NO138020B - OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT - Google Patents
OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT Download PDFInfo
- Publication number
- NO138020B NO138020B NO741068A NO741068A NO138020B NO 138020 B NO138020 B NO 138020B NO 741068 A NO741068 A NO 741068A NO 741068 A NO741068 A NO 741068A NO 138020 B NO138020 B NO 138020B
- Authority
- NO
- Norway
- Prior art keywords
- fiber
- coating
- plastic
- tube
- glass fiber
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims description 27
- 239000004033 plastic Substances 0.000 title claims description 17
- 229920003023 plastic Polymers 0.000 title claims description 17
- 238000000034 method Methods 0.000 title claims description 11
- 238000000576 coating method Methods 0.000 title claims description 9
- 239000011248 coating agent Substances 0.000 title claims description 8
- 239000005304 optical glass Substances 0.000 title claims description 4
- 239000006223 plastic coating Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 238000001125 extrusion Methods 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 3
- -1 polyethylene terephthalate Polymers 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims 1
- 239000004416 thermosoftening plastic Substances 0.000 claims 1
- 239000003365 glass fiber Substances 0.000 description 18
- 239000004020 conductor Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229940085805 fiberall Drugs 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4479—Manufacturing methods of optical cables
- G02B6/4486—Protective covering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/30—Drawing through a die
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/104—Coating to obtain optical fibres
- C03C25/105—Organic claddings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/12—General methods of coating; Devices therefor
- C03C25/18—Extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
Foreliggende oppfinnelse angår en optisk glassfiber omgitt The present invention relates to an optical glass fiber surrounded
a<y> et beskyttende plastbelegg samt fremgangsmåte for å belegge a<y> a protective plastic coating and method of coating
en slik optisk fiber med et plastbelegg. such an optical fiber with a plastic coating.
Glassfibre som benyttes som lysledere for optiske transmi-sjons sys terner, er vanligvis ømtålige og sprø og derfor vanskelige å håndtere. TDette gjør at de ikke er egnet for å behandles av konvensjonelle sno- og tvinnemaskiner for å fremstille kabler inne-holdende flere lysledere i kjernen. Glass fibers used as light conductors for optical transmission systems are usually fragile and brittle and therefore difficult to handle. This means that they are not suitable for processing by conventional twisting and twisting machines to produce cables containing several light conductors in the core.
Mulighetene for å fremstille fibre av en mer robust glasstype er sterkt begrensede, da glasset først og fremst må utvelges på grunn av sine optiske egenskaper og ikke ut fra sine mekaniske egenskaper. The possibilities for producing fibers of a more robust type of glass are severely limited, as the glass must primarily be selected on the basis of its optical properties and not on the basis of its mechanical properties.
Den vanligste måte for forsterkning av slike glassfibre har hittil ganske enkelt vært å anbringe strekkopptagende tråder ved siden av de plastbelagte optiske fibre. Tanken har da vært at de nærliggende strekkopptagende elementer tar en del av støyten når fibrene utsettes for mekanisk strekk. Dette har nok til dels holdt stikk, men likevel er metoden langt fra ideell. Fibrene vil jo aldri utsettes for nøyaktig den samme mekaniske påkjenning som de nærbeliggende strekkopptagende elementer, og dessuten er det vanske-lig å finne materialer som har så liten grad av elastisk forlengelse at de virkelig vil hindre at brist oppstår i den tynne glassfiberen, som jo er ytterst sprø og ømtålig. Når det skal lages kabler som inneholder flere optiske fibre, har det derfor vært et stort problem å få fibrene til å tåle de påkjenninger som håndteringen under kabel-fremstiIlingen nødvendigvis må medføre. The most common way of reinforcing such glass fibers has so far simply been to place strain-absorbing wires next to the plastic-coated optical fibers. The idea has then been that the nearby strain-absorbing elements take part of the brunt when the fibers are subjected to mechanical strain. This has probably worked to some extent, but still the method is far from ideal. After all, the fibers will never be subjected to exactly the same mechanical stress as the nearby strain-absorbing elements, and moreover, it is difficult to find materials that have such a small degree of elastic elongation that they will really prevent a break from occurring in the thin glass fiber, which is extremely brittle and delicate. When cables containing several optical fibers are to be made, it has therefore been a major problem to get the fibers to withstand the stresses that the handling during cable production must necessarily entail.
