkluderer innretningen av de nye AAV signaturområder for AAV 10-12 [SEQ ID nr. 117, 118 henholdsvis 119]. Multippelsekvensinnretninganalyse ble gjennomført ved bruk av Clustal W (1.81) programmet. Prosentandelen sekvensidentitet mellom signaturområdene for AAV 1-7- og AAV 10-12 genomene er gitt nedenfor. PCR products (with a size of around 255 bp) from DNAs from a variety of monkey tissue have been cloned and sequenced. Bioinformatics studies on these new AAV sequences suggested that they are new AAV sequences of the capsid gene and distinct from each other. Figure 1 includes the arrangement of the new AAV signature regions for AAV 10-12 [SEQ ID no. 117, 118 and 119 respectively]. Multiple sequence alignment analysis was performed using the Clustal W (1.81) program. The percentage of sequence identity between the signature regions of the AAV 1-7 and AAV 10-12 genomes is given below.

Over 300 kloner inneholdende nye AAV serotypesekvenser som spenner over det valgte 257 bp område ble isolert og sekvensert. Bioinformatikkanalyse av disse 300+ kloner antydet at dette 257 bp området er kritisk med henblikk på å tjene som en god land mar-kør eller signatursekvens for hurtig isolering og identifisering av en ny AAV serotype. Over 300 clones containing novel AAV serotype sequences spanning the selected 257 bp region were isolated and sequenced. Bioinformatics analysis of these 300+ clones suggested that this 257 bp region is critical for serving as a good land marker or signature sequence for rapid isolation and identification of a new AAV serotype.

B. Bruk av signaturområde for PCR forsterkningB. Use of signature region for PCR amplification

257 bp signaturområdet ble benyttet som et PCR anker for å forlenge PCR forsterk-ningene til 5' av genomet for å dekke skjøteområdet for rep- og cap genene (1398 bp - 3143 bp, SEQ ID nr. 6) og 3' av genomet for å oppnå hele cap gen sekvensen (2866 bp - 4600 bp, SEQ ID nr. 6). PCR forsterkninger ble gjennomført ved å benytte standardbe-tingelsene inkludert denaturering ved 95 °C i 0,5-1 minutt, annellering ved 60-65 °C i 0,5-1 minutt og forlengelse ved 72 °C i 1 minutt per kb med et totalt antall forsterk-ningscykler fra 28 til 42. The 257 bp signature region was used as a PCR anchor to extend the PCR amplifications to the 5' of the genome to cover the splice region for the rep and cap genes (1398 bp - 3143 bp, SEQ ID no. 6) and 3' of the genome for to obtain the entire cap gene sequence (2866 bp - 4600 bp, SEQ ID no. 6). PCR amplifications were carried out using the standard conditions including denaturation at 95 °C for 0.5-1 minute, annealing at 60-65 °C for 0.5-1 minute and extension at 72 °C for 1 minute per kb with a total number of amplification cycles from 28 to 42.

Ved bruk av de innrettede sekvenser som beskrevet under punkt "A" ble to andre relativt konserverte områder identifisert i sekvensen lokalisert i 3' enden av rep gener og 5' til 257 bp området og i sekvensen nedstrøms 57 bp fragmentet men før AAV 3 ITR. To sett av nye primere ble designet og PCR betingelsene optimalisert for gjenvinning av totalt capsid eller en del av rep sekvensene av nye AAV serotyper. Mer spesifikt var for 5'forsterkningen, 5'primeren, AVINs, GCTGCGTCAACTGGACCAATGAGAAC [nt 1398-1423 av AVI, SEQ ID nr. 6] og 3'primeren var 18as, identifisert ovenfor. For 3' forsterkning var 5' primeren ls, identifisert ovenfor, og 3' primeren var Av2Las, TCGTTTCAGTTGAACTTTGGTCTCTGCG [nt 4435-4462 av AAV2, SEQ ID nr. 7]. Using the aligned sequences as described under point "A", two other relatively conserved regions were identified in the sequence located at the 3' end of rep genes and 5' to the 257 bp region and in the sequence downstream of the 57 bp fragment but before the AAV 3 ITR. Two sets of new primers were designed and the PCR conditions optimized for recovery of total capsid or part of the rep sequences of new AAV serotypes. More specifically, for the 5' amplification, the 5' primer was AVINs, GCTGCGTCAACTGGACCAATGAGAAC [nt 1398-1423 of AVI, SEQ ID No. 6] and the 3' primer was 18as, identified above. For 3' amplification, the 5' primer was ls, identified above, and the 3' primer was Av2Las, TCGTTTCAGTTGAACTTTGGTCTCTGCG [nt 4435-4462 of AAV2, SEQ ID No. 7].

Ved disse PCR forsterkninger ble 257 bp området benyttet som et PCR anker og land-markør for å generere overlappingsfragmenter for å konstruere et komplett capsid gen In these PCR amplifications, the 257 bp region was used as a PCR anchor and land marker to generate overlapping fragments to construct a complete capsid gene

ved fusjon ved DRAin setet i signaturområdet fulgt av forsterkning av 5- og 3'forleng-elsesfragmentene, oppnådd som beskrevet her. Mer spesielt ble, for å generere det intakte AAV 7 cap gen, de tre forsterkningsprodukter (a) sekvensene av signaturområdet; (b) sekvensene av 5'forlengelsen; og (c) sekvensene av 3'forlengelsen, klonet inn i et by fusion at the DRAin site in the signature region followed by amplification of the 5- and 3' extension fragments, obtained as described herein. More specifically, to generate the intact AAV 7 cap gene, the three amplification products were (a) the sequences of the signature region; (b) the sequences of the 5' extension; and (c) the sequences of the 3' extension, cloned into a

pCR4-Topo [Invitrogen] plasmidskjelett i henhold til produsentens instruksjoner. Deretter ble plasmidene digestert med Drain og rekombinert for å danne et intakt cap gen. pCR4-Topo [Invitrogen] plasmid backbone according to the manufacturer's instructions. The plasmids were then digested with Drain and recombined to form an intact cap gene.

Ved denne arbeidsvei ble rundt 80 % av capsid sekvensene av AAV7 og AAV8 isolert og analysert. En annen ny serotype, AAV9, ble også oppdaget fra ape nr. 2. In this way of working, around 80% of the capsid sequences of AAV7 and AAV8 were isolated and analyzed. Another new serotype, AAV9, was also detected from monkey #2.

Ved bruk av PCR betingelsene som beskrevet ovenfor isoleres den gjenværende del av rep gen sekvensen for AAV7 og klones så ved bruk av primere som forsterker 108 bp til 1461 bp av AAV genomet (beregnet ved bruk av nummereringen av AAV2, SEQ ID nr. 7). Denne klon sekvenseres for konstruksjon av et fullstendig AAV7 genom uten ITR'er. Using the PCR conditions as described above, the remaining part of the rep gene sequence for AAV7 is isolated and then cloned using primers that amplify 108 bp to 1461 bp of the AAV genome (calculated using the numbering of AAV2, SEQ ID no. 7) . This clone is sequenced to construct a complete AAV7 genome without ITRs.

C. Direkteforsterkning av 3,1 kb Cap fragmentetC. Direct amplification of the 3.1 kb Cap fragment

For direkte å forsterke et 3,1 kb full-lengde Cap fragment fra NHP vev- og -blod DNA'er ble to andre sterkt konserverte områder identifisert i AAV genomer for bruk ved PCR forsterkning av store fragmenter. En primer i et konservert område lokalisert i midten av rep genet ble valgt (AVlns: 5' GCTGCGTCAACTGGACCAATGAGAAC 3', nt 1398-1423 av SEQ ID nr. 6) i kombinasjon med 3'primeren lokalisert i et annet konservert område nedstrøms cap genet (AV2cas: 5' CGCAGAGACCAAAGTTCAACTGAAACGA 3', SEQ ID nr. 7) for forsterkning av full-lengde cap fragmenter. PCR produktene var Topo-klonet i henhold til produsentens retningslinjer (Invitrogen) og sekvensanalysen ble gjennomført med Qiagengenomics (Qiagengenomics, Seattle, WA) med en nøyaktighet på >99,9 %. Til sammen 50 capsid kloner ble isolert ogkarakterisert. Blant disse var 37 kloner avledet fra Rhesus macaque vev (rh. 1 - rh.37), 6 kloner fra cynomologe macaquer (cy. 1 - cy.6), 2 kloner fra bavianer (bb.l og bb.2) og 5 kloner fra sjimpanser (ch.l - ch.5). To directly amplify a 3.1 kb full-length Cap fragment from NHP tissue and blood DNAs, two other highly conserved regions were identified in AAV genomes for use in PCR amplification of large fragments. A primer in a conserved region located in the middle of the rep gene was chosen (AVlns: 5' GCTGCGTCAACTGGACCAATGAGAAC 3', nt 1398-1423 of SEQ ID no. 6) in combination with the 3' primer located in another conserved region downstream of the cap gene ( AV2cas: 5' CGCAGAGACCAAAGTTCAACTGAAACGA 3', SEQ ID No. 7) for amplification of full-length cap fragments. The PCR products were Topo-cloned according to the manufacturer's guidelines (Invitrogen) and the sequence analysis was performed with Qiagengenomics (Qiagengenomics, Seattle, WA) with an accuracy of >99.9%. A total of 50 capsid clones were isolated and characterized. Among these were 37 clones derived from Rhesus macaque tissue (rh. 1 - rh.37), 6 clones from cynomologous macaques (cy. 1 - cy.6), 2 clones from baboons (bb.l and bb.2) and 5 clones from chimpanzees (ch.l - ch.5).

For å utelukke muligheten for at sekvensdiversiteten i den nye AAV familie ikke var et resultat av PCR, som PCR-mediert genspleising ved overlapsforlengelse mellom forskjellige partial DNA templater med homologe sekvenser, eller resultatet av rekombinasjonsprosesser i bakterier, ble en serie forsøk gjennomført under identiske betingelser for VPl forsterkning ved bruk av total cellulære DNA'er. Først ble intakte AAV7- og AAV8 plasmider blandet i et likt molforhold fulgt av seriefortynninger. De seriefortyn-nede blandinger ble benyttet som templater for PCR forsterkning av 3,1 kb VP1 fragmenter ved bruk av universalprimere og identiske PCR betingelser til det som ble benyttet for DNA forsterkning for å se hvorvidt det ble generert noen hybrid PCR produkter. Blandingen ble transformert inn i bakterier og isolerte transformanter for å se etter hybridkloner som eventuelt kunne oppstå fra rekombinasjonsprosesser i bakterieceller. I et annet forsøk ble AAV7- og AAV8 plasmider restriksjonsbehandlet med Msp I, Ava I og Hael, der alle kuttet begge genomer flere ganger ved forskjellige posisjoner, blandet så digestsjonene i forskjelligge rekombinasjoner og benyttet disse for PCR forsterkning av VP1 fragmenter under de samme betingelser for å teste hvorvidt PCR produkter kunne genereres ved overlapsekvensforlengelse av partielle AAV sekvenser. I et annet for-søk ble en blanding av gelrenset 5' l,5kb AAV7 VP1 fragment og 3' 1,7 kb AAV8 VP1 fragment med overlap i signaturområdet, seriefortynnet og benyttet for PCR forsterkning i nærvær og fravær av 200 ng cellulær DNA, ekstrahert fra en apecellelinje som var fri for AAV sekvenser ved TaqMan analyse. Ingen av disse forsøkene viste effektiv PCR mediert overlapsekvensproduksjon under betingelsen for den genomiske DNA cap forsterkning (data ikke vist). Som en ytterligere bekreftelse ble det designert 3 par primere som var lokalisert i forskjellige HVR'er, og var sekvenser spesifikke til variantene av klon 42s fra Rhesus macaque F953, i forskjellige kombinasjoner, for å forsterke kortere fragmenter fra mesenterisk lymfeknute (MLN) DNA fra F953 hvorfra klonet 42s ble isolert. Alle sekvensvariasjoner som var identifisert i full-lengde cap kloner ble funnet i disse korte fragmenter (data ikke vist). To rule out the possibility that the sequence diversity in the new AAV family was not a result of PCR, such as PCR-mediated gene splicing by overlap extension between different partial DNA templates with homologous sequences, or the result of recombination processes in bacteria, a series of experiments was carried out under identical conditions for VP1 amplification using total cellular DNAs. First, intact AAV7 and AAV8 plasmids were mixed in an equal molar ratio followed by serial dilutions. The serially diluted mixtures were used as templates for PCR amplification of 3.1 kb VP1 fragments using universal primers and identical PCR conditions to that used for DNA amplification to see whether any hybrid PCR products were generated. The mixture was transformed into bacteria and isolated transformants to look for hybrid clones that could possibly arise from recombination processes in bacterial cells. In another experiment, AAV7 and AAV8 plasmids were restriction treated with Msp I, Ava I and Hael, where all cut both genomes several times at different positions, then mixed the digests in different recombinations and used these for PCR amplification of VP1 fragments under the same conditions to test whether PCR products could be generated by overlap sequence extension of partial AAV sequences. In another experiment, a mixture of gel-purified 5' 1.5 kb AAV7 VP1 fragment and 3' 1.7 kb AAV8 VP1 fragment with overlap in the signature region was serially diluted and used for PCR amplification in the presence and absence of 200 ng of cellular DNA, extracted from a monkey cell line that was free of AAV sequences by TaqMan analysis. None of these experiments showed efficient PCR mediated overlap sequence production under the condition of the genomic DNA cap amplification (data not shown). As a further confirmation, 3 pairs of primers that were located in different HVRs and were sequence specific to the variants of clone 42s from Rhesus macaque F953, in different combinations, were designed to amplify shorter fragments of mesenteric lymph node (MLN) DNA from F953 from which clone 42s was isolated. All sequence variations identified in full-length cap clones were found in these short fragments (data not shown).

Eksempel 2: Adeno-assosierte vimser undergår substansiell utvikling i primater under naturlige infeksjoner. Example 2: Adeno-associated vomers undergo substantial development in primates during natural infections.

Sekvensanalyse av valgte AAV isolater viste divergens gjennom genomet som er mest Sequence analysis of selected AAV isolates showed divergence through the genome which is the most

konsentrert i hypervariable områder av capsid proteinene. Epidemiologiske data antyder at alle kjent serotyper er endemiske til primater selv om isolasjon av kliniske isolater er begrenset til AAV2 og AAV3 fra anal- og strupeutskrap av humanbarn og AAV5 fra en human condylomatøs vorte. Ingen kjente kliniske sekveller er assosiert med AAV infeksjon. concentrated in hypervariable regions of the capsid proteins. Epidemiological data suggest that all known serotypes are endemic to primates, although isolation of clinical isolates is limited to AAV2 and AAV3 from anal and laryngeal scrapings of human children and AAV5 from a human condylomatous wart. No known clinical sequelae are associated with AAV infection.

I et forsøk på bedre å forstå biologien for AAV ble ikke-humane primater benyttet som modeller for å karakterisere sekvellene for naturlige infeksjoner. Vev fra ikke-humane primater ble avsøkt på AAV sekvenser ved bmk av PCR metoden ifølge oppfinnelsen basert på oligonukleotidet til høyt konserverte områder av kjente AAVer (se eksempel 1). Et strekk av AAV sekvens over 2886 til 3143 bp av AAV1 [SEQ ID nr. 6] ble valgt som en PCR amplikon hvori konserverte sekvenser er flankert av et hypervariabelt område som er unikt for hver kjente AAV serotype, her angitt som et "signaturområde". In an attempt to better understand the biology of AAV, non-human primates were used as models to characterize the sequelae of natural infections. Tissues from non-human primates were searched for AAV sequences by bmk of the PCR method according to the invention based on the oligonucleotide to highly conserved regions of known AAVs (see example 1). A stretch of AAV sequence over 2886 to 3143 bp of AAV1 [SEQ ID No. 6] was chosen as a PCR amplicon in which conserved sequences are flanked by a hypervariable region that is unique to each known AAV serotype, here designated as a "signature region" .

En første undersøkelse av perfert blod fra et antall ikke-humane primatspesier inkludert Rhesusaper, cynomologe aper, sjimpanser og bavianer, viste detekterbar AAV i et subsett av dyr fra alle spesier. En mer utstrakt analyse av vektorfordelingen ble gjennomført i vev av Rhesusaper fra University of Pennsylvania and Tulane-kolonier, gjenvunnet ved nekropsi. Dette viste ata AAV sekvenser gjennom et vidt mønster av vev. An initial examination of peripheral blood from a number of non-human primate species including rhesus monkeys, cynomolgus monkeys, chimpanzees and baboons showed detectable AAV in a subset of animals from all species. A more extensive analysis of vector distribution was conducted in tissue from rhesus monkeys from the University of Pennsylvania and Tulane colonies, recovered at necropsy. This showed ata AAV sequences throughout a wide pattern of tissues.

Den forsterkede signatursekvens ble subklonet inn i plasmider og individuelle transformanter ble underkaste sekvensanalyse. Dette viste substansiell variasjon i nukleotid-sekvensen for kloner avledet fra forskjellige dyr. Variasjon i signatursekvensen ble også notert i kloner oppnådd innen individuelle dyr. Vev som var hentet fra to dyr hvori unike signatursekvenser var identifisert (det vil si kolon fra 98E044 og hjerte fra 98E056) ble ytterligerekarakterisert vedå utvide sekvensen forsterket ved PCR ved bruk av oligonukleotider til høyt konserverte sekvenser. På denne måte ble komplette, provirale strukturer rekonstruert for virale genomer fra begge vev som beskrevet her. Disse provi-ruser skiller seg fra de kjente AAVer med den største sekvensdivergens som ble notert i områdene av Cap genet. The amplified signature sequence was subcloned into plasmids and individual transformants were subjected to sequence analysis. This showed substantial variation in the nucleotide sequence of clones derived from different animals. Variation in the signature sequence was also noted in clones obtained within individual animals. Tissues obtained from two animals in which unique signature sequences were identified (ie, colon from 98E044 and heart from 98E056) were further characterized by extending the sequence amplified by PCR using oligonucleotides to highly conserved sequences. In this way, complete proviral structures were reconstructed for viral genomes from both tissues as described here. These proviruses differ from the known AAVs with the greatest sequence divergence noted in the regions of the Cap gene.

Ytterligere forsøk ble gjennomført for å bekrefte at AAV sekvensene som er resistente til ikke-humant privatvev representerte proviralgenomer av infektiøse vimser som er i stand til å kunne hentes og danne virioner. Genomisk DNA fra levervev av dyr 98E056 hvorfra AAV8 signatursekvensen var bestemt, ble digestert med en endonuklease som ikke har et sete innen AAV sekvensen og transfektert inn i 293 celler med et plasmid inneholdende et El deletert genom av human adenovims serotype 5 som en kilde for hjelperfunksjoner. Det resulterende lysat ble bragt på 293 celler en gang og lysatet gjenvunnet og analysert på nærværet av AAV cap proteiner ved bmk av et bredt reagerende, polyklonalt antistoff mot cap proteiner og nærværet og rikeligheten av DNA sekvenser fra den PCR forsterkede AAV provims hvorfra AAV8 var avledet. Transfeksjon av endonuklease restriksjonsbehandlet hjerte DNA og adenovims hjelperplasmidet gav høye mengder AAV8 vims som påvist ved detektering av cap proteiner ved Western blot analyse og nærværet av IO<4>AAV8 vektorgenomer per 293 celler. Lysater ble generert fra en storskalapreparering og AAV ble renset ved cesiumsedimentering. Det rensede preparat viste 26 nm ikosoedrisk struktur som virket identisk med de til AAV serotype 2. Transfeksjon med adenovirushjelperen alene gav ikke AAV proteiner eller -genomer, noe som utelukker kontaminering som en kilde for gjenvunnet AAV. Further experiments were conducted to confirm that the AAV sequences resistant to non-human private tissue represented proviral genomes of infectious viruses capable of being retrieved and forming virions. Genomic DNA from liver tissue of animal 98E056 from which the AAV8 signature sequence was determined was digested with an endonuclease that does not have a site within the AAV sequence and transfected into 293 cells with a plasmid containing an E1 deleted genome of human adenovirus serotype 5 as a source of helper functions . The resulting lysate was applied to 293 cells once and the lysate recovered and analyzed for the presence of AAV cap proteins by bmk of a broadly reactive, polyclonal antibody against cap proteins and the presence and abundance of DNA sequences from the PCR amplified AAV provims from which AAV8 was derived . Transfection of endonuclease restriction-treated heart DNA and the adenovims helper plasmid yielded high amounts of AAV8 vims as demonstrated by detection of cap proteins by Western blot analysis and the presence of IO<4>AAV8 vector genomes per 293 cells. Lysates were generated from a large-scale preparation and AAV was purified by cesium sedimentation. The purified preparation showed 26 nm icosahedral structure that appeared identical to that of AAV serotype 2. Transfection with the adenovirus helper alone did not yield AAV proteins or genomes, ruling out contamination as a source of recovered AAV.

For ytterligere å karakterisere inter- og intra dyrevariasjonen av AAV signatursekvensen ble valgte vev underkastet ustrakt PCR for å forsterke hele Cap åpne leserammer. To further characterize the inter- and intra-animal variation of the AAV signature sequence, selected tissues were subjected to unextended PCR to amplify the entire Cap open reading frames.

De resulterende fragmenter ble klonet inn i bakterielle plasmider og individuelle transformanter ble isolert og sekvensielt fullstendig. Denne analyse involverte mesenteriske lymfeknuter fra tre rhesus aper (Tulane/V223 - 6 kloner; tulane/T612 - 7 kloner; Tula-ne/F953 - 14 kloner), lever fra to rhesuaper (Tulane/V251 - 3 kloner; Penn/00E033 - 3 kloner), milt fra en rhesusape (Penn/97E043 - 3 kloner), hjerte fra en rhesusape (JHGT/98E046- 1 klon) og perifert blod fra en sjimpanse (New Iberia/X133 - 5 kloner), seks cynomologe macaquer (Charles River/A1378, A3099, A3388, A3442, A2821, A3442 - til sammen 6 kloner) og en bavian (SFRB/8644 - 2 kloner). Av de 50 kloner som ble sekvensielt fra 15 forskjellige dyr ble 30 ansett som ikke-rikelige basert på funn av minst 7 aminosyredifferanser fra hverandre. De ikke-redundante VPl kloner ble nummerert sekvensielt etter hvert som de ble isolert med en prefiks som antyder spesiene av den ikke-humane primat hvorfra de ble hentet. Den strukturelle sammenheng mellom disse 30 ikke-redundante kloner og de tidligere beskrevne 8 AAV serotyper ble bestemt ved bruk av SplitsTree programmet [D.H. Huson i "SplitsTree: analyzing and visualizing evolutionary data." " Bioinformatics" 14, 68-73 (1998)] med implementering av metoden med splittdekomponering. Analysen angir homoplasi mellom et sett av frekvenser i et tre-lignende nettverk heller enn et tre som deler seg i to. Fordelen er å mu-liggjøre detektering av grupperinger som er resultatet av konvergens og å vise fylogene-tiske sammenhenger selv når de er forstyrret av parallelle evenementer. Ekstensiv fylo-genetisk forskning vil være nødvendig for å elucidere AAV utvikling, intensjonen her er kun å grupper forskjellige kloner hva angår deres sekvenslikhet. The resulting fragments were cloned into bacterial plasmids and individual transformants were isolated and sequenced completely. This analysis involved mesenteric lymph nodes from three rhesus monkeys (Tulane/V223 - 6 clones; tulane/T612 - 7 clones; Tula-ne/F953 - 14 clones), livers from two rhesus monkeys (Tulane/V251 - 3 clones; Penn/00E033 - 3 clones), spleen from a rhesus monkey (Penn/97E043 - 3 clones), heart from a rhesus monkey (JHGT/98E046- 1 clone) and peripheral blood from a chimpanzee (New Iberia/X133 - 5 clones), six cynomolgus macaques (Charles River/A1378, A3099, A3388, A3442, A2821, A3442 - a total of 6 clones) and a baboon (SFRB/8644 - 2 clones). Of the 50 clones sequenced from 15 different animals, 30 were considered non-abundant based on the finding of at least 7 amino acid differences from each other. The non-redundant VP1 clones were numbered sequentially as they were isolated with a prefix indicating the species of non-human primate from which they were obtained. The structural relationship between these 30 non-redundant clones and the previously described 8 AAV serotypes was determined using the SplitsTree program [D.H. Huson in "SplitsTree: analyzing and visualizing evolutionary data." "Bioinformatics" 14, 68-73 (1998)] with implementation of the split decomposition method. The analysis indicates homoplasy between a set of frequencies in a tree-like network rather than a tree that splits in two. The advantage is to enable the detection of groupings that are the result of convergence and to show phylogenetic relationships even when they are disturbed by parallel events. Extensive phylo-genetic research will be necessary to elucidate AAV development, the intention here is only to group different clones in terms of their sequence similarity.

For å bekrefte at de nye VPl sekvenser var avledet fra infektiøse, virale genomer, ble cellulær DNA fra vev med høy rikelighet av viral DNA behandlet med en endonuklease som ikke skulle spalte i AAV og så transfektert inn i 293 celler, fulgt av infeksjon med adenovirus. Dette resulterte i "rescue" og forsterkning av AAV genomer fra DNA fra vev fra to forskjellige dyr (data ikke vist). To confirm that the new VP1 sequences were derived from infectious viral genomes, cellular DNA from tissues with a high abundance of viral DNA was treated with an endonuclease that would not cleave in AAV and then transfected into 293 cells, followed by infection with adenovirus . This resulted in "rescue" and amplification of AAV genomes from DNA from tissues from two different animals (data not shown).

VPl sekvenser av de nye AAVer ble ytterligerekarakterisertmed henblikk på arten og lokasjonen av aminosekvensvariasjonen. Alle 30 VPl kloner som ble påvist å skille seg fra hverandre med mer enn 1 % aminosyresekvens ble innrettet og bedømt på variasjon i hver rest. En algoritme som var utviklet for å bestemme arealer av sekvensdivergens gav 12 hypervariable områder (HVR) hvorav 5 overlappet eller er en del av de 4 tidligere beskrevne, variable områder [Kotin, supra; Rutledge, supra]. De tre-ganger-proksimale topper inneholder mesteparten av variabiliteten (HVR5-10). Interessant er at løkkene som var lokalisert ved 2- og 5 ganger aksen også viste intens variasjon. HVR'ene 1 og 2 opptrer i den N-terminale del av capsid proteinet som ikke er oppløst i røntgenstrukturen og antyder at N-terminus av VPl proteinet er eksponert på overflaten av virionet. VP1 sequences of the new AAVs were further characterized with regard to the nature and location of the amino sequence variation. All 30 VP1 clones that were shown to differ from each other by more than 1% amino acid sequence were aligned and scored for variation in each residue. An algorithm developed to determine areas of sequence divergence yielded 12 hypervariable regions (HVR) of which 5 overlapped or are part of the 4 previously described variable regions [Kotin, supra; Rutledge, supra]. The three-fold proximal peaks contain most of the variability (HVR5-10). Interestingly, the loops that were located at the 2- and 5-fold axis also showed intense variation. The HVRs 1 and 2 occur in the N-terminal part of the capsid protein which is not resolved in the X-ray structure and suggests that the N-terminus of the VP1 protein is exposed on the surface of the virion.

