[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

NO138020B - OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT - Google Patents

OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT Download PDF

Info

Publication number
NO138020B
NO138020B NO741068A NO741068A NO138020B NO 138020 B NO138020 B NO 138020B NO 741068 A NO741068 A NO 741068A NO 741068 A NO741068 A NO 741068A NO 138020 B NO138020 B NO 138020B
Authority
NO
Norway
Prior art keywords
fiber
coating
plastic
tube
glass fiber
Prior art date
Application number
NO741068A
Other languages
Norwegian (no)
Other versions
NO741068L (en
NO138020C (en
Inventor
Paxton Duffield Wilbraham
David Alfred Nelson
Original Assignee
Int Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Standard Electric Corp filed Critical Int Standard Electric Corp
Publication of NO741068L publication Critical patent/NO741068L/en
Publication of NO138020B publication Critical patent/NO138020B/en
Publication of NO138020C publication Critical patent/NO138020C/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/30Drawing through a die
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/18Extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

Foreliggende oppfinnelse angår en optisk glassfiber omgitt The present invention relates to an optical glass fiber surrounded

a<y> et beskyttende plastbelegg samt fremgangsmåte for å belegge a<y> a protective plastic coating and method of coating

en slik optisk fiber med et plastbelegg. such an optical fiber with a plastic coating.

Glassfibre som benyttes som lysledere for optiske transmi-sjons sys terner, er vanligvis ømtålige og sprø og derfor vanskelige å håndtere. TDette gjør at de ikke er egnet for å behandles av konvensjonelle sno- og tvinnemaskiner for å fremstille kabler inne-holdende flere lysledere i kjernen. Glass fibers used as light conductors for optical transmission systems are usually fragile and brittle and therefore difficult to handle. This means that they are not suitable for processing by conventional twisting and twisting machines to produce cables containing several light conductors in the core.

Mulighetene for å fremstille fibre av en mer robust glasstype er sterkt begrensede, da glasset først og fremst må utvelges på grunn av sine optiske egenskaper og ikke ut fra sine mekaniske egenskaper. The possibilities for producing fibers of a more robust type of glass are severely limited, as the glass must primarily be selected on the basis of its optical properties and not on the basis of its mechanical properties.

Den vanligste måte for forsterkning av slike glassfibre har hittil ganske enkelt vært å anbringe strekkopptagende tråder ved siden av de plastbelagte optiske fibre. Tanken har da vært at de nærliggende strekkopptagende elementer tar en del av støyten når fibrene utsettes for mekanisk strekk. Dette har nok til dels holdt stikk, men likevel er metoden langt fra ideell. Fibrene vil jo aldri utsettes for nøyaktig den samme mekaniske påkjenning som de nærbeliggende strekkopptagende elementer, og dessuten er det vanske-lig å finne materialer som har så liten grad av elastisk forlengelse at de virkelig vil hindre at brist oppstår i den tynne glassfiberen, som jo er ytterst sprø og ømtålig. Når det skal lages kabler som inneholder flere optiske fibre, har det derfor vært et stort problem å få fibrene til å tåle de påkjenninger som håndteringen under kabel-fremstiIlingen nødvendigvis må medføre. The most common way of reinforcing such glass fibers has so far simply been to place strain-absorbing wires next to the plastic-coated optical fibers. The idea has then been that the nearby strain-absorbing elements take part of the brunt when the fibers are subjected to mechanical strain. This has probably worked to some extent, but still the method is far from ideal. After all, the fibers will never be subjected to exactly the same mechanical stress as the nearby strain-absorbing elements, and moreover, it is difficult to find materials that have such a small degree of elastic elongation that they will really prevent a break from occurring in the thin glass fiber, which is extremely brittle and delicate. When cables containing several optical fibers are to be made, it has therefore been a major problem to get the fibers to withstand the stresses that the handling during cable production must necessarily entail.