Plastbelegget som omgir den enkelte fiber, har først og fremst blitt benyttet for å- hindre at tapt lysenergi fra en fiber skal over-føres til nabofiberen og derved gi krysstale. Plastmaterialet som er blitt benyttet, har vært av en slik beskaffenhet at det ikke har tatt The plastic coating that surrounds the individual fiber has primarily been used to prevent lost light energy from one fiber from being transferred to the neighboring fiber and thereby causing crosstalk. The plastic material that has been used has been of such a nature that it has not taken
opp noe merkbart mekanisk strekk. Hvis det har gitt noen mekanisk beskyttelse, så må det ha vært mot oppskraping og ikke mot strekkpåkjenninger. Det har dessuten tidligere vært forbundet med store problemer å påføre det aktuelle plastbelegg. Dette belgget skulle jo ekstruderes rundt fiberen. Ekstruderingsdysen måtte derfor være utført med høyeste grad av presisjon for ikke å beskadige fiberen som også passerer sentralt gjennom dysen og for samtidig å frembringe et plastbelegg som hele veien står i god kontakt med fiberen. up some noticeable mechanical stretch. If it has provided any mechanical protection, then it must have been against scratching and not against tensile stresses. It has also previously been associated with major problems to apply the plastic coating in question. This bellows had to be extruded around the fibre. The extrusion nozzle therefore had to be made with the highest degree of precision in order not to damage the fiber which also passes centrally through the nozzle and to simultaneously produce a plastic coating which is in good contact with the fiber all the way through.
Det har lenge vært velkjent at i plast som deformeres ved mekanisk belastning, opptrer en orientering av molekylene. Like-ledes har det vært velkjent at slik orientert plast får en forhøyet mekanisk styrke i molekylenes lengderetning. Men disse kunnskaper er aldri blitt benyttet i forbindelse med optiske fibre. It has long been well known that in plastic that is deformed by mechanical stress, an orientation of the molecules occurs. Similarly, it has been well known that such oriented plastic has an increased mechanical strength in the longitudinal direction of the molecules. But this knowledge has never been used in connection with optical fibres.
Formålet med foreliggende oppfinnelse er derfor å tilveiebringe glassfibre som til tross for at glasset er valgt ut bare etter sine optiske kvalifikasjoner, er så hardføre og robuste at de kan snos eller tvinnes sammen til flerlederkabler. The purpose of the present invention is therefore to provide glass fibers which, despite the fact that the glass is selected only according to its optical qualifications, are so hard-wearing and robust that they can be twisted or twisted together into multi-conductor cables.
Et ytterligere formål er å frembringe en fremgangsmåte for å belegge en optisk fiber med et plastbelegg som gir fiberen en øket styrke, men som ikke er så kritisk hva dysens dimensjoner og over-flatebeskaffenhet angår som tidligere kjente jnetoder. A further object is to produce a method for coating an optical fiber with a plastic coating which gives the fiber an increased strength, but which is not as critical in terms of nozzle dimensions and surface quality as previously known methods.
Dette oppnås ved en fiber og en fremgangsmåte i henhold til de nedenfor fremsatte patentkrav. En glassfiber fremstilt i henhold til foreliggende oppfinnelse egner seg derfor særlig godt som lysleder for optisk kommunikasjon. This is achieved by a fiber and a method according to the patent claims set out below. A glass fiber produced according to the present invention is therefore particularly suitable as a light conductor for optical communication.