Sann-tid PCR ble benyttet for å kvantifisere AAV sekvenser fra vev av 21 rhesusaper ved bruk av primere og prober på høyt konserverte områder av Rep (ett sett) og Cap (to sett) av kjente AAVer. Hvert datapunkt representerer analyse fra vev DNA fra et indi-viduelt dyr. Dette bekreftet den vide fordeling av AAV sekvenser selv om den kvantita-tive fordeling var forskjellig dyrene seg imellom. Kilden for dyr og tidligere historie eller behandling syntes ikke å påvirke fordelingen av AAV sekvenser i rhesus macaquer. Tre forskjellige sett av primere og prober ble benyttet for å kvantifisere AAV og gav konsistente resultater. De høyeste nivåer av AAV ble funnet konsistente i mesenteriske lymfeknuter ved et middel på 0,01 kopier per diploidgenom for 13 dyr som var positive. Lever og milt inneholdt også høy rikelighet av virus DNA. Det var eksempler på meget høy AAV som i hjerte av rhesus macaquen 98E056, milten av rhesus macaquen 97E043 og lever fra rhesus macaquen RQ4407, som viste 1,5, 3 henholdsvis 20 kopier av AAV sekvens per diploid genom. Relativt høye nivåer av virus DNA ble notert i perifere mononukleære blodceller, noe som antyder at data i vev ikke skyldes residente blodkomponenter (data ikke vist). Det skal påpekes at denne metode ikke nød-vendigvis vil fange opp alle AAVer som er residente til de ikke-humane primater fordi detekteringen krever høy homologi både hva angår oligonukleotidene og sann-tid PCR proben. Vev fra dyr med høy rikelighet av AAV DNA ble analysert videre på moleky-lærtilstand av den angjeldende DNA ved DNA hybridiseringsteknikker, og dens cellulære fordeling, ved in situ hybridisering. Real-time PCR was used to quantify AAV sequences from tissues of 21 rhesus monkeys using primers and probes on highly conserved regions of Rep (one set) and Cap (two sets) of known AAVs. Each data point represents analysis of tissue DNA from an individual animal. This confirmed the wide distribution of AAV sequences, even if the quantitative distribution was different between the animals. The source of animal and previous history or treatment did not appear to affect the distribution of AAV sequences in rhesus macaques. Three different sets of primers and probes were used to quantify AAV and gave consistent results. The highest levels of AAV were found consistently in mesenteric lymph nodes at a mean of 0.01 copies per diploid genome for 13 animals that were positive. Liver and spleen also contained high abundance of viral DNA. There were examples of very high AAV such as in the heart of the rhesus macaque 98E056, the spleen of the rhesus macaque 97E043 and the liver of the rhesus macaque RQ4407, which showed 1.5, 3 and 20 copies of the AAV sequence per diploid genome respectively. Relatively high levels of viral DNA were noted in peripheral blood mononuclear cells, suggesting that tissue data are not due to resident blood components (data not shown). It should be pointed out that this method will not necessarily capture all AAVs that are resident in the non-human primates because the detection requires high homology both with regard to the oligonucleotides and the real-time PCR probe. Tissues from animals with a high abundance of AAV DNA were further analyzed for the molecular state of the DNA in question by DNA hybridization techniques, and its cellular distribution, by in situ hybridization.

Type sekvensvariasjon som ble avdekket i AAV provirale fragmenter som var isolert fra forskjellige dyr og innen vev fra samme dyr, er reminiscent fra utviklingen som inntrer for mange RNA vimser under pandemi eller sogar innen infeksjonen av et individ. I noen situasjoner er nosjonen av en vill-type vims erstattet med eksistensen av svermer av kvasispesier som utvikler seg som et resultat av hurtig replikering og mutasjoner i nærvær av selektivt trykk. Ett eksempel er infeksjon ved HIV som utvikles i respons på immunologisk og farmakologisk trykk. Flere mekanismer bidrar til den høye grad av mutasjoner i RNA vimser inkludert lav fidelitet og mangel på sikker avlesningskapasitet av reverstranskriptase og ikke-homolog og homolog rekombinering. The type of sequence variation uncovered in AAV proviral fragments isolated from different animals and within tissues from the same animal is reminiscent of the evolution that occurs for many RNA viruses during a pandemic or even within the infection of an individual. In some situations, the notion of a wild-type vims is replaced by the existence of swarms of quasispecies that evolve as a result of rapid replication and mutations in the presence of selective pressure. One example is infection with HIV, which develops in response to immunological and pharmacological pressure. Several mechanisms contribute to the high rate of mutations in RNA vims including low fidelity and lack of reliable readout capacity by reverse transcriptase and non-homologous and homologous recombination.

Bevis på dannelse av kvasispesier av AAV ble illustrert i denne studie ved den systema-tiske sekvensering av multippelklonede provirale fragmenter. Således kunne identiske sekvenser ikke finnes innen noen forlengede kloner isolert mellom eller innen dyrene. En viktig mekanisme for denne utvikling av sekvens synes å være den høye grad av homolog rekombinering mellom et mer begrenset antall parenterale vimser. Nettoresul-tatet er en utstrakt bytting av hypervariable områder av cap protein som fører til et mønster av kimerer som kan ha forskjellig tropisme og serologiske spesifisiteter (for eksempel evnen til å slippe unna immunologiske responser, spesielt når det angår nøyt-raliserende antistoffer). Mekanismer ved hvilke homolog rekombinering kan inntre er uklar. En mulighet er at + - og -trådene av forskjellige enkelttrådede AAV genomer annellerer under replikering slik det er beskrevet under høy multiplisitet av infeksjoner med AAV rekombinanter. Det er uklart om andre mekanismer bidrar til sekvensutvik-ling i AAV infeksjoner. Den totale grad av mutasjon som inntrer under AAV replikering synes å være relativt lav og data antyder ikke høye frekvenser av replikasjonsfeil. Imidlertid er vesentlige omarrangeringer av AAV genom beskrevet under lytisk infeksjon som fører til dannelsen av defektive, interfererende partikler. Uansett de mekanismer som fører til sevkvensdivergens forble, med få unntak, vpl strukturen av kvasispe-siene intakt uten rammeskifte eller ikke-sense mutasjon, noe som antyder at kompetitiv seleksjon av vims med den gunstigste tilpasningsprofil bidrar til populasjonsdynamik-ken. Evidence for the formation of quasispecies of AAV was illustrated in this study by the systematic sequencing of multiple cloned proviral fragments. Thus, identical sequences could not be found within any extended clones isolated between or within animals. An important mechanism for this evolution of sequence appears to be the high degree of homologous recombination between a more limited number of parenteral genes. The net result is extensive switching of hypervariable regions of the cap protein leading to a pattern of chimeras that may have different tropisms and serological specificities (eg, the ability to escape immunological responses, especially when neutralizing antibodies are involved). Mechanisms by which homologous recombination can occur are unclear. One possibility is that the + - and - strands of different single-stranded AAV genomes anneal during replication as described under high multiplicity of infections with AAV recombinants. It is unclear whether other mechanisms contribute to sequence development in AAV infections. The overall rate of mutation that occurs during AAV replication appears to be relatively low and the data do not suggest high frequencies of replication errors. However, substantial rearrangements of the AAV genome have been described during lytic infection leading to the formation of defective, interfering particles. Regardless of the mechanisms leading to sequence divergence, with few exceptions, the vpl structure of the quasispecies remained intact without frameshift or non-sense mutation, suggesting that competitive selection of vims with the most favorable fitness profile contributes to population dynamics.

Disse studier har implikasjoner på flere områder av biologi og medisin. Konseptet med These studies have implications in several areas of biology and medicine. The concept of

hurtig vimsutvikling, tidligere antatt å være en egenskap begrenset til RNA vimser, bør tas i betraktning i DNA vimser som klassisk har værtkarakterisert vedserologiske analyser. Det vil være viktig uttrykt ved parvoviruser å utvikle en ny metode for å beskrive vimsisolater som fanger inn kompleksiteten av deres struktur og biologi som ved HIV, som er kategorisert som generelle familier av lik struktur og funksjon kalt Clades. En alternativ strategi er å fortsette å kategorisere isolater med henblikk på serologisk spesi-fisitet og å utvikle kriterier for å beskrive varianter innen serologiske grupper. rapid vims development, previously thought to be a property limited to RNA vims, should be taken into account in DNA vims that have classically been characterized by serological analyses. It will be important expressed in parvoviruses to develop a new method to describe vim isolates that captures the complexity of their structure and biology as in HIV, which are categorized as general families of similar structure and function called Clades. An alternative strategy is to continue to categorize isolates for serological specificity and to develop criteria to describe variants within serological groups.

Eksempel 3: Vektorologj for rekombinante AAV genomer utstyrt med AAV2 ITR'er ved bmk av kimere plasmider inneholdende AAV2 rep- og nye AAV cap gener for serologisk og genoverføringsstudier i forskjellige dyremodeller. Example 3: Vectorology for recombinant AAV genomes equipped with AAV2 ITRs by bmk of chimeric plasmids containing AAV2 rep and new AAV cap genes for serological and gene transfer studies in different animal models.

Kimeriske pakningskonstrukter genereres ved å fusere AAV2 rep med cap sekvenser av nye AAV serotyper. Disse kimere pakkingskonstrukter benyttes i utgangspunktet for pseudotyping av rekombinante AAV genomer som bærer AAV2 ITR'er ved trippeltransfeksjon i 293 celler ved bruk av Ad5 hjelperplasmid. Disse pseudotyper vektorer benyttes for å evaluere ytelsen i transduksjonsbaserte, serologiske studier og evaluerer genoverføringseffektiviteten av nye AAV serotyper i forskjellige dyremodeller inkludert NHP og gnagere, før intakte og infektiøse vimser av disse nye serotyper isoleres. Chimeric packaging constructs are generated by fusing AAV2 rep with cap sequences of new AAV serotypes. These chimeric packaging constructs are initially used for pseudotyping of recombinant AAV genomes carrying AAV2 ITRs by triple transfection in 293 cells using the Ad5 helper plasmid. These pseudotyped vectors are used to evaluate the performance in transduction-based, serological studies and evaluate the gene transfer efficiency of new AAV serotypes in different animal models including NHP and rodents, before isolating intact and infectious vims of these new serotypes.

A. pAAV2GFPA. pAAV2GFP

AAV2 plasmidet som inneholder AAV2 ITR'ene og grønt fluorescent protein uttrykt under kontroll av en konstitutiv promoter. Dette plasmid inneholder de følgende elementer: AAV2 ITR'ene, en CMV promoter, og GFP kodingssekvensen. The AAV2 plasmid containing the AAV2 ITRs and green fluorescent protein expressed under the control of a constitutive promoter. This plasmid contains the following elements: the AAV2 ITRs, a CMV promoter, and the GFP coding sequence.

B. Kloning av trans plasmidB. Cloning of trans plasmid

For å konstmere det kimeriske transplasmid for produksjon av rekombinante, pseudotypede AAV7 vektorer, ble p5E18 plasmidet (Xiao et al., 1999, "J. Virol." 73:3994-4003) partielt digestert med Xho I for å linealisere plasmid ved Xho I setet kun i posisjon 3169. De Xho I kuttede ender ble så fylt inn og ligert tilbake. Dette modifiserte p5E18 plasmid ble behandlet med Xba I og Xho I i en fullstendig digestering for å fjerne AAV2 cap gen sekvensen og erstattet med et 2267 bp Spe I/Xho fragment inneholdende AAV7 cap genet som var isolert fra pCRAAV7 6-5+15-4 plasmid. To construct the chimeric transplasmid for production of recombinant, pseudotyped AAV7 vectors, the p5E18 plasmid (Xiao et al., 1999, "J. Virol." 73:3994-4003) was partially digested with Xho I to linearize the plasmid by Xho I the seat only in position 3169. The Xho I cut ends were then filled in and ligated back. This modified p5E18 plasmid was treated with Xba I and Xho I in a complete digestion to remove the AAV2 cap gene sequence and replaced with a 2267 bp Spe I/Xho fragment containing the AAV7 cap gene that was isolated from pCRAAV7 6-5+15-4 plasmid.

Det resulterende plasmid inneholder AAV2 rep sekvensene for Rep78/68 under kontroll av AV2 P5 promoteren og AAV2 rep sekvensene for Rep52/40 under kontroll av AAV2 P19 promoteren. AAV7 capsid sekvensene er under kontroll av AAV2 P40 promoteren dette plasmid inneholder videre en spacer 5' av rep ORF. The resulting plasmid contains the AAV2 rep sequences for Rep78/68 under the control of the AV2 P5 promoter and the AAV2 rep sequences for Rep52/40 under the control of the AAV2 P19 promoter. The AAV7 capsid sequences are under the control of the AAV2 P40 promoter, this plasmid also contains a spacer 5' of the rep ORF.

C. Fremstilling av pseudotypet rAA VC. Preparation of pseudotyped rAA V

rAAV partiklene (AAV2 vektor i AAV7 capsid) genereres under en adenovimsfri metode. Kort sagt ble cis plasmidet (pAAV2.1 lacZ plasmid inneholdende AAV2 ITR'ene) og trans plasmidet pCRAAV7 6-5+15-4 (inneholdende AAV2 rep og AAV7 cap) og henholdsvis et hjelperplasmid, samtidig kotransfektert inn i 293 celler i et forhold på 1:1:2 ved kalsiumfosfatprecipitering. The rAAV particles (AAV2 vector in AAV7 capsid) are generated using an adenovim-free method. Briefly, the cis plasmid (pAAV2.1 lacZ plasmid containing the AAV2 ITRs) and the trans plasmid pCRAAV7 6-5+15-4 (containing AAV2 rep and AAV7 cap) and a helper plasmid, respectively, were simultaneously cotransfected into 293 cells in a ratio of 1:1:2 by calcium phosphate precipitation.

For konstmksjon av pAd hjelperplasmidene ble pBGlO plasmid ervervet fra Microbix (Canada). Et RsII fragment inneholdende L2 og L13 ble deletert fra pBHGlO, noe som gav det første hjelperplasmid, pAdAF13. Plasmid AdA Fl ble konstruert ved å klone Asp700/Sall fragment med en Pmel/Sgfl delesjon, isolering fra pBHGlO inni Bluescriptet. MLPL, L2 og L3, ble deletert i pAdAFl. Videre delesjoner av et 2,3 kb Nrul fragment og deretter et 0,5 kb RsrH/NruI fragment genererte hjelperplasmider pADAF5 henholdsvis pADAF6. Hjelperplasmidet, kalt pAF6, gav de vesentlige hjelperfunksjoner av E2a og E4 ORF6 som ikke ble tilveiebragt av den El-uttrykkende hjel-percelle, men er deletert fra adenovirale capsid proteiner og funksjonelle El områder. For construction of the pAd helper plasmids, the pBG10 plasmid was purchased from Microbix (Canada). An RsII fragment containing L2 and L13 was deleted from pBHG10, yielding the first helper plasmid, pAdAF13. Plasmid AdA F1 was constructed by cloning the Asp700/Sall fragment with a Pme1/Sgf1 deletion, isolation from pBHG10 inside Bluescript. MLPL, L2 and L3, were deleted in pAdAF1. Further deletions of a 2.3 kb Nrul fragment and then a 0.5 kb RsrH/NruI fragment generated helper plasmids pADAF5 and pADAF6, respectively. The helper plasmid, named pAF6, provided the essential helper functions of E2a and E4 ORF6 that were not provided by the E1-expressing Hel parcel, but are deleted from adenoviral capsid proteins and functional E1 regions.

Karakeristisk ble 50 ug DNA (cis:trans:hjelper) transfektert på en 150 mm vevkulturs-kål. 293 cellene ble høstet 72 timer etter transfeksjon, sonikert og behandlet med 0,5 % natriumdeoksykolat (37 °C i 10 minutter). Cellelysater ble så underkastet to run-der av en CsCl gradient. Toppfraksjoner inneholdende rAAV vektor ble samlet, slått sammen og dialysert mot PBS. Typically, 50 µg DNA (cis:trans:helper) was transfected onto a 150 mm tissue culture dish. The 293 cells were harvested 72 h post-transfection, sonicated and treated with 0.5% sodium deoxycholate (37°C for 10 min). Cell lysates were then subjected to two rounds of a CsCl gradient. Peak fractions containing rAAV vector were collected, pooled and dialyzed against PBS.

Eksempel 4: Dannelse av infektiøse kloner som bærer intakte, nye AAV serotyper for studie av prinsipiell virologi i human- og NHP avledede cellelinjer og bedømmelse av patogenese av nye AAV serotyper i NHP- og andre dyremodeller. Example 4: Formation of infectious clones carrying intact new AAV serotypes for study of principle virology in human and NHP derived cell lines and assessment of pathogenesis of new AAV serotypes in NHP and other animal models.

For å oppnå dette formål ble genom vandrer systemet benyttet for å oppnå 5'- og 3- terminal sekvenser (ITR'er) og fullstendig konstruksjon av kloner inneholdende intakte, nye AAV serotype genomer. To achieve this aim, the genome walker system was used to obtain 5'- and 3- terminal sequences (ITRs) and complete construction of clones containing intact, new AAV serotype genomes.

Ved bruk av et kommersielt tilgjengelig "Universal Genome Walker Kit" [Clontech] ble kort sagt genomiske DNA'er fra apevev eller cellelinjer som er identifisert som positive for nærvær av AAV7 sekvensen, digestert med Dra I-, EcoR V-, Pvu II- og Stu I-endonuklease og ligert til "Genome Walker Adaptor" for å generere 4 individuelle "Genome Walker Libraries" (GWL'er). Ved bruk av DNA'er fra GWL'ene som templater blir AAV7 og nabogenomiske sekvenser PCR-forsterket av adaptorprimer 1 (API, tilvei ebragt i settet) og en AAV7 spesifikk primer 1, fulgt av en nestet PCR ved bruk av adaptor primer 2 (AP2) og en ytterligere AAV7 spesifikk primer 2, begge interne i det første sett av primere. Hoved PCR produktene fra den "nestede" PCR klones og karakteriseres ved sekvensanalyse. Briefly, using a commercially available "Universal Genome Walker Kit" [Clontech], genomic DNAs from monkey tissues or cell lines identified as positive for the presence of the AAV7 sequence were digested with Dra I-, EcoR V-, Pvu II- and Stu I endonuclease and ligated to the "Genome Walker Adaptor" to generate 4 individual "Genome Walker Libraries" (GWLs). Using DNAs from the GWLs as templates, AAV7 and neighboring genomic sequences are PCR-amplified by adapter primer 1 (API, provided in the kit) and an AAV7-specific primer 1, followed by a nested PCR using adapter primer 2 ( AP2) and an additional AAV7 specific primer 2, both internal to the first set of primers. The main PCR products from the "nested" PCR are cloned and characterized by sequence analysis.

I dette forsøk ble primere som dekker de 257 bp eller andre signaturfragmenter av et generisk AAV genom benyttet for PCR forsterkning av cellulære DNA'er ekstrahert fra Human- og NHP avledede cellelinjer for å identifisere og karakterisere de latente AAV sekvenser. De identifiserte, latente AAV genomer gjenvinnes fra de positive cellelinjer ved bruk av adenovirushjelpere av forskjellige spesier og stammer. In this experiment, primers covering the 257 bp or other signature fragments of a generic AAV genome were used for PCR amplification of cellular DNAs extracted from Human- and NHP-derived cell lines to identify and characterize the latent AAV sequences. The identified, latent AAV genomes are recovered from the positive cell lines using adenovirus helpers of different species and strains.

For å isolere infektiøse AAV kloner fra NHP avledede cellelinjer oppnås en ønsket cellelinje fra ATCC og avsøkes ved PCR for å identifisere 257 bp amplikonet, det vil si oppfinnelsens signaturområde. Dette 257 bp PCR produkt klones og serotypes ved se-kvenseringsanalyse. For disse cellelinjer inneholdende AAV7 sekvensen blir cellene infisert med SV-15, en simian adenovirus ervervet fra ATCC, human Ad5 eller transfektert med plasmidkonstrukt som huser de humane Ad gener som er ansvarlige for AAV hjelperfunksjonene. 48 timer etter infeksjon eller transfeksjon blir cellene høstet og Hirt DNA preparert for kloning av AAV7 genom i henhold til Xiao et al., 1999, "J. Virol.", 73:3994-4003. To isolate infectious AAV clones from NHP-derived cell lines, a desired cell line is obtained from ATCC and screened by PCR to identify the 257 bp amplicon, that is the signature region of the invention. This 257 bp PCR product is cloned and serotyped by sequencing analysis. For these cell lines containing the AAV7 sequence, the cells are infected with SV-15, a simian adenovirus acquired from ATCC, human Ad5 or transfected with a plasmid construct harboring the human Ad genes responsible for the AAV helper functions. 48 hours after infection or transfection, cells are harvested and Hirt DNA prepared for cloning of AAV7 genome according to Xiao et al., 1999, "J. Virol.", 73:3994-4003.

Eksempel 5: Fremstilling av AAV vektorerExample 5: Production of AAV vectors

En pseudotypingsstrategj tilsvarende den i eksempel 3 for AAV1/7 ble benyttet for å A pseudotyping strategy similar to that in example 3 for AAV1/7 was used to

produsere AAV2 vektorer pakket med AAV1-, AAV5- og AAV8 capsid proteiner. Kort sagt blir rekombinante AAV genomer utstyrt med AAV2 ITR'er pakket ved trippeltransfeksjon av 293 celler med cis-plasmid, adenovirushjelperplasmid og et kimerisk pakke-konstrukt der AAV2 rep genet er fusert med cap gener av nye AAV serotyper. For å skape de kimeriske pakningskonstrukter ble Xho I setet av p5E18 plasmid ablatert ved 3169 bp og det modfiserte plasmid ble behandlet med Xba I og Xho I i en fullstendig digestering for å fjerne AAV2 cap genet og erstatte dette med et 2267 bp Spe I/Xho I fragment inneholdende AAV8 cap genet [Xiao, W., et al., (1999) "J Virol" 73, 3994-4003]. En tilsvarende kloningsstrategj ble benyttet for å skape kimere pakningsplasmi-der av AAV2/1 og AAV2/5. Alle rekombinante vektorer ble renset ved standard CsCb sedimenteringsmetoden bortsett fra AAV2/2 som ble renset ved en enkelttrinns hepa-rinkromatografi. produce AAV2 vectors packaged with AAV1, AAV5 and AAV8 capsid proteins. Briefly, recombinant AAV genomes equipped with AAV2 ITRs are packaged by triple transfection of 293 cells with cis-plasmid, adenovirus helper plasmid and a chimeric packaging construct in which the AAV2 rep gene is fused with cap genes of new AAV serotypes. To create the chimeric packaging constructs, the Xho I site of the p5E18 plasmid was ablated at 3169 bp and the modified plasmid was treated with Xba I and Xho I in a complete digest to remove the AAV2 cap gene and replace it with a 2267 bp Spe I/Xho In fragment containing the AAV8 cap gene [Xiao, W., et al., (1999) "J Virol" 73, 3994-4003]. A similar cloning strategy was used to create chimeric packaging plasmids of AAV2/1 and AAV2/5. All recombinant vectors were purified by the standard CsCb sedimentation method except AAV2/2 which was purified by a single step heparin chromatography.

Genomkopi (GC) titere av AAV vektorer ble bestemt ved TaqMan analyse ved bruk av prober og primere som siktes på SV40 poly A området som beskrevet tidligere [Gao, G, et al., (2000) "Hum Gene Ther" 11, 2079-91]. Genome copy (GC) titers of AAV vectors were determined by TaqMan assay using probes and primers targeting the SV40 poly A region as described previously [Gao, G, et al., (2000) "Hum Gene Ther" 11, 2079- 91].

Vektorer ble konstruert for hver serotype for et antall av in vitro- og in vivo studier. Åtte forskjellige transgene kassetter ble innarbeidet i vektorene og rekombinante virioner ble fremstilt for hver serotype. Gjenvinningen av virus, basert på genomkopi er, er oppsummert i tabell 4. Utbyttene av vektor var høy for hver serotype uten noen konsistente forskjeller mellom serotypene. Data som er vist i tabellen er midlere genomkopiutbytter med standardavvik x IO<13>av multiple produksjonsloter på 50 plate (150 mm) transfek-sjoner. Vectors were constructed for each serotype for a number of in vitro and in vivo studies. Eight different transgenic cassettes were incorporated into the vectors and recombinant virions were prepared for each serotype. The recovery of virus, based on genome copy number, is summarized in Table 4. Yields of vector were high for each serotype with no consistent differences between serotypes. Data shown in the table are mean genome copy yields with standard deviation x 10<13> of multiple production lots of 50 plate (150 mm) transfections.

Eksempel 6: Serologiske analyser av pseudotypede vektorer Example 6: Serological analyzes of pseudotyped vectors

C57BL/6 mus ble injisert med vektorer av forskjellige serotyper av AAVCBA1AT vektorer intramuskulært (5 x 10<11>) og serumprøver ble samlet 34 dager senere. For å teste nøytraliserings- og kryssnøytraliseringsaktiviteten for sera mot hver serotype av AAV, ble sera analysert i en transduksjonsbasert, nøytraliserende antistoffanalyse [Gao,G.P., et al., (1996) "J Virol", 70, 8934-43]. Mer spesielt ble nærvær av nøytraliserende antistoffer bestemt ved å bedømme evnen hos serum til å inhibere transduksjon av 84-31 celler med rapportørviruser (AAVCMVEGFP) av forskjellige serotyper. Spesifikt ble rapportørvirusen AAVCMVEGFP av hver serotype [ved infeksjonsmultiplisitet (MOI) som ledet til transduksjon av 90 % av indikatorcellene] forinkubert med varmeinaktivert serum fra dyr som hadde mottatt forskjellige serotyper av AAV fra naive mus. Etter 1 times inhibering ved 37 °C ble virusene satt til 84-31 cellene i 96 brønners plater i 48 eller 72 timer, avhengig av virus serotypen. Ekspresjonen av GFP ble målt ved Fluor-olmagjn (Molecular Dynamics) og kvantifisert ved "Image Quant Software". Nøytrali-serende antistofftitere ble rapportert som den høyeste serumfortynning som inhiberte transduksjon til mindre enn 50 %. C57BL/6 mice were injected with vectors of different serotypes of AAVCBA1AT vectors intramuscularly (5 x 10<11> ) and serum samples were collected 34 days later. To test the neutralizing and cross-neutralizing activity of sera against each serotype of AAV, sera were analyzed in a transduction-based neutralizing antibody assay [Gao, G.P., et al., (1996) "J Virol", 70, 8934-43]. More specifically, the presence of neutralizing antibodies was determined by assessing the ability of serum to inhibit transduction of 84-31 cells with reporter viruses (AAVCMVEGFP) of different serotypes. Specifically, the reporter virus AAVCMVEGFP of each serotype [at multiplicity of infection (MOI) leading to transduction of 90% of the indicator cells] was preincubated with heat-inactivated serum from animals that had received different serotypes of AAV from naïve mice. After 1 hour of inhibition at 37 °C, the viruses were added to the 84-31 cells in 96-well plates for 48 or 72 hours, depending on the virus serotype. The expression of GFP was measured by Fluor-olmagjn (Molecular Dynamics) and quantified by "Image Quant Software". Neutralizing antibody titers were reported as the highest serum dilution that inhibited transduction to less than 50%.

Tilgjengeligheten av GFP uttrykkende vektorer forenklet utviklingen av en analyse for nøytralisering av antistoffer som var basert på inhibering av transduksjon i en tillatende cellelinje (det vil 293 celler som stabilt uttrykker E4 fra Ad5). Sera til utvalgte AAV serotyper ble generert ved intramuskulær injeksjon av de rekombinante vimser. Nøytra-lisering av AAV transduksjonen ved 1:20- og 1:80 fortynninger av antisera ble evaluert (se tabell 5). Antisera til AAV1, AAV2, AAV5 og AAV8 nøytraliserte transduksjon av serotyper hvortil antiserumet ble generert (AAV5 og AAV8 i mindre grad enn AAV1 og AAV2) men ikke til den andre serotype (det vil si at det ikke var noe bevis på noen kryssnøytralisering som antyder at AAV8 er en virkelig unik serotype). The availability of GFP-expressing vectors facilitated the development of an assay for neutralizing antibodies based on inhibition of transduction in a permissive cell line (that is, 293 cells stably expressing E4 from Ad5). Sera to selected AAV serotypes were generated by intramuscular injection of the recombinant vims. Neutralization of the AAV transduction by 1:20 and 1:80 dilutions of antisera was evaluated (see Table 5). Antisera to AAV1, AAV2, AAV5 and AAV8 neutralized transduction of the serotypes to which the antiserum was generated (AAV5 and AAV8 to a lesser extent than AAV1 and AAV2) but not to the other serotype (that is, there was no evidence of any cross-neutralization suggesting that AAV8 is a truly unique serotype).