Plastbelegget som omgir den enkelte fiber, har først og fremst blitt benyttet for å- hindre at tapt lysenergi fra en fiber skal over-føres til nabofiberen og derved gi krysstale. Plastmaterialet som er blitt benyttet, har vært av en slik beskaffenhet at det ikke har tatt The plastic coating that surrounds the individual fiber has primarily been used to prevent lost light energy from one fiber from being transferred to the neighboring fiber and thereby causing crosstalk. The plastic material that has been used has been of such a nature that it has not taken

opp noe merkbart mekanisk strekk. Hvis det har gitt noen mekanisk beskyttelse, så må det ha vært mot oppskraping og ikke mot strekkpåkjenninger. Det har dessuten tidligere vært forbundet med store problemer å påføre det aktuelle plastbelegg. Dette belgget skulle jo ekstruderes rundt fiberen. Ekstruderingsdysen måtte derfor være utført med høyeste grad av presisjon for ikke å beskadige fiberen som også passerer sentralt gjennom dysen og for samtidig å frembringe et plastbelegg som hele veien står i god kontakt med fiberen. up some noticeable mechanical stretch. If it has provided any mechanical protection, then it must have been against scratching and not against tensile stresses. It has also previously been associated with major problems to apply the plastic coating in question. This bellows had to be extruded around the fibre. The extrusion nozzle therefore had to be made with the highest degree of precision in order not to damage the fiber which also passes centrally through the nozzle and to simultaneously produce a plastic coating which is in good contact with the fiber all the way through.

Det har lenge vært velkjent at i plast som deformeres ved mekanisk belastning, opptrer en orientering av molekylene. Like-ledes har det vært velkjent at slik orientert plast får en forhøyet mekanisk styrke i molekylenes lengderetning. Men disse kunnskaper er aldri blitt benyttet i forbindelse med optiske fibre. It has long been well known that in plastic that is deformed by mechanical stress, an orientation of the molecules occurs. Similarly, it has been well known that such oriented plastic has an increased mechanical strength in the longitudinal direction of the molecules. But this knowledge has never been used in connection with optical fibres.

Formålet med foreliggende oppfinnelse er derfor å tilveiebringe glassfibre som til tross for at glasset er valgt ut bare etter sine optiske kvalifikasjoner, er så hardføre og robuste at de kan snos eller tvinnes sammen til flerlederkabler. The purpose of the present invention is therefore to provide glass fibers which, despite the fact that the glass is selected only according to its optical qualifications, are so hard-wearing and robust that they can be twisted or twisted together into multi-conductor cables.

Et ytterligere formål er å frembringe en fremgangsmåte for å belegge en optisk fiber med et plastbelegg som gir fiberen en øket styrke, men som ikke er så kritisk hva dysens dimensjoner og over-flatebeskaffenhet angår som tidligere kjente jnetoder. A further object is to produce a method for coating an optical fiber with a plastic coating which gives the fiber an increased strength, but which is not as critical in terms of nozzle dimensions and surface quality as previously known methods.

Dette oppnås ved en fiber og en fremgangsmåte i henhold til de nedenfor fremsatte patentkrav. En glassfiber fremstilt i henhold til foreliggende oppfinnelse egner seg derfor særlig godt som lysleder for optisk kommunikasjon. This is achieved by a fiber and a method according to the patent claims set out below. A glass fiber produced according to the present invention is therefore particularly suitable as a light conductor for optical communication.

For å gi en klarere forståelse av oppfinnelsen, vises til neden-stående detaljerte beskrivelse av et utførelseseksempel og til den ledsagende tegning som viser en skjematisk fremstilling av et apparat for å dekke en glassfiber med plast i henhold til foreliggende oppfinnelse. In order to provide a clearer understanding of the invention, reference is made to the detailed description below of an embodiment and to the accompanying drawing showing a schematic representation of an apparatus for covering a glass fiber with plastic according to the present invention.