For å gi en klarere forståelse av oppfinnelsen, vises til neden-stående detaljerte beskrivelse av et utførelseseksempel og til den ledsagende tegning som viser en skjematisk fremstilling av et apparat for å dekke en glassfiber med plast i henhold til foreliggende oppfinnelse. In order to provide a clearer understanding of the invention, reference is made to the detailed description below of an embodiment and to the accompanying drawing showing a schematic representation of an apparatus for covering a glass fiber with plastic according to the present invention.
På figuren trekkes en glassfiber 1 fra en trommel 2 gjennom ekstruderingshodet 3 til en plast smelte-ekstruder 4 som er utstyrt med en rørformende dyse (ikke vist). Fiberen 1 føres gjennom senteret til dysen slik at den omsluttes av det ekstruderte rør 5, uten å bli berørt av dette. Plastrøret 5 med den sentralt anbrakte glassfiber føres gjennom en kjølesone 6 over en trinse .7 og trekkes deretter gjennom en avsmalnende, formende dyse 8 som-presser plastrøret sammen til det danner kontakt med glassfiberen. Endelig føres den belagte glassfiber over en trinse 9 og lagres på trommelen 10. Nedtrekkingen av rørets tverrsnitt kan ledsages av oppvarming, og for enkelte an-vendelser kan den formende dysen 8 utelates. Glassfibre som er be- In the figure, a glass fiber 1 is drawn from a drum 2 through the extrusion head 3 to a plastic melt extruder 4 which is equipped with a tube-forming nozzle (not shown). The fiber 1 is passed through the center of the nozzle so that it is enclosed by the extruded tube 5, without being touched by it. The plastic pipe 5 with the centrally placed glass fiber is passed through a cooling zone 6 over a pulley 7 and is then drawn through a tapering, forming nozzle 8 which presses the plastic pipe together until it forms contact with the glass fiber. Finally, the coated glass fiber is passed over a pulley 9 and stored on the drum 10. The lowering of the tube's cross-section can be accompanied by heating, and for some applications the forming nozzle 8 can be omitted. Glass fibers that are be-
skyttet på denne måten, kan samles til en flerleder lysleder kabel. shot in this way, can be assembled into a multi-conductor fiber optic cable.
Nedtrekkingen av plastrørets tverrsnitt i dysen 8 gir et belegg av sterkt orienterte plastmolekyler på glassfiberen. Dette orienterte plastbeleggét er overlegent i styrke i aksiell retning sammenlignet med belegg som er dannet ved konvensjonell smelte-ekstrudering. Belegget gir derfor den" deri liggende fiber en betydelig forhøyet motstandsevne likeoverfor strekkpåkjenninger. The drawing down of the cross-section of the plastic tube in the nozzle 8 produces a coating of strongly oriented plastic molecules on the glass fiber. This oriented plastic coating is superior in strength in the axial direction compared to coatings formed by conventional melt extrusion. The coating therefore gives the fiber lying in it a significantly increased resistance to tensile stresses.
Den beskrevne produksjonsprosess reduserer dessuten behovet for snevre toleranser for fiberens dimensjoner, idet glasset ikke står i fysisk kontakt med plastmaterialet under ekstruderingen. The described production process also reduces the need for tight tolerances for the fiber's dimensions, as the glass is not in physical contact with the plastic material during extrusion.
Forskjellige termoplastiske materialer kan benyttes for denne prosessen. Polyestre er imidlertid foretrukket, og da særlig "ARNITEG" polyetylen tereftalat. Various thermoplastic materials can be used for this process. However, polyesters are preferred, and in particular "ARNITEG" polyethylene terephthalate.
Ved enkelte anvendélser kan håndtering av glassfiberen, f.eks. ved oppspoling, unngås ved -at et uttrekkingsapparat for glassfiber anbringes i tandem med et pT.astbelegningsapprat av den ovenfor nevnte type. Glassfiberen må da nedkjøles til omgivelsenes temperatur før den føres inn i den rørformede dysen, og hastigheten hvorved plast-røret trekkes ned i dimensjon, avpasses til uttrekningshastigheten for glassfiberen. På denne måte oppnås at glassfiberen belegges før dens overflate kan bli skadet. In certain applications, handling of the fiberglass, e.g. when winding, is avoided by placing an extraction device for glass fiber in tandem with a pT.ast coating device of the type mentioned above. The glass fiber must then be cooled down to the ambient temperature before it is fed into the tubular nozzle, and the speed at which the plastic tube is drawn down in size is adjusted to the withdrawal speed for the glass fibre. In this way, it is achieved that the glass fiber is coated before its surface can be damaged.