Humansera fra 52 normale individer ble avsøkt på nøytralisering mot valgte serotyper. Ingen serumprøve ble funnet å nøytralisere AAV2/7 og AAV2/8 mens AAV2/2- og AAV2/1 vektorer ble nøytralisert i 20 % henholdsvis 10 % semm. En fraksjon av hu-mansammenslått IgG som representerer en samling av 60 000 individuelle prøver nøyt-raliserte ikke AAV2/7 og AAV2/8 mens AAV2/2- og AAV2/1 vektorene ble nøytrali-sert ved semmtitere lik 1:1280 henholdsvis 1:640. Human sera from 52 normal individuals were screened for neutralization against selected serotypes. No serum sample was found to neutralize AAV2/7 and AAV2/8 while AAV2/2 and AAV2/1 vectors were neutralized in 20% and 10% sem, respectively. A fraction of human pooled IgG representing a pool of 60,000 individual samples did not neutralize AAV2/7 and AAV2/8, while the AAV2/2 and AAV2/1 vectors were neutralized at titers equal to 1:1280 and 1: 640.

Eksempel 7: In vivo evaluering av forskjellige serotyper av AAV vektorerExample 7: In vivo evaluation of different serotypes of AAV vectors

I denne studie ble 7 rekombinante AAV genomer, AAV2CBhAl AT, AAV2AlbhA1 AT, AAV2CMVrhCG, AAV2TBGrhCG, AAV2TBGcFIX, AAV2CMVLacZ og AAV2TBGLacZ pakket med capsid proteiner av forskjellige serotyper. I alle syv konstrukter var minigenkassetten flankert med AAV2 ITR'er. cDNA'er av human a-antitrypsin- (AlAT) [Xiao, W., et al., (1999) "J Virol" 73, 3994-4003], P-subenheten av rhesusape koriogonadotropisk hormon- (CG) [Zoltick, P.W. & Wilson, J.M. (2000) " Mol Ther" 2,657-9], canine faktor IX- [Wang, L., et ala., (1997) " Proe Nati Acad Sei USA " 94,11563-6] og bakteriell P-galaktosidase (det vil si Lac Z) gener ble benyttet som rapportørgener. For leverrettet genoverføring ble enten musealbumingenpromoter (Alb) [Xiao, W. (1999), supra] eller humantyroidhormonbindingsglobulingenpromoter (TBG) [Wang (1977), supra] benyttet for å drive leverspesifikk ekspresjon av rappor-tørgener. I muskelrettet genoverføirngsforsøk ble enten den tidlige cytomegalovirus-promoter (CMV) eller kylling P-aktinpromoter med CMV enhancer (CB) benyttet for å styre ekspresjonen av rapportører. In this study, 7 recombinant AAV genomes, AAV2CBhAl AT, AAV2AlbhA1 AT, AAV2CMVrhCG, AAV2TBGrhCG, AAV2TBGcFIX, AAV2CMVLacZ and AAV2TBGLacZ were packaged with capsid proteins of different serotypes. In all seven constructs, the minigene cassette was flanked by AAV2 ITRs. cDNAs of human α-antitrypsin (AlAT) [Xiao, W., et al., (1999) "J Virol" 73, 3994-4003], the P subunit of rhesus monkey choriogonadotropic hormone (CG) [Zoltick, P.W. & Wilson, J.M. (2000) "Mol Ther" 2,657-9], canine factor IX- [Wang, L., et al., (1997) "Proe Nati Acad Sei USA" 94,11563-6] and bacterial β-galactosidase (it will si Lac Z) genes were used as reporter genes. For liver-directed gene transfer, either the mouse albumin gene promoter (Alb) [Xiao, W. (1999), supra] or the human thyroid hormone binding globulin gene promoter (TBG) [Wang (1977), supra] was used to drive liver-specific expression of rapport genes. In muscle-directed gene transfer experiments, either the cytomegalovirus early promoter (CMV) or the chicken β-actin promoter with the CMV enhancer (CB) was used to drive the expression of reporters.

For muskelrettet genoverføring ble vektorer injisert i den høyre tibialis anterior på 4-6 uker gamle nakne NCR- eller C57BL/6 mus (Taconic, Germantown, NY). I lever-rettet genoverføringsstudier ble vektorer infusert intraportalt i 7-9 uker gamle nakne NCR-eller C57BL/6 mus (Taconic, Germantown, NY). Serumprøver ble samlet intraorbitalt på forskjellige tidspunkter etter vektoradministreringen. Muskel- og/eller levervev ble høstet på forskjellige tidspunkter for cryosnitt og Xgal histokjemisk farving fra dyr som fikk lacZ vektorene. For re-administreringsforsøket fikk C56BL/6 mus først AAV2/1-, - 2/2-, -2/5-, -2/7- og -2/8CBA1 AT vektorer intramuskulært og fulgt for Al AT genekspresjon i 7 uker. Dyrene ble så behandlet med AAV"(8TBGcFDC intraportalt og studert for cFJX genekspresjon. For muscle-directed gene transfer, vectors were injected into the right tibialis anterior of 4-6 week old nude NCR or C57BL/6 mice (Taconic, Germantown, NY). In liver-directed gene transfer studies, vectors were infused intraportally into 7-9 week old nude NCR or C57BL/6 mice (Taconic, Germantown, NY). Serum samples were collected intraorbitally at various time points after the vector administration. Muscle and/or liver tissue was harvested at various time points for cryosectioning and Xgal histochemical staining from animals receiving the lacZ vectors. For the re-administration experiment, C56BL/6 mice first received AAV2/1-, -2/2-, -2/5-, -2/7-, and -2/8CBA1 AT vectors intramuscularly and followed for Al AT gene expression for 7 weeks. The animals were then treated with AAV"(8TBGcFDC intraportally and studied for cFJX gene expression.

ELISA baserte analyser ble gjennomført for å kvantifisere serumnivåene av hAl AT-, rhCG- og cFIX proteiner som beskrevet tidligere [Gao, G.P., et al, (1996) " J Virol" 70, 8934-43; Zoltick, P.W. & Wilson, J.M. (2000) " Mol Ther" 2, 657-9; Wang, L., et al., " Proe Nati Acad Sei USA "94, 11563-6]. Forsøkene ble fullført når dyrene ble avlivet for høsting av muskel- og levervev for DNA ekstrahering og kvantitativ analyse av genomkopier av vektorer til stede i målvevet ved TaqMan ved bruk av det samme sett av primere og prober som ved titrering av vektorpreparatene [Zhang, Y., et al., (2001) " Mol Ther" 3, 697-707]. ELISA based assays were performed to quantify the serum levels of hAl AT, rhCG and cFIX proteins as described previously [Gao, G.P., et al, (1996) "J Virol" 70, 8934-43; Zoltick, P.W. & Wilson, J.M. (2000) "Mol Ther" 2, 657-9; Wang, L., et al., "Proe Nati Acad Sei USA" 94, 11563-6]. The experiments were completed when the animals were sacrificed for harvesting of muscle and liver tissue for DNA extraction and quantitative analysis of genome copies of vectors present in the target tissue by TaqMan using the same set of primers and probes as when titrating the vector preparations [Zhang, Y. , et al., (2001) "Mol Ther" 3, 697-707].

Ytelsen for vektorer basert på de nye serotyper ble bedømt i murinmodeller av muskel-og leverrettet genoverføring og sammenlignet med vektorer basert på de kjente serotyper AAV1, AAV2 og AAV5. Vektorer som uttrykker utskilte proteiner (a-antitrypsin (Al AT) og chorionisk gonadotropin (CG)) ble benyttet for å kvantifisere relative trans-duksjonseffektiviteter mellom forskjellige serotyper ved hjelp av ELISA analyse av sera. Cellulærfordelingen av transduksjon innen mål organet ble bedømt ved bruk av lacZ uttrykkende vektorer og Z-gal histokjemi. The performance of vectors based on the new serotypes was assessed in murine models of muscle- and liver-directed gene transfer and compared with vectors based on the known serotypes AAV1, AAV2 and AAV5. Vectors expressing secreted proteins (α-antitrypsin (Al AT) and chorionic gonadotropin (CG)) were used to quantify relative transduction efficiencies between different serotypes by ELISA analysis of sera. The cellular distribution of transduction within the target organ was assessed using lacZ expressing vectors and Z-gal histochemistry.

Ytelsen for AAV vektorer i skjelettmuskelen ble analysert etter direkteinjeksjon i tibialis anterior musklene. Vektorer inneholdt det samme AAV2 baserte genom med det umiddelbart tidlige gen av CMV eller en CMV enhanced P-actin promoter, som driver ekspresjonen av transgenet. Tidlige studier indikerte at immunkompetente C57BL/6 mus utløste begrensede humorale responser til human Al AT proteinet når det ble uttrykt fra AAV vektorer [Xiao, W. Et al., (1999) " J Virol" 73, 3994-4003]. The performance of AAV vectors in the skeletal muscle was analyzed after direct injection into the tibialis anterior muscles. Vectors contained the same AAV2-based genome with the immediate early gene of CMV or a CMV enhanced β-actin promoter, driving the expression of the transgene. Early studies indicated that immunocompetent C57BL/6 mice elicited limited humoral responses to the human Al AT protein when expressed from AAV vectors [Xiao, W. et al., (1999) "J Virol" 73, 3994-4003].

I hver stamme produserte AAV2/1 vektorer de høyeste nivåer av Al AT og AAV2/2 vektoren de laveste mens AAV2/7- og AAV2/8 vektorene viste mellomliggende nivåer for ekspresjonen. Toppnivåer av CG 28 dager etter injeksjonen av nu/nu NCR mus viste de høye nivåer fra AAV2/7 og de laveste fra AAV2/2 mens AAV2/8 og AAV2/1 lå mellom disse. Injeksjon av AAV2/1- og AAV2/7 lacZ vektorer gav genekspresjon ved injeksjonssetene i alle muskelfibrene med vesentlig færre lacZ positive fibre observert med AAV2/2- og AAV2/8 vektorer. Disse data antyder at transduksjonseffektiviteten med AAV2/7 vektorer i skjelettmuskelen er tilsvarende det som oppnås med AAV2/1 som er den mest effektive i skjelettmuskler av de tidligere beskrevne serotyper [Xiao, W. (1999), sitert ovenfor, Chao, H., et al., (2001), " Mol Ther" 4, 217-22; Chao, H., et al., (2000) " Mol Ther" 2, 619-23]. In each strain, AAV2/1 vectors produced the highest levels of Al AT and the AAV2/2 vector the lowest, while the AAV2/7 and AAV2/8 vectors showed intermediate levels of expression. Peak levels of CG 28 days after the injection of nu/nu NCR mice showed the highest levels from AAV2/7 and the lowest from AAV2/2, while AAV2/8 and AAV2/1 were in between. Injection of AAV2/1 and AAV2/7 lacZ vectors produced gene expression at the injection sites in all muscle fibers with significantly fewer lacZ positive fibers observed with AAV2/2 and AAV2/8 vectors. These data suggest that the transduction efficiency with AAV2/7 vectors in skeletal muscle is similar to that achieved with AAV2/1 which is the most efficient in skeletal muscle of the previously described serotypes [Xiao, W. (1999), cited above, Chao, H., et al., (2001), "Mol Ther" 4, 217-22; Chao, H., et al., (2000) "Mol Ther" 2, 619-23].

Tilsvarende murinmodeller ble benyttet for å evaluere leverrettet genoverføring. Identiske doser av vektorer basert på genomkopier ble infusert i portalvenene av mus som ble analysert deretter på ekspresjon av transgenet. Hver vektor inneholdt et AAV2 basert genom ved bruk av tidligere beskrevne, leverspesifikke promotere (det vil si albumin- eller tyroidhormonbindingsglobulin) for å drive ekspresjonen av transgenet. Mer spesielt ble CMVCG- og TBGCG minigen kassetter benyttet for muskel- henholdsvis leverberettet genoverføring. Nivåer av rhCG ble definert som relative enheter (Rus x IO<3>). Data er angitt fra analysering av serumprøver samlet dag 28 etter vektoradministrering (4 dyr per gruppe). Som vist i tabell 3 var virkningen av capsid proteiner på effektiviteten av transduksjon av Al AT vektorer i nu/nu- og C57BL/6 mus og CG vektorer i C57BL/6 mus konsistent (se tabell 6). Corresponding murine models were used to evaluate liver-directed gene transfer. Identical doses of vectors based on genome copies were infused into the portal veins of mice which were then analyzed for expression of the transgene. Each vector contained an AAV2-based genome using previously described liver-specific promoters (ie, albumin or thyroid hormone binding globulin) to drive expression of the transgene. More specifically, CMVCG and TBGCG minigene cassettes were used for muscle and liver-directed gene transfer. Levels of rhCG were defined as relative units (Rus x IO<3>). Data are given from analysis of serum samples collected on day 28 after vector administration (4 animals per group). As shown in Table 3, the effect of capsid proteins on the efficiency of transduction of Al AT vectors in nu/nu and C57BL/6 mice and CG vectors in C57BL/6 mice was consistent (see Table 6).

I alle tilfeller gav AAV2/8 vektorer de høyeste nivåer av transgen ekspresjon som lå fra 16 til 110 større enn det som ble oppnådd med AAV2/2 vektorer; ekspresjonen fra AAV2/5- og AAV2/7 vektorer lå mellom med AAV2/7 høyere enn AAV2/5. Analyser av X-Gal farvede leversnitt fra dyr som mottok de tilsvarende lacZ vektorer viste en korrelasjon mellom antallet transduserte celler og de totale nivåer av transgen ekspresjon. DNA'er som var ekstrahert fra levere fra C57BL/6 mus som fikk Al AT vektorene ble analysert på forekomsten av vektor DNA ved bruk av sann-tid PCR teknologi. In all cases, AAV2/8 vectors gave the highest levels of transgene expression that ranged from 16 to 110 greater than that obtained with AAV2/2 vectors; expression from AAV2/5 and AAV2/7 vectors was intermediate, with AAV2/7 higher than AAV2/5. Analyzes of X-Gal stained liver sections from animals receiving the corresponding lacZ vectors showed a correlation between the number of transduced cells and the total levels of transgene expression. DNAs extracted from the livers of C57BL/6 mice receiving the Al AT vectors were analyzed for the presence of vector DNA using real-time PCR technology.

Mengden vektor DNA som ble funnet i leveren 56 dager etter injeksjon korrelerte med nivåene av transgen ekspresjonen (se tabell 7). For dette forsøk ble et sett av probe og primere innsiktet på SV40 polyA området av vektorgenomet benyttet for TaqMan PCR. De viste verdier er gjennomsnittet av tre individuelle dyr med standardavvik. Dyrene ble avlivet dag 56 for å høste levervev for DNA ekstrahering. Disse studier antyder at AAV8 er den mest effektive vektor for leverrettet genoverføring på grunn av øket antall transduserte hepatocyter. The amount of vector DNA found in the liver 56 days after injection correlated with the levels of transgene expression (see Table 7). For this experiment, a set of probe and primers targeting the SV40 polyA region of the vector genome was used for TaqMan PCR. The values shown are the mean of three individual animals with standard deviation. The animals were sacrificed on day 56 to harvest liver tissue for DNA extraction. These studies suggest that AAV8 is the most efficient vector for liver-directed gene transfer due to increased numbers of transduced hepatocytes.

De serologiske data som er beskrevet ovenfor antyder at AAV2/8 vektorer ikke skulle The serological data described above suggest that AAV2/8 vectors should not

nøytraliseres in vivo etter immunisering med de andre serotyper. C57BL/6 mus som fikk intraportale injeksjoner av AAV2/8 vektorer uttrykker canine faktor JX (IO<11>genomkopier) 56 dager etter at de fikk intramuskulære injeksjoner av Al AT vektorer fra forskjellige serotyper. Høye nivåer av faktor JX ekspresjon ble oppnådd 14 dager etter infusjon av AAV2/8 i naive dyr (17±2 ug/ml, n=4), noe som ikke var signifikant forskjellig fra det som ble observert hos dyr som var immunisert med AAV2/1 (31±23 ug/ml, n=4), AAV2/2 (16 ug/ml, n=2) og AAV2/7 (12 ug/ml, n=2). Dette står i motsetning til det som ble observert i AAV2/8 immuniserte dyr som var infusert med AAV2/8 faktor JX vektor der ingen detekterbar faktor JX ble observert (<0,1 ug/ml, n=4). is neutralized in vivo after immunization with the other serotypes. C57BL/6 mice that received intraportal injections of AAV2/8 vectors express canine factor JX (10<11> genome copies) 56 days after they received intramuscular injections of Al AT vectors from different serotypes. High levels of factor JX expression were achieved 14 days after infusion of AAV2/8 in naïve animals (17±2 ug/ml, n=4), which was not significantly different from that observed in animals immunized with AAV2 /1 (31±23 µg/ml, n=4), AAV2/2 (16 µg/ml, n=2) and AAV2/7 (12 µg/ml, n=2). This is in contrast to what was observed in AAV2/8 immunized animals infused with AAV2/8 factor JX vector where no detectable factor JX was observed (<0.1 µg/ml, n=4).

Oligonukleotider til konserverte områder av cap genet forsterket sekvenser fra rhesusaper som representerte unike AAVer. Identiske cap signatursekvenser ble funnet i mange vev fra rhesusaper som stammet fra minst to forskjellige kolonier. Full-lengde rep- og cap åpen leserammer ble isolert og sekvensert fra enkelte kilder. Kun de cap åpne leserammer av de nye AAVer var nødvendige for å evaluere deres potensiale som vektorer fordi vektorer med AAV7- eller AAV8 capsidene ble generert ved bruk av ITR'ene og rep fra AAV2. Dette forenklet også sammenligningen mellom forskjellige vektorer fordi det aktuelle vektorgenom er identisk mellom forskjellige vektor serotyper. Således var utbyttene av rekombinante vektorer som var generert ved bruk av denne vei ikke vesentlig forskjellig mellom serotypene. Oligonucleotides to conserved regions of the cap gene amplified sequences from rhesus monkeys representing unique AAVs. Identical cap signature sequences were found in many tissues from rhesus monkeys originating from at least two different colonies. Full-length rep and cap open reading frames were isolated and sequenced from individual sources. Only the capped open reading frames of the new AAVs were needed to evaluate their potential as vectors because vectors with the AAV7 or AAV8 capsids were generated using the ITRs and rep from AAV2. This also simplified the comparison between different vectors because the relevant vector genome is identical between different vector serotypes. Thus, the yields of recombinant vectors generated using this route were not significantly different between the serotypes.

Vektorer basert på AAV7 og AAV8 syntes å være immunologisk distinkte (det vil si at de ikke ble nøytralisert av antistoffer generert mot andre serotyper). Videre nøytraliserte ikke sera fra mennesker transduksjon med AAV7- og AAV8 vektorer, noe som er en vesentlig fordel i forhold til de humanavledede AAVer som i dag er under utvikling for hvilke en signifikant andel av den humane populasjon har pre-eksisterende immunitet som er nøytraliserende [Chirmule, N., et al., (1999) " Gene Ther" 6, 1574-83]. Vectors based on AAV7 and AAV8 appeared to be immunologically distinct (that is, they were not neutralized by antibodies generated against other serotypes). Furthermore, sera from humans did not neutralize transduction with AAV7 and AAV8 vectors, which is a significant advantage compared to the human-derived AAVs currently under development for which a significant proportion of the human population has pre-existing immunity that is neutralizing [ Chirmule, N., et al., (1999) "Gene Ther" 6, 1574-83].

Tropismen for hver ny vektor er gunstig for in vivo anvendelser. AAV2/7 vektorene synes å transdusere skjelettmuskelen like effektivt som AAV2/1 som er den serotype som gir det høyeste nivå av transduksjon i skjelettmuskelen hos primat AAVer testet til i dag [Xioa., W., supra; Chou (2001), supra og Chou (2000) supra]. Viktig er at AAV2/8 gir en vesentlig fordel i forhold til de andre serotyper uttrykt ved effektivitet ved genoverføring til leveren som inntil nu har vært relativt skuffende uttrykt ved antallet hepatocyter som stabilt ble transdusert. AAV2/8 oppnådde konsistent en 10 til 100- gangers forbedring i genoverføringseffektiviteten sammenlignet med de andre vektorer. Basis for den forbedrede effektivitet for AAV2/8 er uklar selv om det muligens skyldes opptaket via en annen receptor som er mer aktiv i den basolaterale overflate av hepatocytene. Denne forbedre effektivitet vil være heller brukbar ved utvikling av leverrettet genoverføring der antallet transduserte celler er kritisk, for eksempel slik tilfellet er når det gjelder urea cyklus lidelser og arvelig hyperkolesterolemi. The tropism of each new vector is favorable for in vivo applications. The AAV2/7 vectors appear to transduce skeletal muscle as efficiently as AAV2/1 which is the serotype that provides the highest level of transduction in skeletal muscle of primate AAVs tested to date [Xioa., W., supra; Chou (2001), supra and Chou (2000) supra]. Importantly, AAV2/8 provides a significant advantage compared to the other serotypes expressed by efficiency of gene transfer to the liver, which until now has been relatively disappointing expressed by the number of hepatocytes that were stably transduced. AAV2/8 consistently achieved a 10- to 100-fold improvement in gene transfer efficiency compared to the other vectors. The basis for the improved efficiency for AAV2/8 is unclear, although it is possibly due to uptake via a different receptor that is more active in the basolateral surface of the hepatocytes. This improved efficiency will be rather useful in the development of liver-directed gene transfer where the number of transduced cells is critical, for example as is the case with urea cycle disorders and hereditary hypercholesterolemia.

Således tilveiebringer oppfinnelsen en ny tilnærmelse for isolering av nye AAVer basert på PCR gjenvinning av genomiske sekvenser. De forsterkede sekvenser ble lett innarbeidet i vektorer og testet i dyr. Mangelen på for-eksisterende immunitet til AAV7 og den gunstige tropisme hos vektorene for muskelen antyder at AAV7 er egnet for anvendelse som vektor i humangenterapi og andre in vivo anvendelser. Tilsvarende gjør mangelen på for-eksisterende immunitet mot AAV serotypene ifølge oppfinnelsen, og deres tropismer, dem også brukbare for avlevering av terapeutiske molekyler og andre brukbare molekyler. Thus, the invention provides a new approach for isolating new AAVs based on PCR recovery of genomic sequences. The amplified sequences were easily incorporated into vectors and tested in animals. The lack of pre-existing immunity to AAV7 and the favorable tropism of the vectors for muscle suggest that AAV7 is suitable for use as a vector in human gene therapy and other in vivo applications. Similarly, the lack of pre-existing immunity against the AAV serotypes according to the invention, and their tropisms, also make them useful for delivery of therapeutic molecules and other useful molecules.

Eksempel 9 - VevtropismestudierExample 9 - Tissue tropism studies

Ved konstruksjonen av et høyytelsesfunksjonelt screeningskjema for nye AAV konstrukter ble en ikke-vev spesifikk og meget aktiv promoter, CB promoteren (CMV enhanced kylling p actin promoter) valgt for å drive et lett detekterbart og kvantifiser-bart rapportørgen, human a anti-trypsin genet. Således behøver man kun å lave en vektor for hver nye AAV klon for genoverføringsstudiet som tar sikte på 3 forskjellige vev, lever, lunge og muskel, for avsøking for vevtropisme for et spesielt AAV konstrukt. Tabell 8 oppsummerer data som er generert fra 4 nye AAV vektorer i vevtropismestudi-ene (AAVCBA1 AT), hvorfra en ny AAV capsid klon, 44.2, ble funnet å være en meget potent genoverføringsbærer i alle 3 vev med stor avstand når det gjelder særlig lungevev. Tabell 8 rapporterer data oppnådd (i ug Al AT/ml serum) på studiens dag 14. In the construction of a high-throughput functional screening scheme for new AAV constructs, a non-tissue specific and highly active promoter, the CB promoter (CMV enhanced chicken p actin promoter) was chosen to drive an easily detectable and quantifiable reporter gene, the human α anti-trypsin gene . Thus, one only needs to make a vector for each new AAV clone for the gene transfer study which targets 3 different tissues, liver, lung and muscle, for screening for tissue tropism for a particular AAV construct. Table 8 summarizes data generated from 4 new AAV vectors in the tissue tropism studies (AAVCBA1 AT), from which a new AAV capsid clone, 44.2, was found to be a very potent gene transfer carrier in all 3 tissues with a wide range in particular lung tissue . Table 8 reports data obtained (in ug Al AT/ml serum) on study day 14.

Et par andre forsøk ble så gjennomført for å bekrefte den overlegne tropisme for AAV 44,2 i lungevev. Først ble AAV vektorbåret CClOhal AT minigen for lungespesifikk ekspresjon pseudotypet med capsider av nye AAVer gitt til immundefekte dyr (nakne NCR) i et likt volum (50 ul hver av de opprinnelige preparater uten fortynning) via intratrakeale injeksjoner som gitt i tabell 9.1 tabell 9 vises 50 ul av hvert opprinnelige preparat per mus, NCR nakne, med detekteringsgrense >0,033 ug/ml, dag 28. A couple of other experiments were then carried out to confirm the superior tropism for AAV 44.2 in lung tissue. First, the AAV vector-carried CClOhal AT minigene for lung-specific expression pseudotyped with capsids of new AAVs was given to immunodeficient animals (nude NCR) in an equal volume (50 µl each of the original preparations without dilution) via intratracheal injections as given in Table 9.1 Table 9 is shown 50 µl of each original preparation per mouse, NCR nude, with detection limit >0.033 ug/ml, day 28.

Vektorene ble også administrert til immunkompetente dyr (C57BL/6) i like genomkopier (1 x 10<11>) som vist i tabell 10. (1 x 10<11>GC per dyr, C57BL/6, dag 14, detekteringsgrense >0,033 ug/ml) The vectors were also administered to immunocompetent animals (C57BL/6) in equal genome copies (1 x 10<11>) as shown in Table 10. (1 x 10<11>GC per animal, C57BL/6, day 14, limit of detection >0.033 ug/ml)

Data fra begge forsøk bekreftet den overlegne tropisme for klon 44,2 i lungerettet gen-overføring. Data from both trials confirmed the superior tropism of clone 44.2 in lung-directed gene transfer.

Interessant er at ytelsen for klon 44,2 i lever- og muskelrettet genoverføring også var fremragende, nær den til den beste levertransducer, AAV8, og den beste muskeltransdu-cer AAV1, noe som antyder at denne nye AAV har en viss spesiell biologisk signifi-kans. Interestingly, the performance of clone 44.2 in liver- and muscle-directed gene transfer was also outstanding, close to that of the best liver transducer, AAV8, and the best muscle transducer, AAV1, suggesting that this new AAV has some special biological significance. chance.

For å studere serologiske egenskaper for disse nye AAVer ble pseudotypede AAVGFP vektorer skapt for immunisering av kaniner og in vitro transduksjon av 84-31 celler i nærvær og fravær av antisera mot de forskjellige capsider. Data er oppsummert nedenfor: To study serological properties of these new AAVs, pseudotyped AAVGFP vectors were created for immunization of rabbits and in vitro transduction of 84-31 cells in the presence and absence of antisera against the different capsids. Data are summarized below:

Eksempel 10 - Musemodell for arvelig hyperkolesterolemi Example 10 - Mouse model for hereditary hypercholesterolemia

De følgende forsøk viser at AAV2/7 konstruktet ifølge oppfinnelsen avgir LDL receptoren og uttrykker LDL receptoren i en mengde tilstrekkelig til å redusere nivåene for plasmakolesterol og triglycerider i dyremodeller av arvelig hyperkolesterolemi. The following experiments show that the AAV2/7 construct according to the invention emits the LDL receptor and expresses the LDL receptor in an amount sufficient to reduce the levels of plasma cholesterol and triglycerides in animal models of hereditary hypercholesterolemia.