På figuren trekkes en glassfiber 1 fra en trommel 2 gjennom ekstruderingshodet 3 til en plast smelte-ekstruder 4 som er utstyrt med en rørformende dyse (ikke vist). Fiberen 1 føres gjennom senteret til dysen slik at den omsluttes av det ekstruderte rør 5, uten å bli berørt av dette. Plastrøret 5 med den sentralt anbrakte glassfiber føres gjennom en kjølesone 6 over en trinse .7 og trekkes deretter gjennom en avsmalnende, formende dyse 8 som-presser plastrøret sammen til det danner kontakt med glassfiberen. Endelig føres den belagte glassfiber over en trinse 9 og lagres på trommelen 10. Nedtrekkingen av rørets tverrsnitt kan ledsages av oppvarming, og for enkelte an-vendelser kan den formende dysen 8 utelates. Glassfibre som er be- In the figure, a glass fiber 1 is drawn from a drum 2 through the extrusion head 3 to a plastic melt extruder 4 which is equipped with a tube-forming nozzle (not shown). The fiber 1 is passed through the center of the nozzle so that it is enclosed by the extruded tube 5, without being touched by it. The plastic pipe 5 with the centrally placed glass fiber is passed through a cooling zone 6 over a pulley 7 and is then drawn through a tapering, forming nozzle 8 which presses the plastic pipe together until it forms contact with the glass fiber. Finally, the coated glass fiber is passed over a pulley 9 and stored on the drum 10. The lowering of the tube's cross-section can be accompanied by heating, and for some applications the forming nozzle 8 can be omitted. Glass fibers that are be-

skyttet på denne måten, kan samles til en flerleder lysleder kabel. shot in this way, can be assembled into a multi-conductor fiber optic cable.

Nedtrekkingen av plastrørets tverrsnitt i dysen 8 gir et belegg av sterkt orienterte plastmolekyler på glassfiberen. Dette orienterte plastbeleggét er overlegent i styrke i aksiell retning sammenlignet med belegg som er dannet ved konvensjonell smelte-ekstrudering. Belegget gir derfor den" deri liggende fiber en betydelig forhøyet motstandsevne likeoverfor strekkpåkjenninger. The drawing down of the cross-section of the plastic tube in the nozzle 8 produces a coating of strongly oriented plastic molecules on the glass fiber. This oriented plastic coating is superior in strength in the axial direction compared to coatings formed by conventional melt extrusion. The coating therefore gives the fiber lying in it a significantly increased resistance to tensile stresses.

Den beskrevne produksjonsprosess reduserer dessuten behovet for snevre toleranser for fiberens dimensjoner, idet glasset ikke står i fysisk kontakt med plastmaterialet under ekstruderingen. The described production process also reduces the need for tight tolerances for the fiber's dimensions, as the glass is not in physical contact with the plastic material during extrusion.

Forskjellige termoplastiske materialer kan benyttes for denne prosessen. Polyestre er imidlertid foretrukket, og da særlig "ARNITEG" polyetylen tereftalat. Various thermoplastic materials can be used for this process. However, polyesters are preferred, and in particular "ARNITEG" polyethylene terephthalate.

Ved enkelte anvendélser kan håndtering av glassfiberen, f.eks. ved oppspoling, unngås ved -at et uttrekkingsapparat for glassfiber anbringes i tandem med et pT.astbelegningsapprat av den ovenfor nevnte type. Glassfiberen må da nedkjøles til omgivelsenes temperatur før den føres inn i den rørformede dysen, og hastigheten hvorved plast-røret trekkes ned i dimensjon, avpasses til uttrekningshastigheten for glassfiberen. På denne måte oppnås at glassfiberen belegges før dens overflate kan bli skadet. In certain applications, handling of the fiberglass, e.g. when winding, is avoided by placing an extraction device for glass fiber in tandem with a pT.ast coating device of the type mentioned above. The glass fiber must then be cooled down to the ambient temperature before it is fed into the tubular nozzle, and the speed at which the plastic tube is drawn down in size is adjusted to the withdrawal speed for the glass fibre. In this way, it is achieved that the glass fiber is coated before its surface can be damaged.

