NO20092929A1 - Trehulldekket - Google Patents
Trehulldekket Download PDFInfo
- Publication number
- NO20092929A1 NO20092929A1 NO20092929A NO20092929A NO20092929A1 NO 20092929 A1 NO20092929 A1 NO 20092929A1 NO 20092929 A NO20092929 A NO 20092929A NO 20092929 A NO20092929 A NO 20092929A NO 20092929 A1 NO20092929 A1 NO 20092929A1
- Authority
- NO
- Norway
- Prior art keywords
- floor
- element according
- plate
- dividing element
- flange
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000009423 ventilation Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000005611 electricity Effects 0.000 claims abstract description 3
- 239000002023 wood Substances 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000011152 fibreglass Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 2
- 230000003993 interaction Effects 0.000 claims 1
- 238000010276 construction Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003292 glue Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 241000272165 Charadriidae Species 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/12—Load-carrying floor structures formed substantially of prefabricated units with wooden beams
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/43—Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/10—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
- E04C2/12—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of solid wood
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/44—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
- E04C2/52—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
- E04C2/521—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/12—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
- E04C3/14—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with substantially solid, i.e. unapertured, web
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Floor Finish (AREA)
Abstract
Foreliggende oppfinnelse angår et etasjeskilleelement (1) som omfatter to plateformede flenser (2,4) i egnet materiale som er forbundet med hverandre via sted (3) arrangert i to eller flere rekker i elementets (1) lengderetning for å skape rom i et dekke slik at infrastruktur som vann, avløp, ventilasjon og elektrisitet kan føres både i elementets lengderetning og på tvers av elementene.BACKGROUND OF THE INVENTION The present invention relates to a floor separating element (1) comprising two plate-shaped flanges (2,4) of suitable material connected to each other via location (3) arranged in two or more rows in the longitudinal direction of the element (1) to create space in a cover. so that infrastructure such as water, drains, ventilation and electricity can be passed both in the longitudinal direction and across the elements.
Description
Foreliggende oppfinnelse angår en prefabrikkert etasjeskiller for montering over store spennvidder. The present invention relates to a prefabricated floor divider for assembly over large spans.
For bygg som oppføres i stål/betong nyttes ofte "betonghulldekke" som etasjeskillere. Betonghulldekket leveres som ferdigstøpte elementer som monteres på byggeplass. Denne type byggelement har klare fortrinn med hensyn til spennvidde, gode lydtekniske egenskaper, konkurransedyktig pris og har oppnådd en sterk posisjon i markedet. Av ulempene med "betonghulldekket" kan på den annen side nevnes at elementene ikke gir en tilfredsstillende jevn og plan overflate. Dette må det kompenseres for ved at det påføres en påstøp- eller avrettingsmasse. Denne prosessen samt den etterfølgende tørkeprosess gir en fremdriftsmessig og kostnadsmessig ulempe. Videre blir slike elementer tunge, hvilket gir behov for å dimensjonere fundament og bæresystem deretter. Det har også vist seg at betonghulldekker ofte har gitt fuktproblem ved at regn har trukket eller lekket inn i elementenes hulrom og ikke har kommet ut igjen før innbygging. For å unngå dette er det mulig at det må gjøres produktmessige justeringer eller montasjemessige prosedyrer som vil gi tilleggskostnader. For buildings constructed in steel/concrete, "concrete hole covers" are often used as floor separators. The concrete manhole cover is delivered as pre-cast elements that are installed on the construction site. This type of building element has clear advantages with regard to span, good sound technical properties, competitive price and has achieved a strong position in the market. On the other hand, one of the disadvantages of the "concrete hole cover" can be mentioned is that the elements do not provide a satisfactory even and level surface. This must be compensated for by applying a casting or leveling compound. This process and the subsequent drying process give a disadvantage in terms of progress and cost. Furthermore, such elements become heavy, which creates a need to dimension the foundation and support system accordingly. It has also been shown that concrete hole covers have often caused moisture problems in that rain has drawn or leaked into the cavities of the elements and has not come out again before installation. To avoid this, it is possible that product-related adjustments or assembly-related procedures will have to be made, which will result in additional costs.