A. VektorkonstruksjonA. Vector construction

AAV vektorer, pakket med AAV7- eller AAV8 capsid proteiner ble konstruert ved bruk av en pseudotypingsstrategi [Hildinger, M et al., " J. Virol" 2001; 75:6199-6203]. Rekombinante AAV genomer med AAV2 inverterte terminalrepeatere (ITR) ble pakket ved trippeltransfeksjon av 293 celler med cis-plasmidet, adenovirushjelperplasmidet og et kimerisk pakkingskonstrukt, en fusjon av capsidene av de nye AAV serotyper med rep genet av AAV2. Det kimeriske pakkingsplasmid ble konstruert som beskrevet tidligere [Hildinger et al, supra]. De rekombinante vektorer ble renset ved standard CsCb sedimenteringsmetoden. For å bestemme utbyttet ble TaqMan (Applied Biosystems) analyse gjennomført ved bruk av prober og primere som sikter på SV40 poly(A) området av vektorene [Gao GP, et al. " Hum Gene Ther." 2000 Okt 10, 11(15):2079-91]. De resulterende vektorer uttrykker trans genet under kontroll av den humane tyroid-hormonbindingsglobulingenpromoter (TBG). AAV vectors, packaged with AAV7 or AAV8 capsid proteins were constructed using a pseudotyping strategy [Hildinger, M et al., "J. Virol" 2001; 75:6199-6203]. Recombinant AAV genomes with AAV2 inverted terminal repeats (ITR) were packaged by triple transfection of 293 cells with the cis plasmid, the adenovirus helper plasmid and a chimeric packaging construct, a fusion of the capsids of the new AAV serotypes with the rep gene of AAV2. The chimeric packaging plasmid was constructed as described previously [Hildinger et al, supra]. The recombinant vectors were purified by the standard CsCb sedimentation method. To determine the yield, TaqMan (Applied Biosystems) analysis was performed using probes and primers targeting the SV40 poly(A) region of the vectors [Gao GP, et al. " Hum Gene Ther." 2000 Oct 10, 11(15):2079-91]. The resulting vectors express the gene in trans under the control of the human thyroid hormone-binding globulin gene promoter (TBG).

B. DyrB. Animals

LDL receptordefekte mus med C57B1/6 bakgrunn ble ervervet fra Jackson Laboratory (Bar Harbour, ME, USA) og holdt som en formeringskoloni. Musene ble gitt ubegrenset tilgang til vann og fikk en Western Diet med høyt fettinnhold (høy % kolesterol) med start tre uker før vektorinjeksjon. På dag -7 så vel som dag 0 ble blod oppnådd via retroorbitale tappinger og lipidprofilen ble bedømt. Musene ble vilkårlig inndelt i syv grupper. Vektoren ble injisert via en intraportalinjeksjon som beskrevet tidligere ([Chen SJ et al., " Mol Thercpy" 2000; 2(3), 256-261]. Kort sagt ble musene anestetisert med ketamin og xylazin. En laparotomy ble gjennomført og portalvenen eksponert. Ved bruk av en 30g nål ble den egnede dose av vektor, fortynnet i lOOul PBS, injisert direkte i portalvenen. Trykk ble lagt på injeksjonssetet for å sikre blødningsstoff. Huden rundt ble lukket og drapert og musene omhyggelig overvåket den følgende dag. Ukentlige tappinger ble gjennomført med start dag 14 etter leverrettet genoverføring for å måle blodlipidene. To dyr i hver gruppe ble avlivet på tidspunktene 6 uker og 12 uker etter vektorinjeksjon for å undersøke aterosklerotisk plakkstørrelse så vel som receptoreks-presjon. De gjenværende mus ble avlivet i uke 20 for plakkmåling og bestemmelse av trans gen ekspresjon. LDL receptor-deficient mice with a C57B1/6 background were acquired from Jackson Laboratory (Bar Harbour, ME, USA) and maintained as a breeding colony. The mice were given unlimited access to water and fed a high-fat Western Diet (high % cholesterol) starting three weeks before vector injection. On day -7 as well as day 0, blood was obtained via retroorbital draws and the lipid profile was assessed. The mice were randomly divided into seven groups. The vector was injected via an intraportal injection as described previously ([Chen SJ et al., " Mol Thercpy" 2000; 2(3), 256-261]. Briefly, the mice were anesthetized with ketamine and xylazine. A laparotomy was performed and the portal vein exposed .Using a 30g needle, the appropriate dose of vector, diluted in lOOul PBS, was injected directly into the portal vein. Pressure was applied to the injection site to ensure hemorrhaging. The surrounding skin was closed and draped and the mice were carefully monitored the following day. Weekly draws were conducted starting day 14 after liver-directed gene transfer to measure blood lipids. Two animals in each group were sacrificed at 6 weeks and 12 weeks after vector injection to examine atherosclerotic plaque size as well as receptor expression. The remaining mice were sacrificed at week 20 for plaque measurement and determination of trans gene expression.

C. Serum lipoprotein- og leverfunksjonsanalyse C. Serum lipoprotein and liver function assay

Blodprøver ble oppnådd fra den retroorbitale pleksus etter en 6 timers fasteperiode. Serum ble separert fra plasma ved sentrifugering. Mengden plasmalipoproteiner og lever-transaminaser i serum ble detektert ved bruk av en automatisert, klinisk kjemianalysør (ACE, Schiapparelli Biosystems, Alpha Wassemann). Blood samples were obtained from the retroorbital plexus after a 6 h fasting period. Serum was separated from plasma by centrifugation. The amount of plasma lipoproteins and liver transaminases in serum was detected using an automated clinical chemistry analyzer (ACE, Schiapparelli Biosystems, Alpha Wassemann).

D. Detektering av transgenekspresjonD. Detection of transgene expression

LDL receptor ekspresjon ble evaluert ved immunofluoressensfarving og Western Blot. For Western Blot ble frossent levervev homogenisert med lyseringsbuffer (20 mM Tris, pH7,4, 130mMNacl, 1 % triton X 100, proteinaseinhibitor (komplett, EDTA-fri, Roche Mannheim, Tyskland). Proteinkonsentrasjonen ble bestemt ved bruk av "Micro BCA Protein Assay Reagent Kit" (Pierce, Rockford, IL). 40 ug protein ble oppløst i 4-15 % Tris-HCl "Ready Gels" (Biorad, Hercules, CA) og overført til en nitrocellulosemembran (InVitrogen). For å generere Anti-hLDL receptorantistoffer ble en kanin injisert intra-venøst med et AdhLDLr prep (lxlO<13>GC). Fire uker senere ble kaninserum oppnådd og benyttet for Western Blot. En 1:100 fortynning av serum ble benyttet som et primærantistoff fulgt av et HRP-konjugert anti-kanin IgG og ECL kjemiluminescent detektering ("ECL Western Blot Detection Kit", Amersham, Arlington Heights, IL). LDL receptor expression was evaluated by immunofluorescence staining and Western Blot. For Western Blot, frozen liver tissue was homogenized with lysis buffer (20 mM Tris, pH7.4, 130 mM Nacl, 1% triton X 100, proteinase inhibitor (Complete, EDTA-free, Roche Mannheim, Germany). Protein concentration was determined using "Micro BCA Protein Assay Reagent Kit" (Pierce, Rockford, IL). 40 µg of protein was dissolved in 4-15% Tris-HCl "Ready Gels" (Biorad, Hercules, CA) and transferred to a nitrocellulose membrane (InVitrogen). To generate Anti- hLDL receptor antibodies, a rabbit was injected intravenously with an AdhLDLr prep (lxlO<13>GC). Four weeks later, rabbit serum was obtained and used for Western Blot. A 1:100 dilution of serum was used as a primary antibody followed by an HRP- conjugated anti-rabbit IgG and ECL chemiluminescent detection ("ECL Western Blot Detection Kit", Amersham, Arlington Heights, IL).

E. ImmunocytokjemiE. Immunocytochemistry

For bestemmelse av LDL receptorekspresjonen i frosne leversnitt ble det gjennomført immunohistokjemianalyser. 10 um kryostatsnitt ble enten fiksert i aceton i 5 minutter eller ikke fiksert. Blokkering ble oppnådd via en 1 times inkuberingsperiode med 10 % gjeteserum. Snitt ble så inkubert i en time med det primære antistoff ved romtemperatur. Et kaninpolyklonalt antistoff anti-human LDL (Biomedical Technologies Inc., Stoughton, MA) ble benyttet fortynnet i henhold til produsentens instruksjoner. Snittene ble vasket med PBS og inkubert med 1:100 fortynnet fluorescein gjeteantikanin IgG (Sigma, St Louis, MO). Prøver ble til slutt undersøkt under fluoressensmikroskop Nikon Microphot-FXA. I alle tilfelle ble hver inkubering fulgt av utstrakt vasking med PBS. Negative kontroller bestod av forinkubering med PBS, utelatelse av det primære antistoff og erstatning av det primære antistoff med et isotypetilpasset ikke-immunt kon-trollantistoff. De tre typer kontroller som nevnt ovenfor ble gjennomført for hvert forsøk den samme dag. To determine the LDL receptor expression in frozen liver sections, immunohistochemistry analyzes were carried out. 10 µm cryostat sections were either fixed in acetone for 5 min or unfixed. Blocking was achieved via a 1 hour incubation period with 10% sheep serum. Sections were then incubated for one hour with the primary antibody at room temperature. A rabbit polyclonal antibody anti-human LDL (Biomedical Technologies Inc., Stoughton, MA) was used diluted according to the manufacturer's instructions. The sections were washed with PBS and incubated with 1:100 diluted fluorescein sheep antirabbit IgG (Sigma, St Louis, MO). Samples were finally examined under a fluorescence microscope Nikon Microphot-FXA. In all cases, each incubation was followed by extensive washing with PBS. Negative controls consisted of preincubation with PBS, omission of the primary antibody, and replacement of the primary antibody with an isotype-matched non-immune control antibody. The three types of controls mentioned above were carried out for each experiment on the same day.

F. GenoverføringseffektivitetF. Gene transfer efficiency

Levervev ble oppnådd etter avlivning av musene på de angitte tidspunkter. Vevet ble sjokkfrosset i flytende nitrogen og lagret ved -80 °C inntil ytterligere prosessering. DNA ble ekstrahert fra levervevet ved bruk av et "QIAamp DNA Mini Kit" (QIAGEN Gmbh, Tyskland) i henhold til produsentens protokoll. Genomkopi er av AAV vektorer i levervevet ble evaluert ved bruk av Taqman analyse ved bruk av prober og primere mot SV40 poly(A) halen som beskrevet ovenfor. Liver tissue was obtained after killing the mice at the indicated time points. The tissue was snap-frozen in liquid nitrogen and stored at -80 °C until further processing. DNA was extracted from the liver tissue using a “QIAamp DNA Mini Kit” (QIAGEN Gmbh, Germany) according to the manufacturer's protocol. Genome copy is of AAV vectors in the liver tissue was evaluated using Taqman analysis using probes and primers against the SV40 poly(A) tail as described above.

G. Aterosklerotisk plakkmålingG. Atherosclerotic plaque measurement

For kvantifisering av tilstedeværende aterosklerotisk plakk i museaorta ble musene anestetisert (10 % ketamin og xylazin, ip), brystet åpnet og arteriesystemet perfusert med iskold fosfatbufret saltoppløsning gjennom den venstre ventrikkel. Aorta ble så forsiktig hentet ut, skåret ned langs den ventrale midtlinje fra aortabuen ned til femoral- arteriene og fiksert i formalin. De lipidrike, aterosklerotiske plakk ble farvet med Sudan IV (Sigma, Tyskland) og aorta satt opp flatt på en sort voksoverflate. Bildet ble tatt med et Sony DXC-960 MD farvevideokamera. Området for plakk så vel som den fullstendi-ge aortaoverflate ble bestemt ved bruk av "Phase 3 Imaging Systems (Media Cyberne-tics). To quantify the presence of atherosclerotic plaque in the mouse aorta, the mice were anesthetized (10% ketamine and xylazine, ip), the chest opened and the arterial system perfused with ice-cold phosphate-buffered saline through the left ventricle. The aorta was then carefully extracted, cut down along the ventral midline from the aortic arch down to the femoral arteries and fixed in formalin. The lipid-rich, atherosclerotic plaques were stained with Sudan IV (Sigma, Germany) and the aorta was mounted flat on a black wax surface. The picture was taken with a Sony DXC-960 MD color video camera. The area of plaque as well as the complete aortic surface was determined using Phase 3 Imaging Systems (Media Cybernetics).

H. Klaring av I<125>LDLH. Clearance of I<125>LDL

To dyr per forsøksgruppe ble testet. En bolus av I<125->merket LDL (velvillig tilveiebragt av Dan Rader, U Penn) ble infusert langsomt gjennom nålevenen i løpet av et tidsrom på 30 sekunder (1 000 000 tellinger [1<125>]-LDL fortynnet i 100 ul steril PBS/dyr. På tidspunktene 3 minutter, 30 minutter, 1,5 time, 3 timer og 6 timer etter injeksjon ble en blodprøve oppnådd via den retroorbitale pleksus. Plasma ble separert fra fullblodet og 10 ul plasma tellet i y-telleren. Til slutt ble andelen katabolsk grad beregnet fra de oppnådde lipoproteinklaringsdata. Two animals per experimental group were tested. A bolus of I<125>-labeled LDL (kindly provided by Dan Rader, U Penn) was infused slowly through the needle vein over a period of 30 seconds (1,000,000 counts [1<125>]-LDL diluted in 100 µl sterile PBS/animal. At 3 min, 30 min, 1.5 h, 3 h, and 6 h post-injection, a blood sample was obtained via the retroorbital plexus. Plasma was separated from the whole blood and 10 µl of plasma was counted in the y-counter. To finally, the proportion of catabolic degree was calculated from the obtained lipoprotein clearance data.

I. Evaluering av leverlipidakkumuleringI. Evaluation of hepatic lipid accumulation

Oljerød farving av frosne leversnitt ble gjennomført for å bestemme lipidakkumulering. De frosne leversnitt ble kort skyllet i destillert vann fulgt av en 2 minutters inkuberingsperiode i absolutt propylenglykol. Snittene ble så farvet i oljerød oppløsning (0,5 % i propylenglykol) i 16 timer fulgt av en motfarving med Mayers hematoxylin-oppløsning i 30 sekunder og anbringelse i oppvarmet glyceringeleoppløsning. Oil red staining of frozen liver sections was performed to determine lipid accumulation. The frozen liver sections were briefly rinsed in distilled water followed by a 2 minute incubation period in absolute propylene glycol. Sections were then stained in oil red solution (0.5% in propylene glycol) for 16 hours followed by counterstaining with Mayer's hematoxylin solution for 30 seconds and mounting in warmed glycerin gel solution.

For kvantifisering av leverkolesterol- og -triglyceridnivå ble leversnitt homogenisert og inkubert i kloroform:metanol 2:1 over natten. Etter tilsetning av 0,05 % H2SO4og sentrifugering i 10 minutter ble det nedre sjikt av hver prøve samlet, delt i to alikvoter og tørket under nitrogen. For kolesterolmålingen ble de tørkede lipider fra den første alikvot oppløst i 1 % Triton X-100 i kloroform. Når det var oppløst ble oppløsningen så tørket under nitrogen. Etter oppløsning av lipidene i ddH20 og inkubering i 30 minutter ved 37 °C ble den totale kolesterolkonsentrasjon målt ved bruk av et "Total Cholesterol Kit" (Wako Diagnostics). For den andre alikvot ble de tørkede lipider oppløst i alkoho-lisk KOH og inkubert ved 60 °C i 30 minutter. Deretter ble IM MgC12 tilsatt, fulgt av inkubering på is i 10 minutter og sentrifugering ved 14 000 omdreininger per minutt i 30 minutter. Supernatanten ble til slutt evaluert på triglycerider (Wako Diagnostics). For quantification of liver cholesterol and triglyceride levels, liver sections were homogenized and incubated in chloroform:methanol 2:1 overnight. After addition of 0.05% H2SO4 and centrifugation for 10 minutes, the lower layer of each sample was collected, divided into two aliquots and dried under nitrogen. For the cholesterol measurement, the dried lipids from the first aliquot were dissolved in 1% Triton X-100 in chloroform. Once dissolved, the solution was then dried under nitrogen. After dissolving the lipids in ddH 2 O and incubating for 30 minutes at 37 °C, the total cholesterol concentration was measured using a "Total Cholesterol Kit" (Wako Diagnostics). For the second aliquot, the dried lipids were dissolved in alcoholic KOH and incubated at 60°C for 30 minutes. Then IM MgCl 2 was added, followed by incubation on ice for 10 min and centrifugation at 14,000 rpm for 30 min. The supernatant was finally evaluated for triglycerides (Wako Diagnostics).

Alle av vektorene som var pseudotypet i et AAV2/8- eller AAV2/7 capsid reduserte totalkolesterol, LDL, og triglycerider, sammenlignet med kontrollen. Disse testvektorer korrigerte også fenotypen av kolesterolemi på dosisavhengjg måte. En reduksjon av plakkarealet for AAV2/8- og AAV2/7 mus ble observert i behandlede mus ved den førs-te test (2 måneder) og effekten ble observert å vare over hele forsøket (6 måneder). All of the vectors pseudotyped in an AAV2/8 or AAV2/7 capsid reduced total cholesterol, LDL, and triglycerides, compared to the control. These test vectors also corrected the phenotype of cholesterolemia in a dose-dependent manner. A reduction of the plaque area for AAV2/8 and AAV2/7 mice was observed in treated mice at the first test (2 months) and the effect was observed to last throughout the experiment (6 months).

Eksempel 10 - Funksjonell faktor IX ekspresjon og korreksjon av hemofiliExample 10 - Functional factor IX expression and correction of hemophilia

A. Knock- out musA. Knock-out mice

Funksjonell caninefaktor IX (FIX) ekspresjon ble bedømt i hemofilia B mus. Vektorer med capsidene av AAV1, AAV2, AAV5, AAV7 eller AAV8 ble konstruert for å avlevere AAV2 5' ITR- lever-spesifikk promoter [LSP] - canine FIX - "woodchuck" hepatitt postregulatorisk element (WPRE) - AAV2 3' ITR. Vektorene ble konstruert som beskrevet hos Wang et al, 2000 " Molecular Therapy" 2: 154-158 ved bruk av de egnede capsider. Functional canine factor IX (FIX) expression was assessed in hemophilia B mice. Vectors with the capsids of AAV1, AAV2, AAV5, AAV7 or AAV8 were constructed to deliver AAV2 5' ITR- liver-specific promoter [LSP] - canine FIX - "woodchuck" hepatitis post-regulatory element (WPRE) - AAV2 3' ITR. The vectors were constructed as described in Wang et al, 2000 "Molecular Therapy" 2: 154-158 using the appropriate capsids.

Knock-out mus ble generert som beskrevet hos Wang et al, 1997 " Proe. Nati. Acad. Sei. USA" 94: 11563-11566. Denne modell etterlignet nært fenotypene av hemofili B hos mennesker. Knock-out mice were generated as described in Wang et al, 1997 "Proe. Nati. Acad. Sei. USA" 94: 11563-11566. This model closely mimicked the phenotypes of hemophilia B in humans.

Vektorer av forskjellige serotyper (AAV1, AAV2, AAV5, AAV7 og AAV8) ble avle-vert som en enkelt intraportal injeksjon i leveren til voksne hemofiliske C57B1/6 mus i en dose på lxlO<11>GC/mus for de fem forskjellige serotyper og en gruppe fikk en AAV8 vektor ved en lavere dose, lxlO<10>GC/mus. Kontrollgruppen ble injisert med lxlO11GC av AAV2/8 TBG LacZ3. Hver gruppe inneholdt 5-10 hann- og hunnmus. Musene ble tappet hver annen uke etter vektoradministrering. Vectors of different serotypes (AAV1, AAV2, AAV5, AAV7 and AAV8) were delivered as a single intraportal injection into the liver of adult hemophilic C57B1/6 mice at a dose of lx10<11>GC/mouse for the five different serotypes and one group received an AAV8 vector at a lower dose, lx10<10>GC/mouse. The control group was injected with lx1011GC of AAV2/8 TBG LacZ3. Each group contained 5-10 male and female mice. The mice were sacrificed every two weeks after vector administration.

1. ELISA1. ELISA

Canine FIX konsentrasjonen i museplasma ble bestemt ved en ELISA analyse spesifikk for canine faktor JX, gjennomført i det vesentlige som beskrevet av Axelrod et al, 1990 " Proe. Nati. Acad. Sei. USA", 87:5173-5177 med modifikasjoner. Saue anticaninefaktor IX (Enzyme Research Laboratories) ble benyttet som primærantistoff og kanin anti-canine faktor JX (Enzyme Research Laboratories) ble benyttet som sekundært antistoff. Med start to uker etter injeksjon ble økede plasmanivåer av cFJX bestemt for alle testvektorer. De økede nivåer ble holdt ved terapeutiske nivåer gjennom hele forsøkets lengde, det vil si til 12 uker. Terapeutiske nivåer anses å være 5 % av normale nivåer, det vil si rundt 250 ng/ml. Canine FIX concentration in mouse plasma was determined by an ELISA assay specific for canine factor JX, performed essentially as described by Axelrod et al, 1990 "Proe. Nati. Acad. Sei. USA", 87:5173-5177 with modifications. Sheep anti-canine factor IX (Enzyme Research Laboratories) was used as primary antibody and rabbit anti-canine factor JX (Enzyme Research Laboratories) was used as secondary antibody. Starting two weeks after injection, increased plasma levels of cFJX were determined for all test vectors. The increased levels were maintained at therapeutic levels throughout the length of the trial, ie up to 12 weeks. Therapeutic levels are considered to be 5% of normal levels, i.e. around 250 ng/ml.

De høyeste nivåer av ekspresjon ble observert for AAV2/8- (ved 10<11>) og AAV2/7 konstruktene som opprettholdt superfysiologjske nivåer av cFJX (ti ganger høyere enn normalnivået). Ekspresjonsnivåene for AAV2/8 (IO<11>) var omtrent 10 ganger høyere enn den dose som ble observert for AAV2/2 og AAV2/8 (10<10>). De laveste ekspresjons-nivåer ble observert for AAV2/5 selv om dette fremdeles var over det terapeutiske området. The highest levels of expression were observed for the AAV2/8 (at 10<11>) and AAV2/7 constructs that maintained superphysiological levels of cFJX (ten times higher than the normal level). The expression levels for AAV2/8 (IO<11>) were approximately 10-fold higher than the dose observed for AAV2/2 and AAV2/8 (10<10>). The lowest expression levels were observed for AAV2/5 although this was still above the therapeutic range.

2. In vitro aktivert partialtromboplastintid ( aPTT) analyse2. In vitro activated partial thromboplastin time (aPTT) analysis

Funksjonell faktor IV aktivitet i plasma hos FDC knock-out mus ble bestemt ved en in vitro aktivert partialtromboplastintid (aPTT) analyse. Museblodprøver ble samlet fra den retroorbitale pleksus i 1/10 volum citratbuffer. aPPT analysen ble gjennomført som beskrevet av Wang et al, 1977 i " Proe. Nati. Acad. Sei. USA " 94:11563-11566. Functional factor IV activity in plasma of FDC knock-out mice was determined by an in vitro activated partial thromboplastin time (aPTT) assay. Mouse blood samples were collected from the retroorbital plexus in 1/10 volume citrate buffer. The aPPT assay was performed as described by Wang et al, 1977 in "Proe. Nati. Acad. Sei. USA" 94:11563-11566.

Klumpingstidene ved aPTT på plasmaprøver for alle vektorinjiserte mus lå innen det normale området (cirka 60 sekunder), målt to uker etter injeksjon, og opprettholdt klumpingstider i det normale eller kortere enn normale området gjennom studieperioden (12 uker). Clotting times by aPTT on plasma samples for all vector-injected mice were within the normal range (approximately 60 seconds), measured two weeks after injection, and maintained clotting times in the normal or shorter than normal range throughout the study period (12 weeks).

De laveste klumpingstider som ble opprettholdt ble observert i dyrene som fikk AAV2/8 (10<11>) og AAV2/7. Etter 12 uker induserte AAV2/2 også klumpingstider tilsvarende de for AAV2/8 og AAV2/7. Imidlertid ble de laveste klumpingstider ikke observert for AAV2/2 inntil uke 12 mens reduserte klumpingstider (i området 25 - 40 sekunder) ble observert for AAV2/8 og AAV2/7 med begynnelse i uke to. The lowest maintained clotting times were observed in the animals receiving AAV2/8 (10<11>) and AAV2/7. After 12 weeks, AAV2/2 also induced clumping times similar to those of AAV2/8 and AAV2/7. However, the lowest clumping times were not observed for AAV2/2 until week 12, while reduced clumping times (in the range of 25 - 40 seconds) were observed for AAV2/8 and AAV2/7 starting at week two.

Immunohistokjemifarving av levervevene høstet fra noen av de behandlede mus er for tiden under gjennomføring. Cirka 70-80 % av hepatocytene er farvet positive for canine FDC i mus injisert med AAV2/8.cFDC vektor. Immunohistochemistry staining of the liver tissues harvested from some of the treated mice is currently in progress. Approximately 70-80% of the hepatocytes are stained positive for canine FDC in mice injected with AAV2/8.cFDC vector.

B. Hemofili B hunderB. Hemophilia B dogs

Hunder som har en punktmutasjon i det katalytiske domenet av F.DC genet som, basert på modellstudier, synes å gjøre proteinet ustabilt, lider av hemofili B (Evans et al, 1989 i " Proe. Nati. Acad. Sei. "USA, 86:10095-10099). En koloni av slike hunder er holdt i mer enn to tiår ved University of North Carolina, Chapel Hill. De homeostatiske parametre for disse hunder er godt beskrevet og inkluderer fraværet av plasma F.DC antigen, fullblod klumpingstider på over 60 minutter mens normale hunder er 6-8 minutter, og forlenget aktivert partialtromboplastintid på 50-80 sekunder mens normale hunder har 13-28 sekunder. Disse hunder erfarer rekurrent spontanhemoragi. Karakteristisk ble signifikante blødningsepisoder med hell ordnet ved enkel intravenøs infusjon av 10 ml/kg normal canine plasma; leilighetsvis krever gjentatte infusjoner for å kontrollere blødningen. Dogs that have a point mutation in the catalytic domain of the F.DC gene that, based on model studies, appears to make the protein unstable, suffer from hemophilia B (Evans et al, 1989 in "Proe. Nati. Acad. Sei. "USA, 86 :10095-10099). A colony of such dogs has been kept for more than two decades at the University of North Carolina, Chapel Hill. The homeostatic parameters for these dogs are well described and include the absence of plasma F.DC antigen, whole blood clotting times of over 60 minutes while normal dogs are 6-8 minutes, and prolonged activated partial thromboplastin time of 50-80 seconds while normal dogs have 13-28 seconds. These dogs experience recurrent spontaneous haemorrhage. Characteristically, significant bleeding episodes were successfully managed by single intravenous infusion of 10 ml/kg normal canine plasma; occasionally requiring repeated infusions to control bleeding.