Da plastmaterialet ikke ekstruderes direkte i kontakt med glassfiberen, er det ikke nødvendig å styre den aksielle posisjon til glassfiberen så nøyaktig som det tidligere har vært påkrevet å gjøre i konvensjonelle smelte-ekstrudere. As the plastic material is not extruded directly in contact with the glass fiber, it is not necessary to control the axial position of the glass fiber as precisely as it has previously been required to do in conventional melt extruders.

Claims (4)

1. Optisk glassfiber omgitt av et beskyttende plastbelegg, karakterisert ved at plastbeleggét er aksielt orientert.1. Optical glass fiber surrounded by a protective plastic coating, characterized in that the plastic coating is axially oriented. 2. Fremgangsmåte for å belegge en optisk glassfiber med et plastbelegg i henhold til krav 1, hvilket plastbelegg utgjør et beskyttende og understøttende belegg for fiberen, idet fiberen mates fram langs den geometriske aksen til et ekstrudert rør av det aktuelle plast-materiale slik at røret omgir, men ikke berører fiberen, hvoretter røret trekkes ned til kontakt med fiberen, karakterisert ved at fiberen (1) og røret (5) trekkes gjennom en tverrsnitts-reduserende dyse (8) slik at plastmaterialet i røret orienteres aksielt og tvinges til kontakt med fiberen (1) og at det sprøytestøpte røret (5) avkjøles (i 6) før nedtrekkingen utføres slik at oriente- ringen blir permanent.2. Method for coating an optical glass fiber with a plastic coating according to claim 1, which plastic coating constitutes a protective and supporting coating for the fiber, the fiber being fed forward along the geometric axis of an extruded tube of the plastic material in question so that the tube surrounds, but does not touch, the fiber, after which the tube is pulled down into contact with the fiber, characterized in that the fiber (1) and the tube (5) are pulled through a cross-section-reducing nozzle (8) so that the plastic material in the tube is axially oriented and forced into contact with the fiber (1) and that the injection-molded tube (5) is cooled (in 6) before the pull-down is carried out so that the orientation the ring becomes permanent. 3. Fremgangsmåte ifølge krav 1, karakterisert ved a t plastmaterialet er en termoplast av polyetylentereftalattypen-3. Method according to claim 1, characterized in that the plastic material is a thermoplastic of the polyethylene terephthalate type 4. Fremgangsmåte ifølge krav 2 eller 3, karakterisert ved at fiberen trekkes i tandem med ekstruderingen og nedtrek-kingsprosessen.4. Method according to claim 2 or 3, characterized in that the fiber is drawn in tandem with the extrusion and drawing-down process.
NO741068A 1973-03-29 1974-03-26 OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT NO138020C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1509773A GB1371740A (en) 1973-03-29 1973-03-29 Coating optical fibres

Publications (3)

Publication Number Publication Date
NO741068L NO741068L (en) 1974-10-01
NO138020B true NO138020B (en) 1978-03-06
NO138020C NO138020C (en) 1978-06-14

Family

ID=10052984

Family Applications (1)

Application Number Title Priority Date Filing Date
NO741068A NO138020C (en) 1973-03-29 1974-03-26 OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT

Country Status (13)