For bygg som i hovedsak er basert på tre er etasjeskiller som oftest basert på bjelkelagsløsninger. Bjelkelagsløsninger har klare begrensninger med hensyn til spennvidde, mindre gode lydtekniske egenskaper og blir som oftest plassbygd. Aktører som driver med trehusbyggeri skulle gjerne hatt et "trehulldekke" som svar på betongbransjens "betonghulldekke". Blant viktige funksjonsegenskaper som et slikt "trehulldekke" gjerne skulle hatt kan en trekke fram større spennvidder med økt mulighet for fleksible planløsninger, lav vekt, bedrede lydtekniske egenskaper, gi plass for infrastruktur som vann, avløp, ventilasjon, o.l., ferdige elementer som rasjonelt kan heises på plass, kreve et minimum av etterarbeid og kunne innfri ulike brannmotstander. For buildings that are mainly based on wood, floor dividers are most often based on joist solutions. Beam layer solutions have clear limitations with regard to span, less sound technical properties and are usually built in space. Actors involved in wooden house construction would like to have a "wood hole cover" as a response to the concrete industry's "concrete hole cover". Among the important functional properties that such a "wooden deck" would like to have, one can single out larger spans with increased possibilities for flexible floor plans, low weight, improved acoustic properties, providing space for infrastructure such as water, drainage, ventilation, etc., ready-made elements that can rationally be hoisted into place, require a minimum of finishing work and be able to meet various fire resistances.
Det foreligger således et behov for å frembringe en etasjeskiller i tre som tilfredsstiller de foran nevnte mål og krav. Dette oppnås med etasjeskilleren ifølge foreliggende oppfinnelse slik den er definert med de i kravene anførte trekk. There is thus a need to produce a floor divider in wood that satisfies the aforementioned goals and requirements. This is achieved with the floor separator according to the present invention as defined by the features listed in the requirements.
Oppfinnelsen vil bli beskrevet nærmere nedenfor med henvisning til tegningene der figur 1 viser et sideriss av et etasjeskilleelement, figur 2 viser et snitt A-A på figur 1 og figur 3 viser alternative utførelsesformer av et stegelement. The invention will be described in more detail below with reference to the drawings in which Figure 1 shows a side view of a floor separating element, Figure 2 shows a section A-A in Figure 1 and Figure 3 shows alternative embodiments of a step element.
Med henvisning til figurene 1-3. Elementet 1 bygges med overhøyde 6 i lengderetningen av elementet slik at det etter å være montert i et bygg oppnås en tilnærmet horisontal flate i gulvplan, klar til å belegges med ønsket overflatebelegg. Denne overhøyden 6 oppnås uten å bygge inn forspenninger av betydning i de benyttede komponenter, men ved at nedre flenselement 2 anbringes med en overhøyde 6 tilpasset den ønskede spennvidde og belastningsnivå. Deretter plasseres stegelementer 3 som er mellom 0,1-2,0 meter i lengde, typisk 0,3-1,8 meter og foretrukket mellom 0,5-1,0 meter, i to eller flere rekker i elementet 1 sin lengderetning. Rekkene har en innbyrdes avstand mellom 0,1-1,5 meter, typisk 0,1-1 meter og foretrukket 0,2-0,4 meter. Disse stegelementer 3 kan enten være av tre eller metall og kan ha planparallelle anleggsflater mot de to flensplatene 2,4 og kan fikseres enten ved hjelp av lim alene eller i kombinasjon med mekaniske festeelementer som skruer, spiker eller braketter med ferdigstansede festeinnretninger. Innenfor rammen av aktuelle overhøyder for ulike spennvidder vil elementenes 3 krumming bare utgjøre en ubetydelig pilhøyde, anslagsvis mindre enn 1 mm over stegelementets lengde. Disse stegelementene kan være utført på mange ulike måter hvorav noen typiske eksempler er vist i figurene 3 a-d. Disse alternativene uttrykker løsninger som kan vise seg å være hensiktsmessige for å oppnå gode spenningsoverføring, gode framføringsmulighet for vann, avløp og ventilasjon, samt rasjonell tilvirkning / produksjon. With reference to figures 1-3. The element 1 is built with an overhang 6 in the longitudinal direction of the element so that, after being installed in a building, an approximately horizontal surface is obtained in floor