Fire hunder injiseres intraportalt med AAV.cFIX i henhold til planen nedenfor. En førte hund mottar en enkelt injeksjon med AAV2/2.cFIX i en dose på 3,7xlO<n>genomkopier (GC)/kg. En andre hund mottar en første injeksjon på AAV2/2.cFIX (2,8xlO<n>GC/kg) fulgt av en andre injeksjon med AAV2/7.cFIX (2,3xl0<13>GC/kg) på dag 1180. En tredje hund mottar en enkelt injeksjon med AAV2/2.cFIX i en dose på 4,6xl0<12>GC/kg. Den fjerde hund mottar en injeksjon med AAV2/2.cFIX (2,8x10<12>GC/kg) og en injeksjon på dag 995 med AAV2/7.cFK (5xl012GC/kg). Four dogs are injected intraportally with AAV.cFIX according to the schedule below. A lead dog receives a single injection of AAV2/2.cFIX at a dose of 3.7x10<n>genome copies (GC)/kg. A second dog receives a first injection of AAV2/2.cFIX (2.8xl0<n>GC/kg) followed by a second injection of AAV2/7.cFIX (2.3xl0<13>GC/kg) on day 1180. A third dog receives a single injection of AAV2/2.cFIX at a dose of 4.6xl0<12>GC/kg. The fourth dog receives an injection with AAV2/2.cFIX (2.8x10<12>GC/kg) and an injection on day 995 with AAV2/7.cFK (5x1012GC/kg).

Abdomen av hemofilihunder åpnes aseptisk og kirurgisk under generell anestesi og en enkelt infusjon av vektor administreres inn i portalvenen. Dyrene beskyttes mot hemo-ragj i den perioperative periode ved intravenøs administrering av normal canine plasma. Hundene sederes, intuberes for å indusere generell anestesi og abdomen barberes og prepareres. Etter at abdomen er åpnet flyttes milten til operasjonsfeltet. Miltvenen loka-liseres og en sutur plasseres løst proksimalt til et lite, distalt innsnitt i venen. En nål inn-føres hurtig i venen og deretter blir suturen løsnet og en 5 F kanyle anbragt til en intra-venøs lokasjon nær portalvenen og ført til en intravenøs lokasjon nær portalvenebifur-kasjonen. Etter at hemostase er sikret og kateterballongen blåst opp blir cirka 5,0 ml vektor fortynnet i PBS infusert i portalvenen i løpet av et intervall på 5 minutter. Vek-torinfusjonen følges av en 5,0 ml infusjon av saltoppløsning. Ballongen blir så avlastet, callula fjernet og den venøse hemostase sikret. Milten blir så bragt tilbake, blødende kar kauterisert og operasjonssåret lukket. Dyret ekstuberes og har tålt den kirurgiske prose-dyre godt. Blodprøvene analyseres som beskrevet [Wang et al, 2000 i " Molecular Therapy" 2: 154-158]. The abdomen of hemophiliac dogs is opened aseptically and surgically under general anesthesia and a single infusion of vector is administered into the portal vein. The animals are protected against haemorrhage in the perioperative period by intravenous administration of normal canine plasma. The dogs are sedated, intubated to induce general anesthesia and the abdomen is shaved and prepared. After the abdomen is opened, the spleen is moved to the operating field. The splenic vein is localized and a suture is placed loosely proximal to a small, distal incision in the vein. A needle is quickly inserted into the vein and then the suture is loosened and a 5 F cannula is placed into an intravenous location near the portal vein and advanced to an intravenous location near the portal vein bifurcation. After hemostasis is secured and the catheter balloon inflated, approximately 5.0 ml of vector diluted in PBS is infused into the portal vein over an interval of 5 minutes. The vector infusion is followed by a 5.0 ml saline infusion. The balloon is then deflated, the callula removed and the venous hemostasis ensured. The spleen is then brought back, bleeding vessels cauterized and the surgical wound closed. The animal is extubated and has tolerated the surgical procedure well. The blood samples are analyzed as described [Wang et al, 2000 in "Molecular Therapy" 2: 154-158].

Resultater som viser korreksjon eller partialkorreksjon er antisipert for AAV2/7.Results showing correction or partial correction are anticipated for AAV2/7.

Alle publikasjoner som er nevnt i beskrivelsen skal anses som en del av denne. Mens oppfinnelsen er beskrevet under henvisning til spesielt foretrukne utførelsesformer skal det være klart at modifikasjoner kan foretas uten å gå utenfor oppfinnelsens ramme. Slike modifikasjoner er ment å ligge innenfor kravenes ramme. All publications mentioned in the description must be considered part of it. While the invention is described with reference to particularly preferred embodiments, it should be clear that modifications can be made without going outside the scope of the invention. Such modifications are intended to be within the framework of the requirements.

Claims (13)

1. Adenoassosiert virus (AAV), karakterisert ved at det omfatter et AAV capsid som har en aminosyresekvens AAVrh.10, aminosyrer 1 til 738 fra SEQ ID NO:81 eller en sekvens som er minst 95% identisk dermed og et minigen som har AAV inverterte terminale repetisjoner (ITRer) og et heterologt gen operativt koblet til regulatoriske sekvenser som dirigerer dets ekspresjon i en vertscelle.1. Adeno-associated virus (AAV), characterized in that it comprises an AAV capsid that has an amino acid sequence AAVrh.10, amino acids 1 to 738 from SEQ ID NO:81 or a sequence that is at least 95% identical thereto and a minigene that has AAV inverted terminal repeats (ITRs) and a heterologous gene operably linked to regulatory sequences that direct its expression in a host cell. 2. Adenoassosiert virus (AAV), karakterisert ved at det omfatter et AAV capsid som omfatter minst AAVrh.10 vp3 som har aminosyresekvensen 203 til 738 fra SEQ ID NO:81 eller en sekvens som er minst 95% identisk dertil og et minigen som har AAV inverterte terminale repetisjoner (ITRer) og et heterologt gen operativt koblet til regulatoriske sekvenser som dirigerer dets ekspresjon i en vertscelle.2. Adeno-associated virus (AAV), characterized in that it comprises an AAV capsid comprising at least AAVrh.10 vp3 which has the amino acid sequence 203 to 738 from SEQ ID NO:81 or a sequence which is at least 95% identical thereto and a minigene which has AAV inverted terminal repeats (ITRs) and a heterologous gene operably linked to regulatory sequences that direct its expression in a host cell. 3. Adenoassosiert virus (AAV), karakterisert ved at det omfatter et AAV capsid som omfatter minst AAVrh.10 vp2 som har aminosyresekvensen 138 til 738 fra SEQ ID NO:81 eller en sekvens som er minst 95% identisk dermed og et minigen som har AAV inverterte terminale repetisjoner (ITRer) og et heterologt gen operativt koblet til regulatoriske sekvenser som dirigerer dets ekspresjon i en vertscelle.3. Adeno-associated virus (AAV), characterized in that it comprises an AAV capsid comprising at least AAVrh.10 vp2 which has the amino acid sequence 138 to 738 from SEQ ID NO:81 or a sequence which is at least 95% identical thereto and a minigene which has AAV inverted terminal repeats (ITRs) and a heterologous gene operably linked to regulatory sequences that direct its expression in a host cell. 4. AAV i følge et hvilket som helst av kravene 1-3, karakterisert v e d at ITRene er fra AAV2.4. AAV according to any of the requirements 1-3, characterized by the fact that the ITRs are from AAV2. 5. Isolert capsidprotein, karakterisert ved det omfatter et AAVrh. 10 protein valgt fra: Vpl capsidprotein, aminosyrer 1 til 738 fra SEQ ID NO:81; og vp2 capsidprotein, aminosyrer 138 til 738 fra SEQ ID NO:81; og vp3 capsidprotein, aminosyrer 203 til 738 fra SEQ ID NO:81.5. Isolated capsid protein, characterized in that it comprises an AAVrh. 10 protein chosen from: Vpl capsid protein, amino acids 1 to 738 of SEQ ID NO:81; and vp2 capsid protein, amino acids 138 to 738 of SEQ ID NO:81; and vp3 capsid protein, amino acids 203 to 738 of SEQ ID NO:81. 6. Isolert eller syntetisk nukleinsyremolekyl karakterisert ved at det koder for et protein i følge krav 5.6. Isolated or synthetic nucleic acid molecule characterized in that it codes for a protein according to claim 5. 7. Isolert eller syntetisk nukleinsyremolekyl som koder for et fragment fra et adeno-assosiert virus rh. 10 capsidprotein, karakterisert ved at nevnte nukleinsyresekvens er valgt fra gruppen bestående av: vpl, nukleotidene 845 til 3061 fra SEQ ID NO:59; vp2, nukleotidene 1256 til 3061 fra SEQ ID NO:59; og vp3, nukleotidene 1454 til 3061 fra SEQ ID NO:59.7. Isolated or synthetic nucleic acid molecule encoding a fragment from an adeno-associated virus rh. 10 capsid protein, characterized in that said nucleic acid sequence is selected from the group consisting of: vpl, nucleotides 845 to 3061 of SEQ ID NO:59; vp2, nucleotides 1256 to 3061 of SEQ ID NO:59; and vp3, nucleotides 1454 to 3061 of SEQ ID NO:59. 8. Molekyl i følge et hvilket som helst av kravene 6 eller 7, karakterisert ved at nevnte molekyl er et plasmid.8. Molecule according to any one of claims 6 or 7, characterized in that said molecule is a plasmid. 9. Molekyl i følge et hvilket som helse av kravene 6 eller 7, karakterisert ved at nevnte molekyl ytterligere omfatter et funksjonelt AAV rep gen.9. Molecule according to a health of claims 6 or 7, characterized in that said molecule further comprises a functional AAV rep gene. 10. Fremgangsmåte for å fremstille et rekombinant adenoassosiert virus (AAV), karakterisert ved at den omfatter et AAVrh.10 serotype capsid som omfatter trinnene å dyrke en vertcelle som inneholder: a) et molekyl i følge kravene 6 eller 7 som koder for et adenoassosiert viruscapsid; b) et funksjonelt rep gen; c) et minigen som omfatter AAV inverterte terminale repetisjoner (ITRer) og et transgen; og d) tilstrekkelige hjelperfunksjoner som tillater pakking av minigenet inn i AAV capsidproteinet.10. Method for producing a recombinant adeno-associated virus (AAV), characterized in that it comprises an AAVrh.10 serotype capsid comprising the steps of culturing a host cell containing: a) a molecule according to claims 6 or 7 which codes for an adeno-associated virus capsid; b) a functional rep gene; c) a minigene comprising AAV inverted terminal repeats (ITRs) and a transgene; and d) sufficient helper functions to allow packaging of the minigene into the AAV capsid protein. 11. In vitro vertcelle, karakterisert ved at den er transfektert med et adenoassosiert virus i følge et hvilket som helst av kravene 1 til 4 eller et molekyl i følge et hvilket som helst av kravene 6 til 9.11. In vitro host cell, characterized in that it is transfected with an adeno-associated virus according to any one of claims 1 to 4 or a molecule according to any one of claims 6 to 9. 12. Sammensetning, karakterisert ved at den omfatter AAV i følge krav 1 eller 4, og en fysiologisk kompatibel bærer.12. Composition, characterized in that it comprises AAV according to claim 1 or 4, and a physiologically compatible carrier. 13. Sammensetning karakterisert ved at den omfatter et molekyl i følge et hvilket som helst av kravene 6 til 9, og en fysiologisk kompatibel bærer.13. Composition characterized in that it comprises a molecule according to any one of claims 6 to 9, and a physiologically compatible carrier.
NO20150196A 2001-11-13 2015-02-10 Adeno-associated virus (AAV), process for its preparation, isolated capsid protein, isolated or synthetic nucleic acid molecule, molecule, host cell and composition. NO338362B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US35060701P 2001-11-13 2001-11-13
US34111701P 2001-12-17 2001-12-17
US37706602P 2002-05-01 2002-05-01
US38667502P 2002-06-05 2002-06-05
PCT/US2002/033629 WO2003042397A2 (en) 2001-11-13 2002-11-12 A method of detecting and/or identifying adeno-associated virus (aav) sequences and isolating novel sequences identified thereby

Publications (2)

Publication Number Publication Date
NO20150196L true NO20150196L (en) 2004-07-14
NO338362B1 NO338362B1 (en) 2016-08-15

Family

ID=27502639

Family Applications (4)

Application Number Title Priority Date Filing Date
NO20042183A NO334379B1 (en) 2001-11-13 2004-05-26 Method for detecting adeno-associated virus (AAV) in a sample, as well as kit for detecting an unknown AAV in a sample
NO20131359A NO336468B1 (en) 2001-11-13 2013-10-14 Adeno-associated virus (AAV8) capsid protein, host cell and vector containing it as well as a method for preparing AAV and a composition
NO20140988A NO336801B1 (en) 2001-11-13 2014-08-14 Adeno-associated virus (AAV) capsid protein, isolated or synthetic nucleic acid molecule, host cell, and a process for preparing AAV and a composition
NO20150196A NO338362B1 (en) 2001-11-13 2015-02-10 Adeno-associated virus (AAV), process for its preparation, isolated capsid protein, isolated or synthetic nucleic acid molecule, molecule, host cell and composition.

Family Applications Before (3)

Application Number Title Priority Date Filing Date
NO20042183A NO334379B1 (en) 2001-11-13 2004-05-26 Method for detecting adeno-associated virus (AAV) in a sample, as well as kit for detecting an unknown AAV in a sample
NO20131359A NO336468B1 (en) 2001-11-13 2013-10-14 Adeno-associated virus (AAV8) capsid protein, host cell and vector containing it as well as a method for preparing AAV and a composition
NO20140988A NO336801B1 (en) 2001-11-13 2014-08-14 Adeno-associated virus (AAV) capsid protein, isolated or synthetic nucleic acid molecule, host cell, and a process for preparing AAV and a composition

Country Status (23)

Country Link
US (15) US20030138772A1 (en)
EP (4) EP1310571B1 (en)
JP (6) JP4677187B2 (en)
KR (2) KR101014207B1 (en)
CN (6) CN105671005B (en)
AT (2) ATE520707T1 (en)
AU (1) AU2002361573B2 (en)
BR (3) BR122016004944B8 (en)
CA (8) CA2915124C (en)
DE (1) DE60209193T2 (en)
DK (1) DK1310571T3 (en)
ES (3) ES2455126T3 (en)
HK (2) HK1056198A1 (en)
HU (2) HU229379B1 (en)
IL (11) IL270065B2 (en)
MX (3) MX346493B (en)
NO (4) NO334379B1 (en)
NZ (7) NZ532635A (en)
PH (2) PH12014501487A1 (en)
PL (4) PL220644B1 (en)
SG (5) SG168422A1 (en)
WO (1) WO2003042397A2 (en)
ZA (1) ZA200403360B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308958B2 (en) 2001-11-13 2019-06-04 The Trustees Of The University Of Pennsylvania Method of detecting and/or identifying adeno-associated virus (AAV) sequences and isolating novel sequences identified thereby