Da plastmaterialet ikke ekstruderes direkte i kontakt med glassfiberen, er det ikke nødvendig å styre den aksielle posisjon til glassfiberen så nøyaktig som det tidligere har vært påkrevet å gjøre i konvensjonelle smelte-ekstrudere. As the plastic material is not extruded directly in contact with the glass fiber, it is not necessary to control the axial position of the glass fiber as precisely as it has previously been required to do in conventional melt extruders.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1509773A GB1371740A (en) | 1973-03-29 | 1973-03-29 | Coating optical fibres |
Publications (3)
Publication Number | Publication Date |
---|---|
NO741068L NO741068L (en) | 1974-10-01 |
NO138020B true NO138020B (en) | 1978-03-06 |
NO138020C NO138020C (en) | 1978-06-14 |
Family
ID=10052984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO741068A NO138020C (en) | 1973-03-29 | 1974-03-26 | OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT |
Country Status (13)
Country | Link |
---|---|
JP (1) | JPS49130748A (en) |
BE (1) | BE812992A (en) |
CH (1) | CH584664A5 (en) |
DE (1) | DE2414009A1 (en) |
ES (1) | ES424708A1 (en) |
FR (1) | FR2223166B1 (en) |
GB (1) | GB1371740A (en) |
IT (1) | IT1006386B (en) |
NL (1) | NL7404026A (en) |
NO (1) | NO138020C (en) |
SE (1) | SE391515B (en) |
SU (1) | SU980612A3 (en) |
ZA (1) | ZA74531B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4167305A (en) | 1974-06-17 | 1979-09-11 | Sumitomo Electric Industries Ltd. | Optical transmission fiber |
US3932162A (en) * | 1974-06-21 | 1976-01-13 | Corning Glass Works | Method of making glass optical waveguide |
JPS5199033A (en) * | 1975-02-26 | 1976-09-01 | Nippon Telegraph & Telephone | |
US4127370A (en) * | 1975-05-14 | 1978-11-28 | The Post Office | Apparatus for forming dielectric optical waveguides |
GB1538853A (en) * | 1975-05-14 | 1979-01-24 | Post Office | Dielectric optical waveguides |
GB1561806A (en) * | 1976-09-22 | 1980-03-05 | Post Office | Dielectric optical waveguide cables |
JPS56117204A (en) * | 1980-02-21 | 1981-09-14 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of optical fiber |
GB2072870B (en) * | 1980-02-21 | 1984-01-11 | Nippon Telegraph & Telephone | Method for preparing optical fibres |
GB2133737B (en) * | 1983-01-15 | 1986-10-15 | Plessey Co Plc | Improvements relating to the manufacture of magnetic sensing optical devices |
EP0129372A3 (en) * | 1983-06-20 | 1987-04-15 | Imperial Chemical Industries Plc | Improved optical fibre cable |
GB8428878D0 (en) * | 1984-11-15 | 1984-12-27 | British Telecomm | Telecommunications cable |
US4767183A (en) * | 1986-05-12 | 1988-08-30 | Westinghouse Electric Corp. | High strength, heavy walled cable construction |
EP0447450A1 (en) * | 1988-12-12 | 1991-09-25 | Raychem Corporation | Electrical conductor coated with polybutylene terephthalate |
CN105500662B (en) * | 2015-12-29 | 2018-03-20 | 长飞光纤光缆沈阳有限公司 | A kind of optical cable loose tube shrinkage compensating device of optical fiber secondary mould set |
CN112844913A (en) * | 2020-11-22 | 2021-05-28 | 李小毛 | Automatic tensile injecting glue equipment of armoured pipe of armoured optical cable |
-
1973