Country Link
JP (1) JPS49130748A (en)
BE (1) BE812992A (en)
CH (1) CH584664A5 (en)
DE (1) DE2414009A1 (en)
ES (1) ES424708A1 (en)
FR (1) FR2223166B1 (en)
GB (1) GB1371740A (en)
IT (1) IT1006386B (en)
NL (1) NL7404026A (en)
NO (1) NO138020C (en)
SE (1) SE391515B (en)
SU (1) SU980612A3 (en)
ZA (1) ZA74531B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167305A (en) 1974-06-17 1979-09-11 Sumitomo Electric Industries Ltd. Optical transmission fiber
US3932162A (en) * 1974-06-21 1976-01-13 Corning Glass Works Method of making glass optical waveguide
JPS5199033A (en) * 1975-02-26 1976-09-01 Nippon Telegraph & Telephone
US4127370A (en) * 1975-05-14 1978-11-28 The Post Office Apparatus for forming dielectric optical waveguides
GB1538853A (en) * 1975-05-14 1979-01-24 Post Office Dielectric optical waveguides
GB1561806A (en) * 1976-09-22 1980-03-05 Post Office Dielectric optical waveguide cables
JPS56117204A (en) * 1980-02-21 1981-09-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber
GB2072870B (en) * 1980-02-21 1984-01-11 Nippon Telegraph & Telephone Method for preparing optical fibres
GB2133737B (en) * 1983-01-15 1986-10-15 Plessey Co Plc Improvements relating to the manufacture of magnetic sensing optical devices
EP0129372A3 (en) * 1983-06-20 1987-04-15 Imperial Chemical Industries Plc Improved optical fibre cable
GB8428878D0 (en) * 1984-11-15 1984-12-27 British Telecomm Telecommunications cable
US4767183A (en) * 1986-05-12 1988-08-30 Westinghouse Electric Corp. High strength, heavy walled cable construction
EP0447450A1 (en) * 1988-12-12 1991-09-25 Raychem Corporation Electrical conductor coated with polybutylene terephthalate
CN105500662B (en) * 2015-12-29 2018-03-20 长飞光纤光缆沈阳有限公司 A kind of optical cable loose tube shrinkage compensating device of optical fiber secondary mould set
CN112844913A (en) * 2020-11-22 2021-05-28 李小毛 Automatic tensile injecting glue equipment of armoured pipe of armoured optical cable

Also Published As

Publication number Publication date
DE2414009A1 (en) 1974-10-10
CH584664A5 (en) 1977-02-15
FR2223166B1 (en) 1977-10-07
NO741068L (en) 1974-10-01
SU980612A3 (en) 1982-12-07
AU6635874A (en) 1975-09-11
BE812992A (en) 1974-09-30
IT1006386B (en) 1976-09-30
FR2223166A1 (en) 1974-10-25
NL7404026A (en) 1974-10-01
ES424708A1 (en) 1976-09-01
JPS49130748A (en) 1974-12-14
ZA74531B (en) 1974-12-24
GB1371740A (en) 1974-10-23
NO138020C (en) 1978-06-14
SE391515B (en) 1977-02-21

Similar Documents

Publication Publication Date Title
NO138020B (en) OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT
US4806289A (en) Method of making a hollow light pipe
US9223103B2 (en) Low shrink telecommunications cable and methods for manufacturing the same
AU597383B2 (en) Optical fibre cables
AU615198B2 (en) Optical fibre cables
US6584251B1 (en) Solid stranding flextube unit
GB2082790A (en) Optical fibre in grooved central member type cable and manufacture
CN101124502A (en) Telecommunications cable jacket adapted for post-extrusion insertion of optical fiber and methods for manufacturing the same
US4871487A (en) Method of making a polymeric optical waveguide by coextrusion
US3472921A (en) Method of making optical fibers
CA1225208A (en) Method for fabricating a cable core including optical fibers
CA2368817C (en) Optical cable for telecommunications
US20160103287A1 (en) Optical fiber cables with polypropylene binder
JPH0786580B2 (en) Optical fiber cable manufacturing method
US8630521B2 (en) Optical cable
CN106847389A (en) A kind of optoelectrical cable
US6853780B1 (en) Optical cable for telecommunications
GB2065324A (en) Optical fibres
US20160103288A1 (en) Optical fiber cables with polypropylene binder
CN105676344A (en) Optical fiber, optical cable, communications equipment and lighting equipment
GB2103992A (en) Shrink moulding
US20050056952A1 (en) Method of manufacturing multi-polymer optical fiber cable
CN112269231B (en) Anti-shrinkage cable, signal transmission system and cable production equipment
CN201464667U (en) Indoor wiring-laying optical fiber
JP2005037641A (en) Optical fiber cable