Families Citing this family (550)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011244A2 (en) 1996-09-11 1998-03-19 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Aav4 vector and uses thereof
CA2745131C (en) 1998-05-28 2016-08-09 John A. Chiorini Aav5 vector and uses thereof
US7718354B2 (en) 2001-03-02 2010-05-18 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US20040121309A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in blood, bodily fluids, and bodily tissues
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
PT2359869T (en) * 2001-12-17 2019-04-16 Univ Pennsylvania Adeno-associated virus (aav) serotype 8 sequences, vectors containing same and uses therefor
JP4769417B2 (en) * 2001-12-17 2011-09-07 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Adeno-associated virus (AAV) serotype 9 sequences, vectors containing the same and uses thereof
WO2003093460A1 (en) * 2002-04-29 2003-11-13 The Trustees Of The University Of Pennsylvania Method for direct rescue and amplification of integrated viruses from cellular dna of tissues
US7419817B2 (en) 2002-05-17 2008-09-02 The United States Of America As Represented By The Secretary Department Of Health And Human Services, Nih. Scalable purification of AAV2, AAV4 or AAV5 using ion-exchange chromatography
AU2003265855A1 (en) * 2002-08-28 2004-03-19 University Of Florida Modified aav
JP2006516193A (en) 2002-12-06 2006-06-29 アイシス・ファーマシューティカルス・インコーポレーテッド Rapid identification of pathogens in humans and animals
US8046171B2 (en) 2003-04-18 2011-10-25 Ibis Biosciences, Inc. Methods and apparatus for genetic evaluation
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
WO2005017101A2 (en) 2003-05-19 2005-02-24 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH & HUMAN SERVICES, NATIONAL INSTITUTES OF HEALTH Avian adenoassociated virus (aaav) and uses thereof
PT3235827T (en) * 2003-06-19 2021-04-09 Genzyme Corp Aav virons with decreased immunoreactivity and uses therefor
US9441244B2 (en) 2003-06-30 2016-09-13 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
US9233131B2 (en) * 2003-06-30 2016-01-12 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
NZ545656A (en) * 2003-09-01 2009-02-28 Amc Amsterdam AAV vectors for in vivo gene therapy of rheumatoid arthritis
AU2010201278B2 (en) * 2003-09-01 2012-11-15 Academisch Medisch Centrum AAV vectors for in vivo gene therapy of rheumatoid arthritis
US20120122099A1 (en) 2003-09-11 2012-05-17 Rangarajan Sampath Compositions for use in identification of bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
CN102199626B (en) * 2003-09-30 2015-06-24 宾夕法尼亚大学托管会 Adeno-associated virus (AAV) clades, sequences, vectors containing same, and uses therefor
AU2011250849B2 (en) * 2003-09-30 2013-09-12 The Trustees Of The University Of Pennsylvania Adeno-associated virus (AAV) clades, sequences, vectors containing same, and uses therefor
US8137960B2 (en) 2003-12-04 2012-03-20 The United States Of America As Represented By The Department Of Health And Human Services Bovine adeno-associated viral (BAAV) vector and uses thereof
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8119336B2 (en) 2004-03-03 2012-02-21 Ibis Biosciences, Inc. Compositions for use in identification of alphaviruses
ES2361000T3 (en) * 2004-04-28 2011-06-13 The Trustees Of The University Of Pennsylvania SEQUENTIAL SUPPLY OF IMMUNOGENIC MOLECULES THROUGH ADMINISTRATIONS OF AN ADENOVIRUS AND AN ADENO-ASSOCIATED VIRUS.
EP1742657B1 (en) 2004-04-28 2013-11-06 The Trustees of The University of Pennsylvania Immunization regimen with e4-deleted adenovirus prime and e1-deleted adenovirus boost
CA2567839C (en) 2004-05-24 2011-06-28 Isis Pharmaceuticals, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US20050266411A1 (en) 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
EP1771571A2 (en) * 2004-07-30 2007-04-11 Targeted Genetics Corporation Recombinant aav based vaccine methods
US7309589B2 (en) * 2004-08-20 2007-12-18 Vironix Llc Sensitive detection of bacteria by improved nested polymerase chain reaction targeting the 16S ribosomal RNA gene and identification of bacterial species by amplicon sequencing
EA200700807A1 (en) * 2004-10-05 2007-08-31 Мерц Фарма Гмбх Унд Ко. Кгаа NEW CYCLIC AND ACYCLIC PROPENONS FOR TREATING CNS DISEASES
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
EP1869180B1 (en) 2005-03-03 2013-02-20 Ibis Biosciences, Inc. Compositions for use in identification of polyoma viruses
ES2525067T3 (en) 2005-04-07 2014-12-17 The Trustees Of The University Of Pennsylvania Method of increasing the function of an AAV vector
US8283151B2 (en) 2005-04-29 2012-10-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Isolation, cloning and characterization of new adeno-associated virus (AAV) serotypes
WO2007014045A2 (en) 2005-07-21 2007-02-01 Isis Pharmaceuticals, Inc. Methods for rapid identification and quantitation of nucleic acid variants
WO2007100397A2 (en) * 2005-11-28 2007-09-07 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious contaminant viruses
US7588772B2 (en) 2006-03-30 2009-09-15 Board Of Trustees Of The Leland Stamford Junior University AAV capsid library and AAV capsid proteins
US9198984B2 (en) 2006-04-28 2015-12-01 The Trustees Of The University Of Pennsylvania Scalable production method for AAV
KR20090035711A (en) * 2006-07-25 2009-04-10 셀라돈 코포레이션 Extended antegrade epicardial coronary infusion of adeno-associated viral vectors for gene therapy
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
WO2008104002A2 (en) 2007-02-23 2008-08-28 Ibis Biosciences, Inc. Methods for rapid forensic dna analysis
US9725485B2 (en) * 2012-05-15 2017-08-08 University Of Florida Research Foundation, Inc. AAV vectors with high transduction efficiency and uses thereof for gene therapy
ES2714007T3 (en) 2007-04-09 2019-05-24 Univ Florida Compositions of rAAV vectors that have tyrosine modified capsid proteins and methods for their use
US9611302B2 (en) 2007-04-09 2017-04-04 University Of Florida Research Foundation, Inc. High-transduction-efficiency RAAV vectors, compositions, and methods of use
WO2008151023A2 (en) 2007-06-01 2008-12-11 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
EP2058401A1 (en) * 2007-10-05 2009-05-13 Genethon Widespread gene delivery to motor neurons using peripheral injection of AAV vectors
MX2010012592A (en) 2008-05-20 2011-05-05 Eos Neuroscience Inc Vectors for delivery of light-sensitive proteins and methods of use.
US9217155B2 (en) 2008-05-28 2015-12-22 University Of Massachusetts Isolation of novel AAV'S and uses thereof
WO2010033599A2 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
WO2010033625A1 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
EP2347254A2 (en) 2008-09-16 2011-07-27 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
DK2425000T3 (en) 2009-04-30 2019-05-13 Univ Pennsylvania COMPOSITIONS RELATED TO LEADING AIRCRAFT COOLS INCLUDING ADENO ASSOCIATED VIRUSES
WO2010138263A2 (en) 2009-05-28 2010-12-02 University Of Massachusetts Novel aav 's and uses thereof
WO2010143761A1 (en) * 2009-06-12 2010-12-16 (주)바이오니아 Method for quickly detecting infectious microorganisms in unknown sample
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US20120244127A1 (en) 2009-10-01 2012-09-27 The Trustees Of The University Of Pennsylvania AAV Vectors Expressing SEC10 for Treating Kidney Damage
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification
AU2011238708B2 (en) 2010-03-29 2016-02-11 The Trustees Of The University Of Pennsylvania Pharmacologically Induced Transgene Ablation system
US9315825B2 (en) 2010-03-29 2016-04-19 The Trustees Of The University Of Pennsylvania Pharmacologically induced transgene ablation system
JP2013533847A (en) 2010-04-23 2013-08-29 ユニバーシティ オブ マサチューセッツ AAV-based treatment of cholesterol-related disorders
CA3066596A1 (en) 2010-04-23 2011-10-27 University Of Massachusetts Cns targeting aav vectors and methods of use thereof
US9546369B2 (en) 2010-04-23 2017-01-17 University Of Massachusetts Multicistronic expression constructs
WO2012007458A1 (en) 2010-07-12 2012-01-19 Universidad Autónoma De Barcelona Gene therapy composition for use in diabetes treatment
US8663624B2 (en) 2010-10-06 2014-03-04 The Regents Of The University Of California Adeno-associated virus virions with variant capsid and methods of use thereof
WO2012145572A1 (en) 2011-04-20 2012-10-26 The Trustees Of The University Of Pennsylvania Regimens and compositions for aav-mediated passive immunization of airborne pathogens
EP3318634A1 (en) 2011-04-21 2018-05-09 University of Massachusetts Raav-based compositions and methods for treating diseases involving dominant-negative or gain of function mutations
LT3254703T (en) * 2011-04-22 2020-05-25 The Regents Of The University Of California Adeno-associated virus virions with variant capsid and methods of use thereof
EP3147295B2 (en) * 2011-08-24 2023-11-22 The Board of Trustees of the Leland Stanford Junior University New avv capsid proteins for nucleic acid transfer
US20130136729A1 (en) * 2011-11-11 2013-05-30 University of Virginia Patent Foundation, d/b/a University of Virginia Licensing & Ventures Group Compositions and methods for targeting and treating diseases and injuries using adeno-associated virus vectors
JP6373763B2 (en) * 2012-02-17 2018-08-22 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィアThe Children’S Hospital Of Philadelphia AAV vector components and methods for gene transfer into cells, organs and tissues
WO2013130393A1 (en) * 2012-02-28 2013-09-06 Cornell University Aav-directed persistent expression of an anti-nicotine antibody gene for smoking cessation
WO2013154744A1 (en) * 2012-04-13 2013-10-17 Cornell University Development of a highly efficient second generation nicotine-conjugate vaccine to treat nicotine addiction
US10294281B2 (en) 2012-05-15 2019-05-21 University Of Florida Research Foundation, Incorporated High-transduction-efficiency rAAV vectors, compositions, and methods of use
EP2692868A1 (en) 2012-08-02 2014-02-05 Universitat Autònoma De Barcelona Adeno-associated viral (AAV) vectors useful for transducing adipose tissue
EP2900686B1 (en) 2012-09-28 2020-06-10 The University of North Carolina At Chapel Hill Aav vectors targeted to oligodendrocytes
DK2954051T3 (en) 2013-02-08 2019-07-08 Univ Pennsylvania MODIFIED KAPSID FOR TRANSFER FOR TREATMENT OF THE NETWORK
LT3889173T (en) 2013-02-15 2023-10-10 Bioverativ Therapeutics Inc. Optimized factor viii gene
US8957044B2 (en) 2013-03-01 2015-02-17 Wake Forest University Health Sciences Systemic gene replacement therapy for treatment of X-linked myotubular myopathy (XLMTM)
EP3747998B1 (en) 2013-03-15 2024-07-24 The Trustees of the University of Pennsylvania Compositions for treating mpsi
US9719106B2 (en) 2013-04-29 2017-08-01 The Trustees Of The University Of Pennsylvania Tissue preferential codon modified expression cassettes, vectors containing same, and uses thereof
CN105247044B (en) 2013-05-31 2021-05-07 加利福尼亚大学董事会 Adeno-associated virus variants and methods of use thereof
SG10201809075XA (en) 2013-07-22 2018-11-29 Childrens Hospital Philadelphia Variant aav and compositions, methods and uses for gene transfer to cells, organs and tissues
WO2015117010A2 (en) * 2014-01-31 2015-08-06 Temple University Of The Commonwealth System Of Higher Education Bag3 as a target for therapy of heart failure
GB201403684D0 (en) 2014-03-03 2014-04-16 King S College London Vector
US10072251B2 (en) 2014-02-19 2018-09-11 University Of Massachusetts Recombinant AAVS having useful transcytosis properties
KR102390075B1 (en) * 2014-03-09 2022-04-26 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 Compositions useful in treatment of ornithine transcarbamylase (otc) deficiency
AU2015231439B2 (en) 2014-03-17 2019-11-14 Adverum Biotechnologies, Inc. Compositions and methods for enhanced gene expression in cone cells
EP3119797B1 (en) 2014-03-18 2020-12-23 University of Massachusetts Raav-based compositions and methods for treating amyotrophic lateral sclerosis
FI3628334T3 (en) 2014-03-21 2023-09-15 Genzyme Corp Gene therapy for retinitis pigmentosa
EP2933335A1 (en) 2014-04-18 2015-10-21 Genethon A method of treating peripheral neuropathies and motor neuron diseases
US10780182B2 (en) 2014-04-25 2020-09-22 The Trustees Of The University Of Pennsylvania Methods and compositions for treating metastatic breast cancer and other cancers in the brain
EP3134522B1 (en) 2014-04-25 2021-10-06 University of Massachusetts Recombinant aav vectors useful for reducing immunity against transgene products
US11555059B2 (en) 2014-04-25 2023-01-17 The Trustees Of The University Of Pennsylvania LDLR variants and their use in compositions for reducing cholesterol levels
MY186389A (en) 2014-05-13 2021-07-22 Univ Pennsylvania Compositions comprising aav expressing dual antibody constructs and uses thereof
WO2015187825A2 (en) 2014-06-03 2015-12-10 University Of Massachusetts Compositions and methods for modulating dysferlin expression
EP3151866B1 (en) 2014-06-09 2023-03-08 Voyager Therapeutics, Inc. Chimeric capsids
EP2960336A1 (en) 2014-06-27 2015-12-30 Genethon Efficient systemic treatment of dystrophic muscle pathologies
PT3164394T (en) 2014-07-03 2020-05-08 Univ Texas Gls1 inhibitors for treating disease
EP4012035B1 (en) 2014-09-16 2024-11-06 Genzyme Corporation Adeno-associated viral vectors for treating myocilin (myoc) glaucoma
CA2961523A1 (en) 2014-09-16 2016-03-24 Genzyme Corporation Adeno-associated viral vectors for treating myocilin (myoc) glaucoma
EP3200830B1 (en) 2014-10-03 2020-09-09 University of Massachusetts High efficiency library-identified aav vectors
US10370432B2 (en) 2014-10-03 2019-08-06 University Of Massachusetts Heterologous targeting peptide grafted AAVS
BR112017007737A2 (en) 2014-10-21 2018-01-30 Univ Massachusetts recombinant aav variants and uses thereof
CA2966620A1 (en) 2014-11-05 2016-05-12 Voyager Therapeutics, Inc. Aadc polynucleotides for the treatment of parkinson's disease
CA2967367C (en) 2014-11-14 2023-05-16 Voyager Therapeutics, Inc. Compositions and methods of treating amyotrophic lateral sclerosis (als)
MX2017006217A (en) 2014-11-14 2018-05-02 Voyager Therapeutics Inc Modulatory polynucleotides.
EP3230441A4 (en) 2014-12-12 2018-10-03 Voyager Therapeutics, Inc. Compositions and methods for the production of scaav
ES2900973T3 (en) 2015-01-07 2022-03-21 UNIV AUTòNOMA DE BARCELONA Single vector genetic construct comprising insulin and glucokinase genes
WO2016115503A1 (en) 2015-01-16 2016-07-21 Voyager Therapeutics, Inc. Central nervous system targeting polynucleotides
TWI745285B (en) 2015-01-20 2021-11-11 美商健臻公司 Analytical ultracentrifugation for characterization of recombinant viral particles
US20180030096A1 (en) * 2015-02-03 2018-02-01 University Of Florida Research Foundation, Inc. Recombinant aav1, aav5, and aav6 capsid mutants and uses thereof
WO2016130600A2 (en) 2015-02-09 2016-08-18 Duke University Compositions and methods for epigenome editing
PT3256594T (en) 2015-02-10 2022-01-18 Genzyme Corp Enhanced delivery of viral particles to the striatum and cortex
CN107438671B (en) 2015-02-10 2021-05-25 建新公司 Variant RNAi
US10584321B2 (en) 2015-02-13 2020-03-10 University Of Massachusetts Compositions and methods for transient delivery of nucleases
MY187898A (en) 2015-03-02 2021-10-27 Adverum Biotechnologies Inc Compositions and methods for intravitreal delivery of polynucleotides to retinal cones
AU2016229000B2 (en) 2015-03-10 2021-11-04 The Trustees Of Columbia University In The City Of New York Recombinant Glut1 adeno-associated viral vector constructs and related methods for restoring Glut1 expression
AU2016235163B2 (en) 2015-03-24 2022-03-24 The Regents Of The University Of California Adeno-associated virus variants and methods of use thereof
TWI707951B (en) 2015-04-08 2020-10-21 美商健臻公司 Production of oversized adeno-associated vectors
EP3285788A4 (en) 2015-04-23 2018-12-05 University of Massachusetts Modulation of aav vector transgene expression
CA3021949C (en) 2015-04-24 2023-10-17 University Of Massachusetts Modified aav constructs and uses thereof
JP6851319B2 (en) 2015-04-27 2021-03-31 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Dual AAV vector system for CRISPR / Cas9 mediated modification of human disease
GB201508026D0 (en) 2015-05-11 2015-06-24 Ucl Business Plc Capsid
EA201792500A1 (en) 2015-05-13 2018-04-30 Дзе Трастиз Оф Дзе Юниверсити Оф Пенсильвания AAV-MEDIATED EXPRESSION OF ANTIBODIES AGAINST FLU AND METHODS OF THEIR USE
CA2986021A1 (en) 2015-05-16 2016-11-24 Genzyme Corporation Gene editing of deep intronic mutations
PE20180675A1 (en) 2015-06-23 2018-04-19 Childrens Hospital Philadelphia MODIFIED FACTOR IX, AND COMPOSITIONS, METHODS AND USES FOR THE TRANSFER OF GENES TO CELLS, ORGANS AND TISSUES
EP3325018A4 (en) 2015-07-22 2019-04-24 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
JP6978407B2 (en) 2015-08-06 2021-12-08 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Its use in compositions for treating GLP-1 and metabolic disorders
KR102699944B1 (en) 2015-08-25 2024-09-13 듀크 유니버시티 Compositions and methods for improving specificity in genome engineering using RNA-guided endonucleases
US11117942B2 (en) 2015-08-31 2021-09-14 The Trustees Of The University Of Pennsylvania AAV-EPO for treating companion animals
US10988519B2 (en) 2015-09-24 2021-04-27 The Trustees Of The University Of Pennsylvania Composition and method for treating complement-mediated disease
WO2017058892A2 (en) * 2015-09-28 2017-04-06 The University Of North Carolina At Chapel Hill Methods and compositions for antibody-evading virus vectors
WO2017062750A1 (en) 2015-10-09 2017-04-13 The Trustees Of The University Of Pennsylvania Compositions and methods useful in treating stargardt's disease and other ocular disorders
EP4089175A1 (en) 2015-10-13 2022-11-16 Duke University Genome engineering with type i crispr systems in eukaryotic cells
WO2017070525A1 (en) 2015-10-22 2017-04-27 University Of Massachusetts Methods and compositions for treating metabolic imbalance in neurodegenerative disease
CA3002980A1 (en) 2015-10-22 2017-04-27 University Of Massachusetts Prostate-targeting adeno-associated virus serotype vectors
US20180230489A1 (en) 2015-10-28 2018-08-16 Voyager Therapeutics, Inc. Regulatable expression using adeno-associated virus (aav)
CN108779167A (en) 2015-10-28 2018-11-09 宾夕法尼亚州大学信托人 Intrathecal application adeno-associated virus vector is used for gene therapy
SG11201803098VA (en) 2015-10-30 2018-05-30 Nbe Therapeutics Ag Anti-ror1 antibodies
US10983110B2 (en) 2015-12-02 2021-04-20 Voyager Therapeutics, Inc. Assays for the detection of AAV neutralizing antibodies
FR3044926B1 (en) 2015-12-09 2020-01-31 Genethon EFFICIENT GENE THERAPY TOOLS FOR JUMPING DYSTROPHIN EXON 53
EP3387117B1 (en) 2015-12-11 2022-11-23 The Trustees Of The University Of Pennsylvania Scalable purification method for aav8
ES2918998T3 (en) 2015-12-11 2022-07-21 Univ Pennsylvania Scalable purification method for AAVrh10
EP3387138B1 (en) 2015-12-11 2022-01-26 The Trustees Of The University Of Pennsylvania Scalable purification method for aav9
WO2017100674A1 (en) 2015-12-11 2017-06-15 The Trustees Of The University Of Pennsylvania Scalable purification method for aav1
US10889832B2 (en) 2015-12-11 2021-01-12 The Trustees Of The University Of Pennsylvania Gene therapy for treating familial hypercholesterolemia
CN109069668B (en) 2015-12-14 2023-04-18 宾夕法尼亚州大学信托人 Gene therapy for eye diseases
CA3007330A1 (en) 2015-12-14 2017-06-22 The Trustees Of The University Of Pennsylvania Composition for treatment of crigler-najjar syndrome
RU2742612C2 (en) 2015-12-15 2021-02-09 Джензим Корпорейшн Adeno-associated viral vectors for treating mucolipidosis type ii
CA3011815A1 (en) 2016-01-20 2017-07-27 The Scripps Research Institute Ror1 antibody compositions and related methods
BR112018015659A2 (en) 2016-02-01 2018-12-26 Bioverativ Therapeutics Inc optimized factor viii genes
WO2017136536A1 (en) 2016-02-02 2017-08-10 University Of Massachusetts Method to enhance the efficiency of systemic aav gene delivery to the central nervous system
SG11201806270XA (en) 2016-02-03 2018-08-30 Univ Pennsylvania Gene therapy for treating mucopolysaccharidosis type i
EP3413928B1 (en) 2016-02-12 2022-04-20 University of Massachusetts Anti-angiogenic mirna therapeutics for inhibiting corneal neovascularization
US10729789B2 (en) * 2016-03-01 2020-08-04 University Of Virginia Patent Foundation Compositions and methods for adeno-associated virus mediated gene expression in myofibroblast-like cells
EP3440210A4 (en) 2016-04-05 2019-11-27 University of Massachusetts Compositions and methods for selective inhibition of grainyhead-like protein expression
WO2017180587A2 (en) 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Regulated biocircuit systems
CA3019427A1 (en) 2016-04-15 2017-10-19 The Trustees Of The University Of Pennsylvania Gene therapy for treating mucopolysaccharidosis type ii
IL298604A (en) * 2016-04-15 2023-01-01 Univ Pennsylvania Novel aav8 mutant capsids and compositions containing same
RU2762257C2 (en) 2016-04-15 2021-12-17 Зе Трастис Оф Зе Юниверсити Оф Пенсильвания Gene therapy for the treatment of hemophilia a
EP3442597A1 (en) 2016-04-15 2019-02-20 The Trustees Of The University Of Pennsylvania Gene therapy for treating hemophilia b
MA44873A (en) 2016-04-15 2019-03-13 Univ Pennsylvania COMPOSITION FOR THE TREATMENT OF MACULAR DEGENERATION RELATED TO EXSUDATIVE AGE
WO2017181105A1 (en) 2016-04-15 2017-10-19 University Of Massachusetts Methods and compositions for treating metabolic imbalance
WO2017184463A1 (en) 2016-04-17 2017-10-26 The Trustees Of The University Of Pennsylvania Compositions and methods useful for prophylaxis of organophosphates
US11299751B2 (en) 2016-04-29 2022-04-12 Voyager Therapeutics, Inc. Compositions for the treatment of disease
WO2017189959A1 (en) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions for the treatment of disease
GB201608046D0 (en) * 2016-05-09 2016-06-22 Cambridge Entpr Ltd And Syndey Children S Hospitals Network Randwick And Westmead Incorporating The Treatment of complement-mediated disorders
CN109476707B (en) 2016-05-13 2022-12-02 4D分子治疗有限公司 Adeno-associated virus variant capsids and methods of use thereof
CA3024448A1 (en) 2016-05-18 2017-11-23 Voyager Therapeutics, Inc. Modulatory polynucleotides
CA3024449A1 (en) 2016-05-18 2017-11-23 Voyager Therapeutics, Inc. Compositions and methods of treating huntington's disease
JP6819681B2 (en) 2016-06-08 2021-01-27 ソニー株式会社 Imaging control devices and methods, and vehicles
WO2017218852A1 (en) 2016-06-15 2017-12-21 University Of Massachusetts Recombinant adeno-associated viruses for delivering gene editing molecules to embryonic cells
KR20190096329A (en) 2016-07-05 2019-08-19 유니버시티 오브 매사추세츠 AAV2-mediated gene delivery of SFASL as a neuroprotective therapy in glaucoma
BR112019000171A2 (en) 2016-07-08 2019-10-01 Univ Pennsylvania methods and compositions for treating disorders and diseases involving rdh12
WO2018022511A1 (en) 2016-07-25 2018-02-01 The Trustees Of The University Of Pennsylvania Compositions comprising a lecithin cholesterol acyltransferase variant and uses thereof
CN109715650B (en) * 2016-07-26 2024-03-08 生物马林药物股份有限公司 Novel adeno-associated viral capsid proteins
CN114672516A (en) 2016-07-29 2022-06-28 加利福尼亚大学董事会 Adeno-associated virus virions with variant capsids and methods of use thereof
KR102425289B1 (en) 2016-08-15 2022-07-27 젠자임 코포레이션 AAV detection method
AU2017313917B2 (en) 2016-08-18 2023-12-21 The Regents Of The University Of California CRISPR-Cas genome engineering via a modular AAV delivery system
EP3831281A1 (en) 2016-08-30 2021-06-09 The Regents of The University of California Methods for biomedical targeting and delivery and devices and systems for practicing the same
US10457940B2 (en) 2016-09-22 2019-10-29 University Of Massachusetts AAV treatment of Huntington's disease
WO2018064624A1 (en) 2016-09-29 2018-04-05 University Of Florida Research Foundation, Incorporated Aavrh.10 variants with host antibody escape capabilities and altered tissue targeting properties
CN110506119A (en) 2016-10-13 2019-11-26 马萨诸塞大学 The design of AAV capsid
EP3528785A4 (en) 2016-10-19 2020-12-02 Adverum Biotechnologies, Inc. Modified aav capsids and uses thereof
US20190328846A1 (en) 2016-12-01 2019-10-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Pharmaceutical compositions for the treatment of retinal degenerative diseases
US11584931B2 (en) 2016-12-14 2023-02-21 The J. David Gladstone Institutes Methods and compositions for generating a deletion library and for identifying a defective interfering particle (DIP)
BR112019013576A2 (en) * 2016-12-30 2020-02-04 Univ Pennsylvania gene therapy for the treatment of phenylketonuria
CN110168085A (en) 2017-01-20 2019-08-23 联邦高等教育系统匹兹堡大学 With Umbilical Cord Blood Transplantation (UCBT) and increased galactolipin cerebrosidase (GALC) expression treatment Krabbe disease
WO2018152485A1 (en) 2017-02-20 2018-08-23 The Trustees Of The University Of Pennsylvania Gene therapy for treating familial hypercholesterolemia
JOP20190200A1 (en) 2017-02-28 2019-08-27 Univ Pennsylvania Compositions useful in treatment of spinal muscular atrophy
EP3589649A1 (en) 2017-02-28 2020-01-08 The Trustees Of The University Of Pennsylvania Influenza vaccines based on aav vectors
MX2019010275A (en) 2017-02-28 2019-10-15 Univ Pennsylvania Adeno-associated virus (aav) clade f vector and uses therefor.
US11564996B2 (en) 2017-03-01 2023-01-31 The Trustees Of The University Of Pennsylvania Gene therapy for ocular disorders
US11376321B2 (en) 2017-03-02 2022-07-05 Genethon Method for removing anti-AAV antibodies from a blood-derived composition
US11739346B2 (en) 2017-04-05 2023-08-29 University Of Massachusetts Minigene therapy
EP3610016A1 (en) 2017-04-10 2020-02-19 Genethon Antisense targeting dynamin 2 and use for the treatment of centronuclear myopathies and neuropathies
IL269892B2 (en) 2017-04-14 2024-04-01 Regenxbio Inc Treatment of mucopolysaccharidosis ii with recombinant human iduronate-2 sulfatase (ids) produced by human neural or glial cells
US11879133B2 (en) 2017-04-24 2024-01-23 The Trustees Of The University Of Pennsylvania Gene therapy for ocular disorders
MX2019013172A (en) 2017-05-05 2020-09-07 Voyager Therapeutics Inc Compositions and methods of treating huntington's disease.
SG11201909870SA (en) 2017-05-05 2019-11-28 Voyager Therapeutics Inc Compositions and methods of treating amyotrophic lateral sclerosis (als)
EP3622073A4 (en) 2017-05-09 2021-01-06 University of Massachusetts Methods of treating amyotrophic lateral sclerosis (als)
AU2018265531B2 (en) 2017-05-11 2024-07-11 The Trustees Of The University Of Pennsylvania Gene therapy for neuronal ceroid lipofuscinoses
JP2020519294A (en) 2017-05-12 2020-07-02 ユニバーシティ オブ マサチューセッツ Viral vector production
CN108103058A (en) * 2017-05-12 2018-06-01 北京五加和分子医学研究所有限公司 A kind of gene therapy medicament of type-1 diabetes mellitus
WO2018218359A1 (en) 2017-05-31 2018-12-06 The Trustees Of The University Of Pennsylvania Gene therapy for treating peroxisomal disorders
EA201992882A1 (en) 2017-06-06 2020-05-25 Юниверсити Оф Массачусеттс AAV SELF-ADJUSTABLE VECTORS BASED ON SAFE MeCP2 EXPRESSION AT PETTA SYNDROME
JP2020527335A (en) 2017-06-14 2020-09-10 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Gene therapy for eye diseases
US10708306B2 (en) 2017-06-15 2020-07-07 Palo Alto Networks, Inc. Mobile user identity and/or SIM-based IoT identity and application identity based security enforcement in service provider networks
US10834136B2 (en) 2017-06-15 2020-11-10 Palo Alto Networks, Inc. Access point name and application identity based security enforcement in service provider networks
JOP20190269A1 (en) 2017-06-15 2019-11-20 Voyager Therapeutics Inc Aadc polynucleotides for the treatment of parkinson's disease
US10721272B2 (en) 2017-06-15 2020-07-21 Palo Alto Networks, Inc. Mobile equipment identity and/or IOT equipment identity and application identity based security enforcement in service provider networks
US10693918B2 (en) 2017-06-15 2020-06-23 Palo Alto Networks, Inc. Radio access technology based security in service provider networks
US11050789B2 (en) 2017-06-15 2021-06-29 Palo Alto Networks, Inc. Location based security in service provider networks
US10812532B2 (en) 2017-06-15 2020-10-20 Palo Alto Networks, Inc. Security for cellular internet of things in mobile networks
CN111373260A (en) * 2017-06-22 2020-07-03 得克萨斯大学体系董事会 Method for producing regulatory immune cells and uses thereof
KR20240063170A (en) 2017-07-06 2024-05-09 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 Aav9-mediated gene therapy for treating mucopolysaccharidosis type i
JP7141417B2 (en) 2017-07-07 2022-09-22 ジェネトン Novel polynucleotides encoding human FKRP proteins
AU2018302016A1 (en) 2017-07-17 2020-02-06 The Regents Of The University Of California Trajectory array guide system
EP3662060A2 (en) 2017-08-03 2020-06-10 Voyager Therapeutics, Inc. Compositions and methods for delivery of aav
KR102486090B1 (en) 2017-08-07 2023-01-10 엔비이-테라퓨틱스 아게 Antibody drug conjugates with high in vivo tolerance
BR112020003571A2 (en) * 2017-08-28 2020-08-25 The Regents Of The University Of California Capsid variants of adeno-associated virus and methods of using them
KR20200052333A (en) 2017-09-20 2020-05-14 4디 몰레큘러 테라퓨틱스 아이엔씨. Adeno-associated viral variant capsids and uses thereof
JP7397488B2 (en) 2017-09-22 2023-12-13 ユニバーシティ オブ マサチューセッツ SOD1 dual expression vector and its use
US11603529B2 (en) 2017-09-22 2023-03-14 Genzyme Corporation Variant RNAi
TWI835747B (en) 2017-09-22 2024-03-21 賓州大學委員會 Gene therapy for treating mucopolysaccharidosis type ii
MX2020004005A (en) * 2017-10-03 2020-10-05 Prevail Therapeutics Inc Gene therapies for lysosomal disorders.
US20200237799A1 (en) 2017-10-16 2020-07-30 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
TW202413649A (en) 2017-10-16 2024-04-01 美商航海家醫療公司 Treatment of amyotrophic lateral sclerosis (als)
BR112020007405A2 (en) 2017-10-18 2020-12-08 Regenxbio Inc. TOTALLY HUMAN HUMAN MODIFIED ANTIBODY THERAPEUTIC PRODUCTS
CA3079565A1 (en) 2017-10-18 2019-04-25 Regenxbio Inc. Treatment of ocular diseases and metastatic colon cancer with human post-translationally modified vegf-trap
EP3697764A4 (en) 2017-10-18 2021-07-21 Board Of Regents, The University Of Texas System Glutaminase inhibitor therapy
ES2946747T3 (en) 2017-11-27 2023-07-25 4D Molecular Therapeutics Inc Adeno-associated virus capsid variants and their use to inhibit angiogenesis
EP3717653A4 (en) 2017-11-30 2021-12-01 The Trustees of The University of Pennsylvania Gene therapy for mucopolysaccharidosis iiia
AU2018375163A1 (en) 2017-11-30 2020-06-11 The Trustees Of The University Of Pennsylvania Gene therapy for mucopolysaccharidosis IIIB
WO2019126329A1 (en) 2017-12-19 2019-06-27 Akouos Llc Aav-mediated delivery of therapeutic antibodies to the inner ear
US10610606B2 (en) 2018-02-01 2020-04-07 Homology Medicines, Inc. Adeno-associated virus compositions for PAH gene transfer and methods of use thereof
US11306329B2 (en) 2018-02-19 2022-04-19 City Of Hope Adeno-associated virus compositions for restoring F8 gene function and methods of use thereof
WO2019173434A1 (en) 2018-03-06 2019-09-12 Voyager Therapeutics, Inc. Insect cell manufactured partial self-complementary aav genomes
CA3094217A1 (en) 2018-03-23 2019-09-26 University Of Massachusetts Gene therapeutics for treating bone disorders
JP7425738B2 (en) 2018-04-03 2024-01-31 ギンコ バイオワークス インコーポレイテッド Viral vectors that target ocular tissue
WO2019195444A1 (en) 2018-04-03 2019-10-10 Stridebio, Inc. Antibody-evading virus vectors
KR20210006357A (en) 2018-04-03 2021-01-18 스트라이드바이오 인코포레이티드 Antibody-avoiding virus vector
US12054724B2 (en) 2018-04-10 2024-08-06 President And Fellows Of Harvard College AAV vectors encoding clarin-1 or GJB2 and uses thereof
US11981892B2 (en) 2018-04-16 2024-05-14 University Of Massachusetts Compositions and methods for improved gene editing
CA3098448A1 (en) 2018-04-27 2019-10-31 University Of Massachusetts Aav capsids identified by in vivo library selection
CA3098565A1 (en) 2018-04-29 2019-11-07 Claire G. ZHANG Scalable clarification process for recombinant aav production
US20210231560A1 (en) 2018-04-29 2021-07-29 Regenxbio Inc. Systems and methods of spectrophotometry for the determination of genome content, capsid content and full/empty ratios of adeno-associated virus particles
AU2019265663B2 (en) 2018-05-08 2024-06-13 Rutgers, The State University Of New Jersey AAV-compatible laminin-linker polymerization proteins
KR20210008501A (en) 2018-05-09 2021-01-22 바이오마린 파머수티컬 인크. How to treat phenylketonuria
TW202005978A (en) 2018-05-14 2020-02-01 美商拜奧馬林製藥公司 Novel liver targeting adeno-associated viral vectors
TW202015742A (en) 2018-05-15 2020-05-01 美商航海家醫療公司 Compositions and methods for delivery of aav
MX2020012077A (en) 2018-05-15 2021-03-09 Voyager Therapeutics Inc Compositions and methods for the treatment of parkinson's disease.
EP3793615A2 (en) 2018-05-16 2021-03-24 Voyager Therapeutics, Inc. Directed evolution of aav to improve tropism for cns
US20210207167A1 (en) 2018-05-16 2021-07-08 Voyager Therapeutics, Inc. Aav serotypes for brain specific payload delivery
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
US12060567B2 (en) 2018-06-13 2024-08-13 Voyager Therapeutics, Inc. Engineered untranslated regions (UTR) for AAV production
EP3807405A2 (en) 2018-06-14 2021-04-21 REGENXBIO Inc. Anion exchange chromatography for recombinant aav production
JP7565218B2 (en) 2018-07-02 2024-10-10 ボイジャー セラピューティクス インコーポレイテッド Treatment of amyotrophic lateral sclerosis and spinal cord related disorders
GB201811368D0 (en) 2018-07-11 2018-08-29 Ucb Biopharma Sprl Antibody
WO2020016655A2 (en) 2018-07-17 2020-01-23 Helixmith Co., Ltd. Treatment of neuropathy with dna constructs expressing igf-1 isoforms
WO2020023612A1 (en) 2018-07-24 2020-01-30 Voyager Therapeutics, Inc. Systems and methods for producing gene therapy formulations
US20210292790A1 (en) * 2018-07-30 2021-09-23 Gene Therapy Research Institution Co., Ltd. Method for enhancing gene expression using aav vector
CA3108526A1 (en) 2018-08-03 2020-02-06 Genzyme Corporation Variant rnai against alpha-synuclein
CA3108113A1 (en) 2018-08-10 2020-02-13 Michael GILLMEISTER Scalable method for recombinant aav production
SG11202102058UA (en) 2018-08-30 2021-03-30 Tenaya Therapeutics Inc Cardiac cell reprogramming with myocardin and ascl1
CA3114621A1 (en) 2018-09-28 2020-04-02 Voyager Therapeutics, Inc. Frataxin expression constructs having engineered promoters and methods of use thereof
EP3856260A1 (en) 2018-09-28 2021-08-04 President and Fellows of Harvard College Mutant reverse tetracycline transactivators for expression of genes
AU2019347666A1 (en) 2018-09-28 2021-03-25 President And Fellows Of Harvard College Cellular reprogramming to reverse aging and promote organ and tissue regeneration
JP7534290B2 (en) 2018-10-01 2024-08-14 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Compositions useful for treating gm1 gangliosidosis
US20210348242A1 (en) 2018-10-04 2021-11-11 Voyager Therapeutics, Inc. Methods for measuring the titer and potency of viral vector particles
US20210348194A1 (en) 2018-10-05 2021-11-11 Voyager Therapeutics, Inc. Engineered nucleic acid constructs encoding aav production proteins
WO2020077165A1 (en) 2018-10-12 2020-04-16 Voyager Therapeutics, Inc. Compositions and methods for delivery of aav
BR112021006796A2 (en) 2018-10-12 2021-07-20 Genzyme Corporation generation of improved human pah for treatment of severe pku by liver-targeted gene replacement therapy
US20210324483A1 (en) 2018-10-15 2021-10-21 Regenxbio Inc. Method for measuring the infectivity of replication defective viral vectors and viruses
CN113166781A (en) 2018-10-15 2021-07-23 沃雅戈治疗公司 Large-scale production of rAAV expression vectors in the baculovirus/Sf9system
UY38407A (en) 2018-10-15 2020-05-29 Novartis Ag TREM2 STABILIZING ANTIBODIES
AU2019365100A1 (en) 2018-10-22 2021-06-03 University Of Rochester Genome editing by directed non-homologous DNA insertion using a retroviral integrase-Cas9 fusion protein
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
EP3650956A1 (en) 2018-11-07 2020-05-13 Tissot S.A. Method for broadcasting an acoustic signal
WO2020101042A1 (en) 2018-11-16 2020-05-22 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting utrophin gene
EP3880823A4 (en) * 2018-11-16 2022-08-17 Asklepios Biopharmaceutical, Inc. Therapeutic adeno-associated virus for treating pompe disease
EP3887522A1 (en) 2018-11-29 2021-10-06 University of Massachusetts Modulation of sptlc1 via recombinant adeno-associated vectors
WO2020140007A1 (en) 2018-12-28 2020-07-02 University Of Rochester Gene therapy for best1 dominant mutations
CN113518628A (en) 2019-01-04 2021-10-19 阿尔特拉吉尼克斯制药公司 Gene therapy constructs for treating wilson's disease
WO2020150287A1 (en) 2019-01-14 2020-07-23 University Of Rochester Targeted nuclear rna cleavage and polyadenylation with crispr-cas
JP2022522995A (en) 2019-01-18 2022-04-21 ボイジャー セラピューティクス インコーポレイテッド Methods and systems for producing AAV particles
CA3128230A1 (en) 2019-01-31 2020-08-06 Oregon Health & Science University Methods for using transcription-dependent directed evolution of aav capsids
CA3131023A1 (en) 2019-02-22 2020-08-27 Michael R. Volkert Oxr1 gene therapy
JP2022523766A (en) 2019-02-22 2022-04-26 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Recombinant adeno-associated virus for the treatment of GRN-related adult-onset neurodegenerative disease
JP2022520875A (en) 2019-02-25 2022-04-01 ノバルティス アーゲー Compositions and Methods for Treating Bietti Crystallin Retinopathy
US20220154210A1 (en) 2019-02-25 2022-05-19 Novartis Ag Compositions and methods to treat bietti crystalline dystrophy
CA3130055A1 (en) 2019-02-26 2020-09-03 The Trustees Of The University Of Pennsylvania Compositions useful in treatment of krabbe disease
JP2022522756A (en) 2019-02-28 2022-04-20 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Adeno-associated virus vector for delivery of therapeutic agents
JP2022525955A (en) 2019-03-21 2022-05-20 ストライドバイオ,インコーポレイテッド Recombinant adeno-associated virus vector
WO2020193636A1 (en) 2019-03-25 2020-10-01 Genethon Production of large-sized quasidystrophins using overlapping aav vectors
US20220154217A1 (en) 2019-04-01 2022-05-19 Tenaya Therapeutics, Inc. Adeno-associated virus with engineered capsid
WO2020206098A1 (en) 2019-04-03 2020-10-08 Regenxbio Inc. Gene therapy for eye pathologies
TW202102526A (en) 2019-04-04 2021-01-16 美商銳進科斯生物股份有限公司 Recombinant adeno-associated viruses and uses thereof
HUE064411T2 (en) 2019-04-11 2024-03-28 Regenxbio Inc Methods of size exclusion chromatography for the characterization of recombinant adeno-associated virus compositions
AU2020258483A1 (en) 2019-04-17 2021-11-11 Evox Therapeutics, Ltd. Compositions of exosomes and AAV
WO2020214929A1 (en) 2019-04-19 2020-10-22 Regenxbio Inc. Adeno-associated virus vector formulations and methods
AU2020262416A1 (en) * 2019-04-24 2021-12-16 Regenxbio Inc. Fully-human post-translationally modified antibody therapeutics
EP3962536A1 (en) 2019-04-29 2022-03-09 Voyager Therapeutics, Inc. Systems and methods for producing baculoviral infected insect cells (biics) in bioreactors
EP3962507A4 (en) * 2019-04-29 2023-10-11 The Trustees of The University of Pennsylvania Novel aav capsids and compositions containing same
EP3966227A1 (en) 2019-05-07 2022-03-16 Voyager Therapeutics, Inc. Compositions and methods for the vectored augmentation of protein destruction, expression and/or regulation
CN113874386A (en) * 2019-05-24 2021-12-31 瑞泽恩制药公司 Modified viral particles and uses thereof
CN113785066B (en) 2019-05-28 2024-06-18 摩大力斯医疗株式会社 Methods of treating muscular dystrophy by targeting DMPK genes
US20220348912A1 (en) 2019-06-20 2022-11-03 University Of Massachusetts Compositions and methods for improved gene editing
CN114616000A (en) 2019-07-02 2022-06-10 M6P医疗(瑞士)有限责任公司 Carrier compositions and methods for their use in treating lysosomal storage disorders
EP3997225A1 (en) 2019-07-10 2022-05-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of epilepsy
EP3997214B1 (en) 2019-07-11 2023-08-02 Centre National de la Recherche Scientifique Chemically-modified adeno-associated virus
WO2021007515A1 (en) 2019-07-11 2021-01-14 Tenaya Therapeutics, Inc. Cardiac cell reprogramming with micrornas and other factors
US10653731B1 (en) * 2019-07-15 2020-05-19 Vigene Biosciences Inc. Recombinantly-modified adeno-associated virus (rAAV) having improved packaging efficiency
US10557149B1 (en) * 2019-07-15 2020-02-11 Vigene Biosciences, Inc. Recombinantly-modified adeno-associated virus helper vectors and their use to improve the packaging efficiency of recombinantly-modified adeno-associated virus
US20220267773A1 (en) 2019-07-23 2022-08-25 University Of Rochester Targeted RNA cleavage with CRISPR-Cas
CA3145112A1 (en) 2019-07-26 2021-02-04 Chunping Qiao Engineered nucleic acid regulatory element and methods of uses thereof
EP4007814A1 (en) 2019-07-26 2022-06-08 Akouos, Inc. Methods of treating hearing loss using a secreted target protein
US20220290182A1 (en) 2019-08-09 2022-09-15 Voyager Therapeutics, Inc. Cell culture medium for use in producing gene therapy products in bioreactors
US20220281923A1 (en) * 2019-08-14 2022-09-08 University Of Florida Research Foundation, Incorporated Aav capsid variants for gene therapy
TW202122582A (en) 2019-08-26 2021-06-16 美商航海家醫療公司 Controlled expression of viral proteins
US20220280608A1 (en) 2019-08-26 2022-09-08 Regenxbio Inc. Treatment of diabetic retinopathy with fully-human post-translationally modified anti-vegf fab
JP2022545921A (en) 2019-08-27 2022-11-01 バーテックス ファーマシューティカルズ インコーポレイテッド Compositions and methods for treating disorders associated with repetitive DNA
WO2021046155A1 (en) 2019-09-03 2021-03-11 Voyager Therapeutics, Inc. Vectorized editing of nucleic acids to correct overt mutations
US20220348937A1 (en) 2019-09-06 2022-11-03 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
US20220340643A1 (en) 2019-09-13 2022-10-27 Rutgers, The State University Of New Jersey Aav-compatible laminin-linker polymerization proteins
JP2022549098A (en) 2019-09-19 2022-11-24 ジェネトン A gene therapy expression system that reduces the cardiotoxicity of FKRP
WO2021062096A1 (en) 2019-09-26 2021-04-01 Massachusetts Institute Of Technology Microrna-based logic gates and uses thereof
US11834659B2 (en) 2019-09-26 2023-12-05 Massachusetts Institute Of Technology Trans-activated functional RNA by strand displacement and uses thereof
EP4038194A1 (en) 2019-10-04 2022-08-10 Ultragenyx Pharmaceutical Inc. Methods for improved therapeutic use of recombinant aav
JP2022552262A (en) 2019-10-07 2022-12-15 リジェネックスバイオ インコーポレイテッド Adeno-associated virus vector pharmaceutical compositions and methods
WO2021076656A1 (en) 2019-10-15 2021-04-22 University Of Massachusetts Rna editor-enhanced rna trans-splicing
CN118221785A (en) * 2019-10-16 2024-06-21 上海药明康德新药开发有限公司 Novel AAV variants
BR112022006530A2 (en) 2019-10-17 2022-07-05 Stridebio Inc ADENO-ASSOCIATED VIRAL VECTORS FOR THE TREATMENT OF NIEMANN-PICK TYPE C DISEASE
JP2023503850A (en) 2019-11-14 2023-02-01 バイオマリン ファーマシューティカル インコーポレイテッド Treatment of hereditary angioedema with a liver-specific gene therapy vector
US20230016983A1 (en) 2019-11-19 2023-01-19 lNSERM (INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE) Antisense oligonucleotides and thier use for the treatment of cancer
TW202134260A (en) 2019-11-28 2021-09-16 美商銳進科斯生物股份有限公司 Microdystrophin gene therapy constructs and uses thereof
BR112022011332A2 (en) 2019-12-10 2022-08-23 Takeda Pharmaceuticals Co VECTOR OF RECOMBINANT ADENO-ASSOCIATED VIRUS, RECOMBINANT ADENO-ASSOCIATED VIRUS, AND, METHOD TO TREAT AN INDIVIDUAL WITH HUNTER'S SYNDROME
TW202140791A (en) 2020-01-13 2021-11-01 美商霍蒙拉奇醫藥公司 Methods of treating phenylketonuria
US20230059395A1 (en) 2020-01-22 2023-02-23 Regenxbio Inc. Treatment of mucopolysaccharidosis i with fully-human glycosylated human alpha-l-iduronidase (idua)
EP4097238A1 (en) 2020-01-29 2022-12-07 REGENXBIO Inc. Treatment of mucopolysaccharidosis iva
IL294636A (en) 2020-01-29 2022-09-01 Regenxbio Inc Treatment of mucopolysaccharidosis ii with recombinant human iduronate-2-sulfatase (ids) produced by human neural or glial cells
KR20220144377A (en) 2020-01-30 2022-10-26 우모자 바이오파마 인코포레이티드 Bispecific transduction promoter
BR112022013914A2 (en) 2020-02-02 2022-09-13 Univ Pennsylvania USEFUL COMPOSITIONS TO TREAT GANGLIOSIDOSIS GM1
JP2023513211A (en) 2020-02-07 2023-03-30 ユニバーシティ オブ ロチェスター Target RNA translation by CRISPR-Cas13 to enhance protein synthesis
WO2021158964A1 (en) 2020-02-07 2021-08-12 University Of Rochester Ribozyme-mediated rna assembly and expression
EP4103724A1 (en) 2020-02-14 2022-12-21 Ultragenyx Pharmaceutical Inc. Gene therapy for treating cdkl5 deficiency disorder
JP2023515672A (en) 2020-03-02 2023-04-13 テナヤ セラピューティクス, インコーポレイテッド Gene vector regulation by cardiomyocyte-expressed microRNA
US20240024520A1 (en) 2020-03-27 2024-01-25 UCB Biopharma SRL Autonomous knob domain peptides
EP4127170A1 (en) 2020-03-27 2023-02-08 University of Rochester Crispr-cas13 crrna arrays
EP4127169A1 (en) 2020-03-27 2023-02-08 University of Rochester Targeted destruction of viral rna by crispr-cas13
US20230129893A1 (en) 2020-03-31 2023-04-27 Ultragenyx Pharmaceutical Inc. Gene therapy for treating propionic acidemia
IL296765A (en) 2020-03-31 2022-11-01 Univ Massachusetts Aav capsids variants and uses thereof
TW202144575A (en) 2020-04-03 2021-12-01 美商拜奧馬林製藥公司 Treatment of phenylketonuria with aav and therapeutic formulations
AU2021254272A1 (en) 2020-04-10 2022-10-27 Sola Biosciences Llc Compositions and methods for the treatment of protein aggregation disorders
EP4135841A1 (en) 2020-04-15 2023-02-22 Voyager Therapeutics, Inc. Tau binding compounds
CN115836129A (en) 2020-04-28 2023-03-21 索拉生物科学有限公司 Compositions and methods for treating TDP-43 proteinopathies
CA3177924A1 (en) 2020-05-12 2021-11-18 The Trustees Of The University Of Pennsylvania Compositions useful in treatment of krabbe disease
CA3177407A1 (en) 2020-05-12 2021-11-18 James M. Wilson Compositions for drg-specific reduction of transgene expression
MX2022014204A (en) 2020-05-13 2023-04-14 Akouos Inc Compositions and methods for treating slc26a4-associated hearing loss.
EP4165194A2 (en) 2020-05-13 2023-04-19 Akouos, Inc. Compositions and methods for treating kcnq4-associated hearing loss
WO2021230385A1 (en) 2020-05-15 2021-11-18 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting utrophin gene
TW202208632A (en) 2020-05-27 2022-03-01 美商同源醫藥公司 Adeno-associated virus compositions for restoring pah gene function and methods of use thereof
WO2021247995A2 (en) 2020-06-04 2021-12-09 Voyager Therapeutics, Inc. Compositions and methods of treating neuropathic pain
US20230234997A1 (en) 2020-06-05 2023-07-27 Sola Biosciences Llc Compositions and Methods for the Treatment of Synucleinopathies
JP2023531451A (en) 2020-06-17 2023-07-24 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Compositions and methods for treatment of gene therapy patients
EP4168052A2 (en) 2020-06-19 2023-04-26 Genethon Gene therapy expression system allowing an adequate expression in the muscles and in the heart of sgcg
CA3177613A1 (en) 2020-07-10 2022-04-13 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and compositions for treating epilepsy
US20230277686A1 (en) 2020-07-10 2023-09-07 Genethon A novel muscle-specific promoter
US20230270884A1 (en) 2020-07-13 2023-08-31 The Trustees Of The University Of Pennsylvania Compositions useful for treatment of charcot-marie-tooth disease
AU2021307447A1 (en) 2020-07-15 2023-03-09 University Of Rochester Targeted RNA cleavage with dCas13-RNase fusion proteins
WO2022017630A1 (en) 2020-07-23 2022-01-27 Ucl Business Ltd GENE THERAPY VECTOR FOR eEF1A2 AND USES THEREOF
WO2022026410A2 (en) 2020-07-27 2022-02-03 Voyager Therapeutics, Inc Compositions and methods for the treatment of niemann-pick type c1 disease
IL299928A (en) 2020-07-27 2023-03-01 Voyager Therapeutics Inc Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta deficiency
EP4192514A1 (en) 2020-08-06 2023-06-14 Voyager Therapeutics, Inc. Cell culture medium for use in producing gene therapy products in bioreactors
JP2023537070A (en) 2020-08-07 2023-08-30 アミカス セラピューティックス インコーポレイテッド Proteins targeting vesicles and uses thereof
EP4192487A4 (en) 2020-08-07 2024-10-02 Spacecraft Seven Llc Plakophilin-2 (pkp2) gene therapy using aav vector
CN114075610B (en) * 2020-08-11 2023-11-17 北京荷塘生华医疗科技有限公司 Universal primer for detecting wild adeno-associated virus and application thereof
US20230287451A1 (en) 2020-08-14 2023-09-14 The Trustees Of The University Of Pennsylvania Novel aav capsids and compositions containing same
US20230304038A1 (en) 2020-08-19 2023-09-28 Sarepta Therapeutics, Inc. Adeno-associated virus vectors for treatment of rett syndrome
GB202013194D0 (en) 2020-08-24 2020-10-07 Combigene Ab Gene therapy for lipodystrophy
CN116438312A (en) 2020-08-24 2023-07-14 宾夕法尼亚州大学信托人 Viral vectors encoding GLP-1 receptor agonist fusions and their use in the treatment of metabolic disorders
CA3189107A1 (en) 2020-08-26 2022-03-03 James M. Wilson Recombinant adeno-associated virus for treatment of grn-associated adult-onset neurodegeneration
TW202218686A (en) 2020-09-09 2022-05-16 美商維泰克斯製藥公司 Compositions and methods for treatment of duchenne muscular dystrophy
US20230365942A1 (en) 2020-09-10 2023-11-16 Ludwig-Maximilians-Universität München Engineered aav vectors
US12129287B2 (en) 2020-09-14 2024-10-29 President And Fellows Of Harvard College Recombinant adeno associated virus encoding clarin-1 and uses thereof
EP4213890A1 (en) 2020-09-15 2023-07-26 RegenxBio Inc. Vectorized lanadelumab and administration thereof
WO2022060916A1 (en) 2020-09-15 2022-03-24 Regenxbio Inc. Vectorized antibodies for anti-viral therapy
US20230383278A1 (en) 2020-09-18 2023-11-30 The United States Of America,As Represented By The Secretary,Department Of Health And Human Services Novel adeno-associated viral (aav) vectors to treat hereditary methylmalonic acidemia (mma) caused by methylmalonyl-coa mutase (mmut) deficiency
EP4217376A4 (en) 2020-09-24 2024-10-09 Univ Massachusetts Aav vectors encoding nf1 and uses thereof
BR112023003929A2 (en) 2020-10-01 2023-04-11 Genzyme Corp HUMAN PAH EXPRESSION CASSETTE FOR PKU TREATMENT BY LIVER TARGETED GENE REPLACEMENT THERAPY
MX2023003988A (en) 2020-10-07 2023-06-22 Regenxbio Inc Formulations for suprachoroidal administration such as formulations with aggregate formation.
WO2022076750A2 (en) 2020-10-07 2022-04-14 Regenxbio Inc. Recombinant adeno-associated viruses for cns or muscle delivery
EP4225777A2 (en) 2020-10-07 2023-08-16 RegenxBio Inc. Adeno-associated viruses for ocular delivery of gene therapy
US20230364206A1 (en) 2020-10-07 2023-11-16 Regenxbio Inc. Gene therapy for ocular manifestations of cln2 disease
CA3194861A1 (en) 2020-10-07 2022-04-14 Regenxbio Inc. Formulations for suprachoroidal administration such as gel formulations
MX2023004035A (en) 2020-10-07 2023-07-05 Regenxbio Inc Formulations for suprachoroidal administration such as high viscosity formulations.
WO2022076803A1 (en) 2020-10-09 2022-04-14 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of fabry disease
US11781156B2 (en) 2020-10-09 2023-10-10 Tenaya Therapeutics, Inc. Plakophillin-2 gene therapy methods and compositions
IL302127A (en) 2020-10-18 2023-06-01 Univ Pennsylvania Improved adeno-associated virus (aav) vector and uses therefor
US20230391864A1 (en) 2020-10-28 2023-12-07 Regenxbio, Inc. Vectorized anti-tnf-alpha antibodies for ocular indications
WO2022094157A1 (en) 2020-10-28 2022-05-05 Regenxbio Inc. Vectorized anti-cgrp and anti-cgrpr antibodies and administration thereof
WO2022094078A1 (en) 2020-10-28 2022-05-05 The Trustees Of The University Of Pennsylvania Compositions useful in treatment of rett syndrome
JP2023548145A (en) 2020-10-29 2023-11-15 リジェネックスバイオ インコーポレイテッド Vectored TNF-alpha antagonists for ocular indications
US20230390418A1 (en) 2020-10-29 2023-12-07 Regenxbio Inc. Vectorized factor xii antibodies and administration thereof
US20230414648A1 (en) 2020-11-06 2023-12-28 Vertex Pharmaceuticals Incorporated Compositions and Methods for Treatment of DM1 with SLUCAS9 and SACAS9
CN112322791B (en) * 2020-11-27 2023-10-27 福建省农业科学院畜牧兽医研究所 Novel duck dependent genus virus loop-mediated isothermal amplification detection primer set and kit
IL303239A (en) 2020-12-01 2023-07-01 Univ Pennsylvania Compositions and uses thereof for treatment of angelman syndrome
PE20240115A1 (en) 2020-12-01 2024-01-22 Akouos Inc CONSTRUCTIONS OF ANTI-VEGF ANTIBODIES AND RELATED METHODS FOR THE TREATMENT OF SYMPTOMS ASSOCIATED WITH VESTIBULAR SCHWANNOMA
TW202237850A (en) 2020-12-01 2022-10-01 賓州大學委員會 Novel compositions with tissue-specific targeting motifs and compositions containing same
KR20230120128A (en) 2020-12-16 2023-08-16 리젠엑스바이오 인크. Methods for producing recombinant viral particles
WO2022146839A1 (en) 2020-12-29 2022-07-07 Akouos, Inc. Compositions and methods for treating clrn1-associated hearing loss and/or vision loss
WO2022147087A1 (en) 2020-12-29 2022-07-07 Regenxbio Inc. Tau-specific antibody gene therapy compositions, methods and uses thereof
AU2022210592A1 (en) 2021-01-21 2023-07-13 Regenxbio Inc. Improved production of recombinant polypeptides and viruses
EP4284821A1 (en) 2021-01-27 2023-12-06 Umoja Biopharma, Inc. Lentivirus for generating cells expressing anti-cd19 chimeric antigen receptor
JP2024505257A (en) 2021-02-01 2024-02-05 レジェンクスバイオ インコーポレーテッド Gene therapy for neuronal ceroid lipofuscinosis
KR20230145386A (en) 2021-02-10 2023-10-17 리젠엑스바이오 인크. Treatment of mucopolysaccharidosis II using recombinant human iduronate-2-sulfatase (IDS)
GB202101958D0 (en) 2021-02-12 2021-03-31 Ucl Business Ltd Gene therapy for dopamine transporter deficiency syndrome
KR20230150836A (en) 2021-02-26 2023-10-31 다케다 야쿠힌 고교 가부시키가이샤 Compositions and methods for treating Fabry disease
TW202246510A (en) 2021-02-26 2022-12-01 美商維泰克斯製藥公司 Compositions and methods for treatment of myotonic dystrophy type 1 with crispr/slucas9
WO2022182957A1 (en) 2021-02-26 2022-09-01 Vertex Pharmaceuticals Incorporated Compositions and methods for treatment of myotonic dystrophy type 1 with crispr/sacas9
WO2022187548A1 (en) 2021-03-03 2022-09-09 Voyager Therapeutics, Inc. Controlled expression of viral proteins
EP4301768A2 (en) 2021-03-03 2024-01-10 Voyager Therapeutics, Inc. Controlled expression of viral proteins
JP2024511409A (en) 2021-03-22 2024-03-13 ジェンザイム・コーポレーション Size exclusion chromatography analysis of empty and complete AAV capsids
WO2022204476A1 (en) 2021-03-26 2022-09-29 The Board Of Regents Of The University Of Texas System Nucleotide editing to reframe dmd transcripts by base editing and prime editing
WO2022221276A1 (en) 2021-04-12 2022-10-20 The Trustees Of The University Of Pennsylvania Compositions useful for treating spinal and bulbar muscular atrophy (sbma)
MX2023012511A (en) 2021-04-23 2024-01-08 Univ Rochester Genome editing by directed non-homologous dna insertion using a retroviral integrase-cas fusion protein and methods of treatment.
MX2023012513A (en) 2021-04-23 2023-12-15 Univ Pennsylvania Novel compositions with brain-specific targeting motifs and compositions containing same.
BR112023021999A2 (en) 2021-04-26 2023-12-26 Regenxbio Inc ADMINISTRATION OF MICRODYSTROPHIN GENE THERAPY FOR THE TREATMENT OF DYSTROPHINOPATHIES
WO2022229851A1 (en) 2021-04-26 2022-11-03 Crispr Therapeutics Ag Compositions and methods for using slucas9 scaffold sequences
EP4334454A2 (en) 2021-05-04 2024-03-13 RegenxBio Inc. Novel aav vectors and methods and uses thereof
WO2022234519A1 (en) 2021-05-05 2022-11-10 Crispr Therapeutics Ag Compositions and methods for using sacas9 scaffold sequences
WO2022241030A1 (en) 2021-05-11 2022-11-17 Regenxbio Inc. Treatment of duchenne muscular dystrophy and combinations thereof
US20230055381A1 (en) 2021-06-25 2023-02-23 Oxford Biomedica Solutions Llc Adeno-associated virus packaging systems
JP2024527559A (en) 2021-07-01 2024-07-25 インダプタ セラピューティクス インコーポレイテッド Engineered natural killer (NK) cells and related methods
WO2023279073A1 (en) 2021-07-01 2023-01-05 Amicus Therapeutics, Inc. Neurotensin variants and tagged proteins comprising neurotensin or sortilin propeptide
AR126407A1 (en) 2021-07-08 2023-10-11 Tenaya Therapeutics Inc OPTIMIZED EXPRESSION CASSETTES FOR GENO THERAPY
CA3226452A1 (en) 2021-07-19 2023-01-26 New York University Auf1 combination therapies for treatment of muscle degenerative disease
AU2022318664A1 (en) 2021-07-30 2024-02-29 Tune Therapeutics, Inc. Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2)
EP4377459A2 (en) 2021-07-30 2024-06-05 Tune Therapeutics, Inc. Compositions and methods for modulating expression of frataxin (fxn)
WO2023018637A1 (en) 2021-08-09 2023-02-16 Vertex Pharmaceuticals Incorporated Gene editing of regulatory elements
WO2023019227A1 (en) 2021-08-11 2023-02-16 Sana Biotechnology, Inc. Genetically modified cells for allogeneic cell therapy to reduce complement-mediated inflammatory reactions
AU2022325955A1 (en) 2021-08-11 2024-02-08 Sana Biotechnology, Inc. Genetically modified cells for allogeneic cell therapy to reduce instant blood mediated inflammatory reactions
CA3227108A1 (en) 2021-08-11 2023-02-16 Xiaomeng HU Genetically modified primary cells for allogeneic cell therapy
JP2024534772A (en) 2021-08-11 2024-09-26 サナ バイオテクノロジー,インコーポレイテッド Genetically modified cells for allogeneic cell therapy
AU2022340808B2 (en) 2021-08-31 2024-08-08 Scout Bio, Inc. Antigen-binding molecules and uses thereof
EP4399302A2 (en) 2021-09-08 2024-07-17 Vertex Pharmaceuticals Incorporated Precise excisions of portions of exon 51 for treatment of duchenne muscular dystrophy
PE20241065A1 (en) 2021-09-30 2024-05-13 Akouos Inc COMPOSITIONS AND METHODS FOR THE TREATMENT OF HEARING LOSS ASSOCIATED WITH KCNQ4
AR127217A1 (en) 2021-10-01 2023-12-27 Biomarin Pharm Inc TREATMENT OF HEREDITARY ANGIOEDEMA WITH AAV GENOTHERAPY VECTORS AND THERAPEUTIC FORMULATIONS
EP4409010A1 (en) 2021-10-02 2024-08-07 The Trustees of The University of Pennsylvania Novel aav capsids and compositions containing same
WO2023060113A1 (en) 2021-10-05 2023-04-13 Regenxbio Inc. Compositions and methods for recombinant aav production
CN118202060A (en) 2021-10-05 2024-06-14 再生生物股份有限公司 Compositions and methods for recombinant AAV production
EP4413018A1 (en) 2021-10-07 2024-08-14 RegenxBio Inc. Recombinant adeno-associated viruses for targeted delivery
WO2023060272A2 (en) 2021-10-07 2023-04-13 Regenxbio Inc. Recombinant adeno-associated viruses for cns tropic delivery
WO2023060221A2 (en) 2021-10-08 2023-04-13 Sola Biosciences Llc Compositions and methods for the treatment of proteopathies
WO2023060248A1 (en) 2021-10-08 2023-04-13 Sola Biosciences Llc Compositions and methods for the treatment of p53-mediated cancers
WO2023070019A1 (en) 2021-10-21 2023-04-27 Vertex Pharmaceuticals Incorporated Hypoimmune cells
EP4423285A1 (en) 2021-10-28 2024-09-04 RegenxBio Inc. Engineered nucleic acid regulatory elements and methods and uses thereof
WO2023087019A2 (en) 2021-11-15 2023-05-19 The Trustees Of The University Of Pennsylvania Compositions for drg-specific reduction of transgene expression
WO2023102442A1 (en) 2021-11-30 2023-06-08 Jaguar Gene Therapy, Llc Gene therapy methods for treatment of diabetes
WO2023102517A1 (en) 2021-12-02 2023-06-08 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of fabry disease
CN118401249A (en) 2021-12-17 2024-07-26 塔法吉斯生技公司 Peptides and methods for treating pain
AU2022423978A1 (en) 2021-12-28 2024-07-18 Chengdu Origen Biotechnology Co., Ltd. Modified aav capsid protein and use thereof
WO2023133584A1 (en) 2022-01-10 2023-07-13 The Trustees Of The University Of Pennsylvania Compositions useful in treatment of metachromatic leukodystrophy
WO2023133593A2 (en) * 2022-01-10 2023-07-13 University Of Florida Research Foundation, Incorporated Aav5 capsid variants
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
TW202340467A (en) 2022-01-10 2023-10-16 賓州大學委員會 Compositions and methods useful for treatment of c9orf72-mediated disorders
EP4215614A1 (en) 2022-01-24 2023-07-26 Dynacure Combination therapy for dystrophin-related diseases
AU2023211652A1 (en) 2022-01-25 2024-08-08 The Trustees Of The University Of Pennsylvania Aav capsids for improved heart transduction and detargeting of liver
WO2023150647A1 (en) 2022-02-02 2023-08-10 Sana Biotechnology, Inc. Methods of repeat dosing and administration of lipid particles or viral vectors and related systems and uses
MX2024009456A (en) 2022-02-02 2024-08-09 Akouos Inc Anti-vegf antibody constructs and related methods for treating vestibular schwannoma associated symptoms.
IL314156A (en) 2022-02-08 2024-09-01 Voyager Therapeutics Inc Aav capsid variants and uses thereof
WO2023156530A1 (en) 2022-02-17 2023-08-24 Lysogene Gene therapy for neurodegenerative diseases
IL315000A (en) 2022-02-17 2024-10-01 Sana Biotechnology Inc Engineered cd47 proteins and uses thereof
WO2023172926A1 (en) 2022-03-08 2023-09-14 Vertex Pharmaceuticals Incorporated Precise excisions of portions of exons for treatment of duchenne muscular dystrophy
TW202345911A (en) 2022-03-08 2023-12-01 美商維泰克斯製藥公司 Precise excisions of portions of exon 44, 50, and 53 for treatment of duchenne muscular dystrophy
WO2023173123A1 (en) 2022-03-11 2023-09-14 Sana Biotechnology, Inc. Genetically modified cells and compositions and uses thereof
WO2023178053A1 (en) 2022-03-13 2023-09-21 Regenxbio Inc. Modified muscle-specific promoters
WO2023183623A1 (en) 2022-03-25 2023-09-28 Regenxbio Inc. Dominant-negative tumor necrosis factor alpha adeno-associated virus gene therapy
WO2023187728A1 (en) 2022-04-01 2023-10-05 Takeda Pharmaceutical Company Limited Gene therapy for diseases with cns manifestations
TW202345913A (en) 2022-04-06 2023-12-01 美商銳進科斯生物股份有限公司 Formulations for suprachoroidal administration such as gel formulations
TW202404651A (en) 2022-04-06 2024-02-01 美商銳進科斯生物股份有限公司 Formulations for suprachoroidal administration such as formulations with aggregate formation
WO2023196851A1 (en) 2022-04-06 2023-10-12 President And Fellows Of Harvard College Reversing aging of the central nervous system
WO2023196862A1 (en) 2022-04-06 2023-10-12 Genzyme Corporation Targeted gene therapy for dm-1 myotonic dystrophy
WO2023196892A1 (en) 2022-04-06 2023-10-12 The Trustees Of The University Of Pennsylvania Passive immunization with anti- aav neutralizing antibodies to prevent off-target transduction of intrathecally delivered aav vectors
WO2023196893A1 (en) 2022-04-06 2023-10-12 The Trustees Of The University Of Pennsylvania Compositions and methods for treating her2 positive metastatic breast cancer and other cancers
AU2023250660A1 (en) 2022-04-06 2024-10-24 Regenxbio Inc. Pharmaceutical composition comprising a recombinant adenoassociated virus vector with an expression cassette encoding a transgene for suprachoroidal administration
WO2023198652A1 (en) 2022-04-11 2023-10-19 Centre National De La Recherche Scientifique Chemically-modified adeno-associated viruses
WO2023201207A1 (en) 2022-04-11 2023-10-19 Tenaya Therapeutics, Inc. Adeno-associated virus with engineered capsid
US20230346977A1 (en) 2022-04-13 2023-11-02 Universitat Autònoma De Barcelona Treatment of neuromuscular diseases via gene therapy that expresses klotho protein
WO2023201277A1 (en) 2022-04-14 2023-10-19 Regenxbio Inc. Recombinant adeno-associated viruses for cns tropic delivery
WO2023201308A1 (en) 2022-04-14 2023-10-19 Regenxbio Inc. Gene therapy for treating an ocular disease
TW202405173A (en) 2022-04-18 2024-02-01 美商維泰克斯製藥公司 Compositions and methods for enhancing aav therapy and decreasing tropism of aav to the liver
WO2023215807A1 (en) 2022-05-03 2023-11-09 Regenxbio Inc. VECTORIZED ANTI-TNF-α INHIBITORS FOR OCULAR INDICATIONS
AR129215A1 (en) 2022-05-03 2024-07-31 Regenxbio Inc ANTI-COMPLEMENT ANTIBODIES AND VECTORIZED COMPLEMENT AGENTS AND THEIR ADMINISTRATION
WO2023214346A1 (en) 2022-05-06 2023-11-09 Novartis Ag Novel recombinant aav vp2 fusion polypeptides
AR129441A1 (en) 2022-05-25 2024-08-28 Tafalgie Therapeutics PEPTIDES AND METHODS FOR PAIN TREATMENT
WO2023239627A2 (en) 2022-06-08 2023-12-14 Regenxbio Inc. Methods for recombinant aav production
WO2023240236A1 (en) 2022-06-10 2023-12-14 Voyager Therapeutics, Inc. Compositions and methods for the treatment of spinal muscular atrophy related disorders
WO2023250511A2 (en) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression
TW202409289A (en) * 2022-06-27 2024-03-01 美商安斯泰來基因治療股份有限公司 Compositions and methods for the treatment of myotonic dystrophies
AR129733A1 (en) 2022-06-28 2024-09-25 Voyager Therapeutics Inc AAV CAPSID VARIANTS AND THEIR USES
WO2024007020A1 (en) 2022-06-30 2024-01-04 Indapta Therapeutics, Inc. Combination of engineered natural killer (nk) cells and antibody therapy and related methods
WO2024011112A1 (en) 2022-07-06 2024-01-11 Voyager Therapeutics, Inc. Aav capsid variants and uses thereof
WO2024015881A2 (en) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systems, and methods for targeted transcriptional activation
WO2024020352A1 (en) 2022-07-18 2024-01-25 Vertex Pharmaceuticals Incorporated Tandem guide rnas (tg-rnas) and their use in genome editing
WO2024017990A1 (en) 2022-07-21 2024-01-25 Institut National de la Santé et de la Recherche Médicale Methods and compositions for treating chronic pain disorders
WO2024026377A1 (en) 2022-07-27 2024-02-01 Sana Biotechnology, Inc. Methods of transduction using a viral vector and inhibitors of antiviral restriction factors
CN115354049A (en) * 2022-07-29 2022-11-18 中国科学院深圳先进技术研究院 Application of gene delivery system in delivering target gene to liver through intravenous injection
WO2024044725A2 (en) 2022-08-24 2024-02-29 Regenxbio Inc. Recombinant adeno-associated viruses and uses thereof
WO2024042485A1 (en) 2022-08-25 2024-02-29 Takeda Pharmaceutical Company Limited Composition for use in the treatment of fabry disease
WO2024054983A1 (en) 2022-09-08 2024-03-14 Voyager Therapeutics, Inc. Controlled expression of viral proteins
WO2024064863A2 (en) 2022-09-22 2024-03-28 Biomarin Pharmaceutical Inc. Treatment of arrhythmogenic cardiomyopathy with aav gene therapy vectors
TW202417631A (en) 2022-09-22 2024-05-01 美商拜奧馬林製藥公司 Treatment of cardiomyopathy with aav gene therapy vectors
WO2024073669A1 (en) 2022-09-30 2024-04-04 Regenxbio Inc. Treatment of ocular diseases with recombinant viral vectors encoding anti-vegf fab
WO2024081746A2 (en) 2022-10-11 2024-04-18 Regenxbio Inc. Engineered nucleic acid regulatory elements and methods and uses thereof
WO2024105638A1 (en) 2022-11-18 2024-05-23 Jcr Pharmaceuticals Co., Ltd. Recombinant aav vectors and methods for treatment of hunter syndrome
WO2024130070A2 (en) 2022-12-17 2024-06-20 The Trustees Of The University Of Pennsylvania Recombinant aav capsids with cardiac- and skeletal muscle- specific targeting motifs and uses thereof
WO2024130067A2 (en) 2022-12-17 2024-06-20 The Trustees Of The University Of Pennsylvania Recombinant aav mutant vectors with cardiac and skeletal muscle-specific targeting motifs and compositions containing same
IT202200026595A1 (en) 2022-12-22 2024-06-22 Fond Telethon Ets NEW INHIBITORS OF EPIGENETIC REGULATORS
WO2024146935A1 (en) 2023-01-06 2024-07-11 Institut National de la Santé et de la Recherche Médicale Intravenous administration of antisense oligonucleotides for the treatment of pain
WO2024151541A1 (en) 2023-01-09 2024-07-18 Sana Biotechnology, Inc. Type-1 diabetes autoimmune mouse
WO2024149844A1 (en) 2023-01-12 2024-07-18 Nantes Université Chemically-modified adeno-associated virus
WO2024163683A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist)
WO2024163678A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods
WO2024163012A1 (en) 2023-02-02 2024-08-08 Voyager Therapeutics, Inc. Compositions and methods for the treatment of neurological disorders related to glucosylceramidase beta deficiency
WO2024161032A1 (en) 2023-02-03 2024-08-08 Janssen Pharmaceutica Nv Gene therapy vectors for use in parkinson's disease
GB202302480D0 (en) 2023-02-22 2023-04-05 Drishti Discoveries Ltd shRNA for the treatment of disease
WO2024192281A2 (en) 2023-03-15 2024-09-19 Regenxbio Inc. Exon skipping gene therapy constructs, vectors and uses thereof
WO2024196855A2 (en) 2023-03-17 2024-09-26 University Of Rochester Ribozyme-mediated rna assembly and expression
WO2024211780A1 (en) 2023-04-07 2024-10-10 Regenxbio Inc. Compositions and methods for recombinant aav production
WO2024215655A1 (en) 2023-04-10 2024-10-17 Tenaya Therapeutics, Inc. Cardioprotective bag3 therapies
WO2024215653A1 (en) 2023-04-10 2024-10-17 Tenaya Therapeutics, Inc. Guide rnas, vectors, and virions for targeting mutations in the pln gene
WO2024216244A2 (en) 2023-04-13 2024-10-17 Regenxbio Inc. Targeting aav capsids, methods of manufacturing and using same
CN116622908B (en) * 2023-04-13 2024-02-06 武汉珈创生物技术股份有限公司 Primer probe, kit and method for rapidly detecting wild adeno-associated virus and application
WO2024224361A1 (en) 2023-04-26 2024-10-31 Sanofi Host cell lines and methods for identifying and using such host cell lines
CN118459608A (en) * 2024-04-26 2024-08-09 泰州博莱得利生物科技有限公司 Canine parvovirus specific immunity preparation, preparation method and application