- 1973-03-29 GB GB1509773A patent/GB1371740A/en not_active Expired
-
1974
- 1974-01-25 ZA ZA740531A patent/ZA74531B/en unknown
- 1974-03-22 DE DE2414009A patent/DE2414009A1/en active Pending
- 1974-03-26 NL NL7404026A patent/NL7404026A/xx unknown
- 1974-03-26 SE SE7404018A patent/SE391515B/en not_active IP Right Cessation
- 1974-03-26 NO NO741068A patent/NO138020C/en unknown
- 1974-03-27 CH CH426774A patent/CH584664A5/xx not_active IP Right Cessation
- 1974-03-28 ES ES424708A patent/ES424708A1/en not_active Expired
- 1974-03-28 SU SU742013361A patent/SU980612A3/en active
- 1974-03-28 FR FR7410758A patent/FR2223166B1/fr not_active Expired
- 1974-03-29 JP JP49034786A patent/JPS49130748A/ja active Pending
- 1974-03-29 BE BE2053510A patent/BE812992A/en not_active IP Right Cessation
- 1974-04-08 IT IT20987/74A patent/IT1006386B/en active
Also Published As
Publication number | Publication date |
---|---|
DE2414009A1 (en) | 1974-10-10 |
CH584664A5 (en) | 1977-02-15 |
FR2223166B1 (en) | 1977-10-07 |
NO741068L (en) | 1974-10-01 |
SU980612A3 (en) | 1982-12-07 |
AU6635874A (en) | 1975-09-11 |
BE812992A (en) | 1974-09-30 |
IT1006386B (en) | 1976-09-30 |
FR2223166A1 (en) | 1974-10-25 |
NL7404026A (en) | 1974-10-01 |
ES424708A1 (en) | 1976-09-01 |
JPS49130748A (en) | 1974-12-14 |
ZA74531B (en) | 1974-12-24 |
GB1371740A (en) | 1974-10-23 |
NO138020C (en) | 1978-06-14 |
SE391515B (en) | 1977-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO138020B (en) | OPTICAL GLASS FIBER AND PROCEDURE FOR COATING SUCH A FIBER WITH A PLASTIC COAT | |
US4806289A (en) | Method of making a hollow light pipe | |
US9223103B2 (en) | Low shrink telecommunications cable and methods for manufacturing the same | |
AU597383B2 (en) | Optical fibre cables | |
AU615198B2 (en) | Optical fibre cables | |
US6584251B1 (en) | Solid stranding flextube unit | |
GB2082790A (en) | Optical fibre in grooved central member type cable and manufacture | |
CN101124502A (en) | Telecommunications cable jacket adapted for post-extrusion insertion of optical fiber and methods for manufacturing the same | |
US4871487A (en) | Method of making a polymeric optical waveguide by coextrusion | |
US3472921A (en) | Method of making optical fibers | |
CA1225208A (en) | Method for fabricating a cable core including optical fibers | |
CA2368817C (en) | Optical cable for telecommunications | |
US20160103287A1 (en) | Optical fiber cables with polypropylene binder | |
JPH0786580B2 (en) | Optical fiber cable manufacturing method | |
US8630521B2 (en) | Optical cable | |
CN106847389A (en) | A kind of optoelectrical cable | |
US6853780B1 (en) | Optical cable for telecommunications | |
GB2065324A (en) | Optical fibres | |
US20160103288A1 (en) | Optical fiber cables with polypropylene binder | |
CN105676344A (en) | Optical fiber, optical cable, communications equipment and lighting equipment | |
GB2103992A (en) | Shrink moulding | |
US20050056952A1 (en) | Method of manufacturing multi-polymer optical fiber cable | |
CN112269231B (en) | Anti-shrinkage cable, signal transmission system and cable production equipment | |
CN201464667U (en) | Indoor wiring-laying optical fiber | |
JP2005037641A (en) | Optical fiber cable |