plan, ready to be coated with the desired surface coating. This overhang 6 is achieved without building significant prestressing into the components used, but by placing the lower flange element 2 with an overhang 6 adapted to the desired span and load level. Next, step elements 3 which are between 0.1-2.0 meters in length, typically 0.3-1.8 meters and preferably between 0.5-1.0 meters, are placed in two or more rows in the element 1's longitudinal direction. The rows have a mutual distance between 0.1-1.5 metres, typically 0.1-1 meter and preferably 0.2-0.4 metres. These step elements 3 can either be made of wood or metal and can have plane-parallel contact surfaces against the two flange plates 2,4 and can be fixed either by means of glue alone or in combination with mechanical fastening elements such as screws, nails or brackets with pre-punched fastening devices. Within the framework of relevant overhead heights for various spans, the curvature of the elements 3 will only amount to an insignificant stilt height, estimated to be less than 1 mm over the length of the step element. These step elements can be made in many different ways, some typical examples of which are shown in figures 3 a-d. These alternatives express solutions that may prove to be appropriate for achieving good voltage transmission, good conveyance possibilities for water, drainage and ventilation, as well as rational manufacturing / production.
Øvre 2 og nedre 3 flenselement vil være laget av et tremateriale som for eksempel massivtre, kryssfinerplate (Kerto) eller lignende. Imidlertid kan flenselemntene være armert for å bedre egenskapene til gjeldende flens (2,4). For eks glassfiber eller stål i nedre flens (strekksiden) og påstøpt betong på øvre flens (trykk-/kompresjonssiden) Upper 2 and lower 3 flange elements will be made of a wooden material such as solid wood, plywood board (Kerto) or similar. However, the flange elements can be reinforced to improve the properties of the current flange (2,4). For example fiberglass or steel in the lower flange (tensile side) and poured concrete on the upper flange (pressure/compression side)
Etter at nedre flenselement 2 og stegelementer 3 er montert sammen anbringes øvre flenselement 4 på toppen og festes på tilsvarende måte som for nedre flenselement. Etter at eventuell herdetid for lim er utløpt kan det sammenmonterte elementet 1 tas ut av "overhøydejiggen" og bringes videre i en ferdigstillingsfase med innmontering av ikke viste komponenter for vann, ventilasjon og eller liknende. Ved at stegelementene er plassert med innbyrdes avstand vil det være enkelt å finne føringsveier for vann, ventilasjon og elektrisitet. After the lower flange element 2 and step elements 3 have been assembled together, the upper flange element 4 is placed on top and fixed in a similar way as for the lower flange element. After any curing time for glue has expired, the assembled element 1 can be taken out of the "overhead jig" and brought forward in a completion phase with the installation of components not shown for water, ventilation and the like. As the step elements are spaced apart, it will be easy to find conduits for water, ventilation and electricity.
Elementene vil videre bli slik utført langs kantene at det kan overføres skjærkrefter fra ett element og inn til elementene ved siden av etter innmontering i bygg. Dette for å kunne gi mulighet for gjennomføring av trapp, pipe eller andre ønskede større løsninger. Slik overføring av skjærkraft i sideveis retning kan eksempelvis oppnås ved fjær / not langs elementenes sider 5,7, ved skrubare lister eller tilsvarende. The elements will also be designed along the edges in such a way that shear forces can be transferred from one element to the adjacent elements after installation in the building. This is to enable the implementation of stairs, pipes or other desired larger solutions. Such transfer of shearing force in the lateral direction can be achieved, for example, by springs / grooves along the sides 5, 7 of the elements, by screwable strips or the like.
Etter fullført sluttmontering i fabrikk mellomlagres elementene før samlet transport til byggested. After completion of final assembly in the factory, the elements are temporarily stored before collective transport to the construction site.