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8929110D0 (en) * 1989-12-22 1990-02-28 3I Res Expl Ltd Polypeptides and dna encoding therefor
US5449616A (en) 1990-05-23 1995-09-12 University Of Iowa Research Foundation Nucleic acid encoding dystrophin-associated protein
US5173414A (en) * 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
CA2046745A1 (en) 1991-07-10 1993-01-11 Isaac Neuman Article including a container containing at least one precious stone
US6174666B1 (en) 1992-03-27 2001-01-16 The United States Of America As Represented By The Department Of Health And Human Services Method of eliminating inhibitory/instability regions from mRNA
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
US5658785A (en) 1994-06-06 1997-08-19 Children's Hospital, Inc. Adeno-associated virus materials and methods
US6204059B1 (en) 1994-06-30 2001-03-20 University Of Pittsburgh AAV capsid vehicles for molecular transfer
US5856152A (en) 1994-10-28 1999-01-05 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV vector and methods of use therefor
US6001650A (en) * 1995-08-03 1999-12-14 Avigen, Inc. High-efficiency wild-type-free AAV helper functions
CA2230758A1 (en) * 1995-09-08 1997-03-13 Genzyme Corporation Improved aav vectors for gene therapy
ATE264398T1 (en) * 1995-12-01 2004-04-15 Crucell Holland Bv REGULATED EXPRESSION OF PROTEINS IN STABLE TRANSFORMED MAMMAL CELLS
WO1998010086A1 (en) 1996-09-06 1998-03-12 Trustees Of The University Of Pennsylvania Methods using cre-lox for production of recombinant adeno-associated viruses
EP1696036B1 (en) 1996-09-06 2010-04-21 The Trustees of The University of Pennsylvania Use of recombinant adeno-associated virus in the manufacture of a medicament for gene therapy via muscle cells
AU722624B2 (en) 1996-09-06 2000-08-10 Trustees Of The University Of Pennsylvania, The An inducible method for production of recombinant adeno-associated viruses utilizing T7 polymerase
AU4255397A (en) 1996-09-06 1998-03-26 Trustees Of The University Of Pennsylvania, The Chimpanzee adenovirus vectors
US20020037867A1 (en) * 1999-02-26 2002-03-28 James M. Wilson Method for recombinant adeno-associated virus-directed gene therapy
US5866552A (en) * 1996-09-06 1999-02-02 The Trustees Of The University Of Pennsylvania Method for expressing a gene in the absence of an immune response
WO1998011244A2 (en) * 1996-09-11 1998-03-19 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Aav4 vector and uses thereof
CA2274146C (en) * 1996-12-05 2007-02-06 Introgene B.V. Genetic modification of primate hemopoietic repopulating stem cells
US6039942A (en) * 1996-12-20 2000-03-21 Novo Nordick A/S Phytase polypeptides
US6156303A (en) 1997-06-11 2000-12-05 University Of Washington Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom
US6251677B1 (en) 1997-08-25 2001-06-26 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
CA2303768C (en) * 1997-09-19 2009-11-24 The Trustees Of The University Of Pennsylvania Methods and vector constructs useful for production of recombinant aav
EP1015619A1 (en) * 1997-09-19 2000-07-05 The Trustees Of The University Of Pennsylvania Methods and cell line useful for production of recombinant adeno-associated viruses
CA2304131A1 (en) 1997-09-19 1999-04-01 James M. Wilson Method for gene transfer using bcl2 and compositions useful therein
ATE286138T1 (en) 1998-03-20 2005-01-15 Univ Pennsylvania COMPOSITIONS AND METHODS FOR THE HELPER-FREE PRODUCTION OF RECOMBINANT ADENO-ASSOCIATED VIRUSES
US6953690B1 (en) 1998-03-20 2005-10-11 The Trustees Of The University Of Pennsylvania Compositions and methods for helper-free production of recombinant adeno-associated viruses
CA2745131C (en) 1998-05-28 2016-08-09 John A. Chiorini Aav5 vector and uses thereof
US6210663B1 (en) 1998-08-20 2001-04-03 The Wistar Institute Of Anatomy And Biology Methods of augmenting mucosal immunity through systemic priming and mucosal boosting
US6759237B1 (en) * 1998-11-05 2004-07-06 The Trustees Of The University Of Pennsylvania Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same
DE69936104T2 (en) * 1998-11-05 2008-01-17 The Trustees Of The University Of Pennsylvania NUCLEIC ACID SEQUENCES OF ADENO ASSOCIATED VIRUS OF SEROTYPE I, AND VECTORS AND HOST CELLS THEREOF
US6387368B1 (en) * 1999-02-08 2002-05-14 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
JP4693244B2 (en) * 1999-03-18 2011-06-01 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Compositions and methods for helperless production of recombinant adeno-associated virus
WO2000075353A1 (en) 1999-06-02 2000-12-14 Trustees Of The University Of Pennsylvania Compositions and methods useful for production of recombinant viruses which require helper viruses
KR20020059370A (en) * 1999-08-20 2002-07-12 추후보정 Methods and compositions for the construction and use of fusion libraries
US6399385B1 (en) * 1999-09-29 2002-06-04 The Trustees Of The University Of Pennsylvania Methods for rapid PEG-modification of viral vectors, compositions for enhanced gene transduction, compositions with enhanced physical stability, and uses therefor
US6365394B1 (en) * 1999-09-29 2002-04-02 The Trustees Of The University Of Pennsylvania Cell lines and constructs useful in production of E1-deleted adenoviruses in absence of replication competent adenovirus
CA2392537A1 (en) 1999-12-03 2001-06-07 The Trustees Of The University Of Pennsylvania Compositions and methods for increasing packaging and yields of recombinant adenoviruses using multiple packaging signals
US6821512B1 (en) 1999-12-03 2004-11-23 The Trustees Of The University Of Pennsylvania Compositions and methods for increasing packaging and yield of recombinant adenoviruses using multiple packaging signals
AU4565401A (en) * 2000-03-14 2001-09-24 Thomas Jefferson University Production of chimeric capsid vectors
US6468524B1 (en) * 2000-03-22 2002-10-22 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services AAV4 vector and uses thereof
US6855314B1 (en) 2000-03-22 2005-02-15 The United States Of America As Represented By The Department Of Health And Human Services AAV5 vector for transducing brain cells and lung cells
AU5557501A (en) 2000-04-28 2001-11-12 Univ Pennsylvania Recombinant aav vectors with aav5 capsids and aav5 vectors pseudotyped in heterologous capsids
JP2004520812A (en) * 2000-08-30 2004-07-15 ハプロゲン・エルエルシー Methods for determining alleles
US7749492B2 (en) 2001-01-05 2010-07-06 Nationwide Children's Hospital, Inc. AAV vectors and methods
US20020159978A1 (en) * 2001-02-06 2002-10-31 James Allen Muscle-directed gene transfer by use of recombinant AAV-1 and AAV-6 virions
DE60209193T2 (en) 2001-11-13 2006-09-28 Trustees Of The University Of Pennsylvania Method for identifying adeno-associated virus (AAV) sequences and kit for carrying out the method
PT2359869T (en) 2001-12-17 2019-04-16 Univ Pennsylvania Adeno-associated virus (aav) serotype 8 sequences, vectors containing same and uses therefor
JP4769417B2 (en) 2001-12-17 2011-09-07 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Adeno-associated virus (AAV) serotype 9 sequences, vectors containing the same and uses thereof
AU2002367943A1 (en) 2001-12-18 2003-12-22 University Of North Carolina At Chapel Hill Improved reagents and methods for producing parvoviruses
AU2003253595A1 (en) * 2002-04-05 2003-11-03 The Children's Hospital Of Philadelphia Methods for the production of chimeric adeno-associated virus (aav) vectors, compositions of chimeric aav vectors, and methods of use thereof
WO2003093460A1 (en) * 2002-04-29 2003-11-13 The Trustees Of The University Of Pennsylvania Method for direct rescue and amplification of integrated viruses from cellular dna of tissues
PT3235827T (en) 2003-06-19 2021-04-09 Genzyme Corp Aav virons with decreased immunoreactivity and uses therefor
CN102199626B (en) * 2003-09-30 2015-06-24 宾夕法尼亚大学托管会 Adeno-associated virus (AAV) clades, sequences, vectors containing same, and uses therefor
US20090054823A1 (en) 2004-09-30 2009-02-26 The Trustees Of The University Of Pennsylvania Perfusion circuit and use therein in targeted delivery of macromolecules
ES2525067T3 (en) 2005-04-07 2014-12-17 The Trustees Of The University Of Pennsylvania Method of increasing the function of an AAV vector
US7788045B2 (en) 2005-09-01 2010-08-31 Meditasks, Llc Systems and method for homeostatic blood states
US9198984B2 (en) 2006-04-28 2015-12-01 The Trustees Of The University Of Pennsylvania Scalable production method for AAV
JP2009102988A (en) 2007-10-19 2009-05-14 Toyota Motor Corp Fuel injection device for internal combustion engine
JP5634272B2 (en) 2008-03-14 2014-12-03 ヒューマンザイム リミテッド Recombinant production of authentic human protein using human cell expression system
US20090280103A1 (en) 2008-04-04 2009-11-12 Martin Flueck Regulation of muscle repair
WO2010065630A2 (en) 2008-12-03 2010-06-10 The Johns Hopkins University Compositions and methods for treating hepatic neoplasia
CA3066596A1 (en) 2010-04-23 2011-10-27 University Of Massachusetts Cns targeting aav vectors and methods of use thereof
WO2013010571A1 (en) 2011-07-15 2013-01-24 Alfred Kärcher Gmbh & Co. Kg Rotating brush and sweeping machine with a rotating brush
US9434928B2 (en) 2011-11-23 2016-09-06 Nationwide Children's Hospital, Inc. Recombinant adeno-associated virus delivery of alpha-sarcoglycan polynucleotides
JP6373763B2 (en) 2012-02-17 2018-08-22 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィアThe Children’S Hospital Of Philadelphia AAV vector components and methods for gene transfer into cells, organs and tissues
EP2847337A4 (en) 2012-05-09 2016-04-27 Univ Oregon Health & Science Adeno associated virus plasmids and vectors
US9819463B2 (en) 2016-02-18 2017-11-14 Huawei Technologies Co., Ltd. Method and apparatus for transmitting data in a wireless communication system
MX2019010275A (en) 2017-02-28 2019-10-15 Univ Pennsylvania Adeno-associated virus (aav) clade f vector and uses therefor.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308958B2 (en) 2001-11-13 2019-06-04 The Trustees Of The University Of Pennsylvania Method of detecting and/or identifying adeno-associated virus (AAV) sequences and isolating novel sequences identified thereby