De benyttede trematerialene benyttes hensiktsmessig slik at de i størst mulig grad bidrar til elementets styrke og stivhet samtidig som de bidrar til lav vekt. Litt forenklet kan elementet defineres som et bredt I-profil med to eller flere steg anbrakt mellom flensene. Flensene kan typisk være finerplater, "tynne" elementer av massivt tre eller liknende. Flensene kan også gjerne være satt sammen av to eller flere materialer som inngår i ulike former for statisk samvirke.. Nedre flens kan en for eksempel tenke seg å forsterke med glassfiber eller andre fibermaterialer med stor strekkstyrke og en egnet E-modul. For øvre flens kan en tenke seg å kombinere inn materialer med stor trykkfasthet. Slikt samvirke kan være fordelaktig når man derigjennom oppnår en mer kostnadsoptimal bæreevne/stivhet. The wood materials used are used appropriately so that they contribute to the element's strength and stiffness to the greatest extent possible, while at the same time contributing to low weight. Slightly simplified, the element can be defined as a wide I-profile with two or more steps placed between the flanges. The flanges can typically be veneer sheets, "thin" elements of solid wood or similar. The flanges can also be composed of two or more materials that form part of various forms of static cooperation. For example, the lower flange can be reinforced with fiberglass or other fiber materials with high tensile strength and a suitable E-module. For the upper flange, one could think of combining materials with high compressive strength. Such cooperation can be advantageous when a more cost-optimal load capacity/stiffness is thereby achieved.
Blant viktige funksjonsegenskaper som et etasjeskilleelement må oppvise når det anvendes mellom ulike leiligheter er evnen til å redusere lyd / støy samt redusere trinnlyd / svingninger. Ved å øke massen i et etasjeskille reduseres lydgjennomgang, men ulempen er at slik tilleggsmasse bidrar til at den bærende struktur må oppdimensjoneres for at ikke "egen svingetallet" skal bli for lavt. Om en for eksempel skulle ønske å benytte pålimt betong for å øke massen vil det være naturlig å bygge opp slike element med litt mindre trefiber i øvre flens men derimot noe mer i nedre flens. På denne måten vil stivheten kunne økes mer enn det massen øker og slik a kravene til lyd og svingningsegenskaper kan innfris på en mer kostnadsoptimal måte. Among the important functional properties that a floor separating element must exhibit when it is used between different apartments is the ability to reduce sound / noise as well as reduce footfall / vibrations. By increasing the mass of a storey partition, sound transmission is reduced, but the disadvantage is that such additional mass contributes to the fact that the load-bearing structure has to be increased in size so that the "own swing rate" does not become too low. If, for example, you wish to use glued-on concrete to increase the mass, it would be natural to build up such an element with slightly less wood fiber in the upper flange but, on the other hand, somewhat more in the lower flange. In this way, the stiffness can be increased more than the mass increases and so that the requirements for sound and vibration characteristics can be met in a more cost-optimal way.
For denne type elementer som har en relativt åpen struktur både i lengderetning og på tvers er forutsetningene gode for å kunne øke massen (redusere lydgjennomgang) ved å fylle inn sand eller annen egnet løsmasse i hulrommet. For this type of element, which has a relatively open structure both longitudinally and transversely, the prerequisites are good for being able to increase the mass (reduce sound transmission) by filling in sand or other suitable loose material in the cavity.