Also Published As

Publication number Publication date
JP2003235562A (en) 2003-08-26
CA2756866A1 (en) 2003-05-22
DE60209193D1 (en) 2006-04-20
US20110263027A1 (en) 2011-10-27
IL221602A (en) 2015-09-24
IL233391A (en) 2016-12-29
JP2013013414A (en) 2013-01-24
EP2341068B1 (en) 2013-09-25
EP1456419B1 (en) 2011-08-17
IL258545B (en) 2019-11-28
IL234063A0 (en) 2014-09-30
NO20140988L (en) 2004-07-14
IL213810A0 (en) 2011-07-31
US11034976B2 (en) 2021-06-15
EP1310571A2 (en) 2003-05-14
US8524446B2 (en) 2013-09-03
IL193525A0 (en) 2009-02-11
IL270065A (en) 2019-12-31
US11377669B2 (en) 2022-07-05
CA2864537C (en) 2016-11-29
CA3159060C (en) 2023-05-16
CN105671005A (en) 2016-06-15
SG10201912509RA (en) 2020-02-27
US11041171B2 (en) 2021-06-22
PL373864A1 (en) 2005-09-19
KR20100029134A (en) 2010-03-15
US20030138772A1 (en) 2003-07-24
PL221877B1 (en) 2016-06-30
CA2465868A1 (en) 2003-05-22
CA2915124A1 (en) 2003-05-22
IL270065B1 (en) 2023-06-01
CN103589692B (en) 2018-07-24
EP1456419A2 (en) 2004-09-15
IL227866A (en) 2015-11-30
CA2406745C (en) 2006-01-10
CA2945734C (en) 2020-02-25
JP2016136953A (en) 2016-08-04
CN103555678B (en) 2018-02-09
NZ564506A (en) 2009-09-25
US20160097040A1 (en) 2016-04-07
JP2009195237A (en) 2009-09-03
ATE317916T1 (en) 2006-03-15
BR122016004944B8 (en) 2021-07-27
AU2002361573B2 (en) 2008-06-12
WO2003042397A3 (en) 2004-02-05
SG168422A1 (en) 2011-02-28
CA2406745A1 (en) 2003-05-13
PH12016502583A1 (en) 2017-10-18
HUP0600229A3 (en) 2010-01-28
CN102181480A (en) 2011-09-14
US20200080109A1 (en) 2020-03-12
US10508286B2 (en) 2019-12-17
PL217623B1 (en) 2014-08-29
PL409838A1 (en) 2015-07-20
NO336468B1 (en) 2015-08-31
MX359371B (en) 2018-09-25
US20210285012A1 (en) 2021-09-16
CA3159060A1 (en) 2003-05-22
CA2465868C (en) 2017-02-28
IL221602A0 (en) 2012-10-31
IL233391A0 (en) 2014-08-31
EP1310571B1 (en) 2006-02-15
US10544432B2 (en) 2020-01-28
US9790472B2 (en) 2017-10-17
EP2341068A1 (en) 2011-07-06
CA2945734A1 (en) 2003-05-22
US10041090B2 (en) 2018-08-07
CN105671005B (en) 2020-09-15
EP2338900B1 (en) 2014-01-01
JP5140627B2 (en) 2013-02-06
PL222683B1 (en) 2016-08-31
NO20131359L (en) 2004-07-14
NZ578982A (en) 2011-03-31
NZ618298A (en) 2015-04-24
ATE520707T1 (en) 2011-09-15
ES2439515T3 (en) 2014-01-23
JP6212142B2 (en) 2017-10-11
PH12014501487B1 (en) 2015-12-07
US20130045186A1 (en) 2013-02-21
NZ532635A (en) 2007-05-31
US8906675B2 (en) 2014-12-09
US11034977B2 (en) 2021-06-15
WO2003042397A2 (en) 2003-05-22
HU230406B1 (en) 2016-04-28
IL234063A (en) 2017-06-29
CN103555677A (en) 2014-02-05
PH12014501487A1 (en) 2015-12-07
IL161827A (en) 2009-11-18
DE60209193T2 (en) 2006-09-28
JP2005525086A (en) 2005-08-25
NZ591012A (en) 2012-06-29
IL248724B (en) 2018-04-30
CN103555676B (en) 2016-08-31
EP1456419A4 (en) 2005-11-09
US10526617B2 (en) 2020-01-07
NZ600121A (en) 2013-12-20
CN102181480B (en) 2016-01-27
KR20050058234A (en) 2005-06-16
US20200131534A1 (en) 2020-04-30
MXPA04004600A (en) 2004-08-13
JP5969547B2 (en) 2016-08-17
NO338362B1 (en) 2016-08-15
SG10201506627PA (en) 2015-10-29
IL248724A0 (en) 2017-01-31
NO334379B1 (en) 2014-02-24
EP2338900A1 (en) 2011-06-29
MX346493B (en) 2017-03-21
US20180030479A1 (en) 2018-02-01
IL213810A (en) 2014-08-31
IL193525A (en) 2014-08-31
NO336801B1 (en) 2015-11-02
PL220644B1 (en) 2015-11-30
SG157224A1 (en) 2009-12-29
US10308958B2 (en) 2019-06-04
US20190024117A1 (en) 2019-01-24
IL161827A0 (en) 2005-11-20
CN103555678A (en) 2014-02-05
HK1068925A1 (en) 2005-05-06
US20220025401A1 (en) 2022-01-27
SG10202108118RA (en) 2021-08-30
US20170298388A1 (en) 2017-10-19
NZ548094A (en) 2008-07-31
KR101015854B1 (en) 2011-02-23
CN103555676A (en) 2014-02-05
BR122016004546B1 (en) 2016-11-29
HU229379B1 (en) 2013-11-28
CA2864537A1 (en) 2003-05-22
PL404537A1 (en) 2014-02-17
BR0214119A (en) 2005-06-28
CA3066428C (en) 2022-05-24
IL270065B2 (en) 2023-10-01
HK1056198A1 (en) 2004-02-06
KR101014207B1 (en) 2011-02-14
JP3958191B2 (en) 2007-08-15
JP4677187B2 (en) 2011-04-27
JP2014239680A (en) 2014-12-25
EP1310571A3 (en) 2003-08-13
CA3066428A1 (en) 2003-05-22
CA2915124C (en) 2018-08-14
BR122016004546B8 (en) 2021-07-27
ZA200403360B (en) 2005-04-26
US20110151434A1 (en) 2011-06-23
PL397823A1 (en) 2012-07-16
IL227866A0 (en) 2013-09-30
BRPI0214119B8 (en) 2021-05-25
JP5669795B2 (en) 2015-02-18
IL258545A (en) 2018-06-28
US20170240921A1 (en) 2017-08-24
US20220213501A1 (en) 2022-07-07
CA2756866C (en) 2017-06-06
BR122016004944B1 (en) 2016-11-22
US11499167B2 (en) 2022-11-15
BRPI0214119B1 (en) 2016-09-27
CN103589692A (en) 2014-02-19
ES2258601T3 (en) 2006-09-01
US20200087684A1 (en) 2020-03-19
ES2455126T3 (en) 2014-04-14
CN103555677B (en) 2018-01-30
DK1310571T3 (en) 2006-06-19
NO20042183L (en) 2004-07-14
HUP0600229A2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US11377669B2 (en) Method of detecting and/or identifying adeno-associated virus (AAV) sequences and isolating novel sequences identified thereby
AU2017279564B2 (en) ADENO-ASSOCIATED VIRUS cy.5 (AAVcy.5) SEQUENCES AND RECOMBINANT AAVs COMPRISING SAME
AU2011250837B2 (en) A method of detecting and/or identifying adeno-associated virus (AAV) sequences and isolating novel sequences identified thereby
AU2008202344B2 (en) A method of detecting and/or identifying adeno-associated virus (AAV) sequences and isolating novel sequences identified thereby

Legal Events

Date Code Title Description
MK1K Patent expired