Ved bruk av massivtre som nedre flens vil man kunne oppnå en ferdig himling i den underliggende etasje. By using solid wood as the lower flange, it will be possible to achieve a finished ceiling on the underlying floor.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20092929A NO20092929A1 (en) | 2009-09-01 | 2009-09-01 | Trehulldekket |
PCT/NO2010/000313 WO2011028124A1 (en) | 2009-09-01 | 2010-08-23 | "hollow wood layer" - floor for large spans and rational construction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20092929A NO20092929A1 (en) | 2009-09-01 | 2009-09-01 | Trehulldekket |
Publications (1)
Publication Number | Publication Date |
---|---|
NO20092929A1 true NO20092929A1 (en) | 2011-03-02 |
Family
ID=43649489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20092929A NO20092929A1 (en) | 2009-09-01 | 2009-09-01 | Trehulldekket |
Country Status (2)
Country | Link |
---|---|
NO (1) | NO20092929A1 (en) |
WO (1) | WO2011028124A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20181121A1 (en) * | 2018-08-27 | 2020-02-28 | Arne Vaslag | Composite, cooperating building element and method for manufacturing such a building element. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO162124C (en) * | 1984-06-22 | 1989-11-08 | Arne Engebretsen | TREATED BENCH OF WOODWOOD. |
US4745718A (en) * | 1986-05-30 | 1988-05-24 | Trus Joist Corporation | Prestressed structural support and method for making same |
DE29803747U1 (en) * | 1998-03-04 | 1998-07-02 | Lechner, Walter, 91483 Oberscheinfeld | Prefabricated ceiling element |
EP1325200B1 (en) * | 2000-10-13 | 2007-02-14 | Martinson Group Ab | Prefabricated floor structure component and method for the production of such a component |
NO324400B1 (en) * | 2002-12-18 | 2007-10-01 | Arne Engebretsen | A structural element |
-
2009
- 2009-09-01 NO NO20092929A patent/NO20092929A1/en not_active Application Discontinuation
-
2010
- 2010-08-23 WO PCT/NO2010/000313 patent/WO2011028124A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20181121A1 (en) * | 2018-08-27 | 2020-02-28 | Arne Vaslag | Composite, cooperating building element and method for manufacturing such a building element. |
NO345479B1 (en) * | 2018-08-27 | 2021-02-22 | Arne Vaslag | Composite, cooperating and elongated building element, and method for manufacturing such a building element. |
Also Published As
Publication number | Publication date |
---|---|
WO2011028124A1 (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8499511B2 (en) | Precast composite structural floor system | |
US6230465B1 (en) | Precast concrete structural modules | |
US20100058687A1 (en) | Method of constructing a multi-storey building using prefabricated modular panels | |
EP3133220A2 (en) | Platform for a balcony and method for its manufacture | |
US20030093965A1 (en) | Hybrid precast concrete and metal deck floor panel | |
US8613172B2 (en) | Composite panel including pre-stressed concrete with support frame, and method for making same | |
WO2011012974A2 (en) | Method for manufacturing a precast composite steel and concrete beam and a precast composite steel and concrete beam made according to said method | |
AU2010337145A1 (en) | Structural unit comprising a truss and fibrous cementitious slab building element connected together | |
UA144242U (en) | REINFORCED CONCRETE PLATE, SEPARATE FLOOR PLATE | |
US20080092466A1 (en) | Precast Concrete I-Beam Deck with Pre-Stressed Wire Strands as Reinforcing Material | |
US20210363753A1 (en) | Prefabricated wall panel, manufacturing method and structural system | |
CN106088480A (en) | Girder truss, the combination beam of application girder truss and the compound superstructure of application girder truss | |
RU2664087C2 (en) | Method of continuous manufacturing of monolithic reinforced concrete contour-based of hollow core slabs with non-extractable void-formers | |
US9062449B2 (en) | Wall construction system and method | |
NO20092929A1 (en) | Trehulldekket | |
CN102995804A (en) | Method for effectively reducing self-weight of prefabricated composite floor slab | |
JP5532468B1 (en) | Formwork support member in the slab | |
Lárusson et al. | Prefabricated floor panels composed of fiber reinforced concrete and a steel substructure | |
KR20160034136A (en) | High-speed construction method for quake-proof building structure using beam and super light concrete | |
KR20050043848A (en) | Bar truss sandwich slab | |
US20240209616A1 (en) | Framing member, construction panel, and methods of manufacturing | |
KR102209700B1 (en) | Precast type hollow concrete slab construction method for wall-type apartment and precast type hollow concrete slab using the same | |
CZ19995A3 (en) | Living unit, process of its production and a floor frame for such living unit | |
Suprapto et al. | Full Precast Structure with Unbonded Posttension Prestressed Hybrid Frame Structures at The Tamansari Hive Office Park Building, Jakarta, Indonesia | |
EP2401445A2 (en) | Composite structural element particularly for the construction of buildings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FC2A | Withdrawal, rejection or dismissal of laid open patent application |