[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

NO123738B - - Google Patents

Download PDF

Info

Publication number
NO123738B
NO123738B NO2016/69A NO201669A NO123738B NO 123738 B NO123738 B NO 123738B NO 2016/69 A NO2016/69 A NO 2016/69A NO 201669 A NO201669 A NO 201669A NO 123738 B NO123738 B NO 123738B
Authority
NO
Norway
Prior art keywords
pimaricin
approx
soluble
micrograms
days
Prior art date
Application number
NO2016/69A
Other languages
Norwegian (no)
Inventor
A Arnold
Original Assignee
A Arnold
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Arnold filed Critical A Arnold
Publication of NO123738B publication Critical patent/NO123738B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0407Transparent bullet-proof laminatesinformative reference: layered products essentially comprising glass in general B32B17/06, e.g. B32B17/10009; manufacture or composition of glass, e.g. joining glass to glass C03; permanent multiple-glazing windows, e.g. with spacing therebetween, E06B3/66
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/911Penetration resistant layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

Fremgangsmåte til fremstilling av pimaricin. Process for the production of pimaricin.

Foreliggende oppfinnelse angår en fremgangsmåte for biosyntetisk fremstilling av et nytt antibiotikum, som har fått navnet pimaricin, og ved hjelp av en hittil ukjent streptomycesart. I denne hensikt fremstilles en kultur av Streptomyces natalensis nov. spee, hvis egenskaper vil bli beskrevet i det følgende, ved den aero-biske metode og under passende betingel- The present invention relates to a method for the biosynthetic production of a new antibiotic, which has been named pimaricin, and by means of a previously unknown species of streptomyces. For this purpose, a culture of Streptomyces natalensis nov. spee, whose properties will be described below, by the aerobic method and under suitable conditions

ser, og produktet pimaricin, hvis egenska- see, and the product pimaricin, whose properties

per også vil bli beskrevet i det følgende, dannes i fermenteringsmediet. Det nye antibiotikum utvinnes på fordelaktig måte av-kulturvæsken og/eller myceliet ved ekstraksjon med en alkohol som bare delvis blander seg med vann, f. eks. butanol eller ved behandling med metanol (en metanol-oppløsning av kalsiumklorid), konsentre-ring av ekstrakten og rensning ved hjelp av et oppløsningsmiddel. per also will be described in the following, is formed in the fermentation medium. The new antibiotic is advantageously recovered from the culture liquid and/or the mycelium by extraction with an alcohol which is only partially miscible with water, e.g. butanol or by treatment with methanol (a methanol solution of calcium chloride), concentration of the extract and purification by means of a solvent.

Mikroorganismen, som forårsaker dan-nelsen av det foreliggende antibiotikum ble isolert fra en jordprøve fra Pieter Maritz-burg, i provinsen Natal, Sydafrika. Det er en actinomycet av streptomycesslekten, og kalles Streptomyces natalensis. Den er de-ponert i Type Culture Collection of the Northern Regional Research Laboratories The microorganism which causes the formation of the present antibiotic was isolated from a soil sample from Pieter Maritzburg, in the province of Natal, South Africa. It is an actinomycete of the genus Streptomyces, and is called Streptomyces natalensis. It is deposited in the Type Culture Collection of the Northern Regional Research Laboratories

at Preoria, U.S.A. under katalognr. NRRL 2051. Mikroorganismen har følgende morfologiske og fysiologiske egenskaper: at Preoria, U.S.A. under catalog no. NRRL 2051. The microorganism has the following morphological and physiological characteristics:

Morfologiske egenskaper: Morphological characteristics:

Hyfene er forgrenet og ujevnt tvunnet, ofte praktisk talt rette og parallelle med hverandre i vekstsonen, har en tykkelse av 0,3 — 0,7 [x, har vanligvis jevn tykkelse, men ofte lokale fortykkelser. De sporedan- nende hyfer har form av sidegrener med feste ved luftmyceliet. Sporene har form av ujevne bølgeformede kjeder og danner sjelden løst tvundne spiraller. Sporene er atskilt fra hverandre med korte mellomlig-gende deler uten protoplasma og har oval, rund eller mandarinliknende form med en størrelse av 0,7 — 1,2 x 0,7 — 0,8 |x. The hyphae are branched and unevenly twisted, often practically straight and parallel to each other in the growth zone, have a thickness of 0.3 — 0.7 [x, usually have uniform thickness, but often local thickenings. The spordan- nende hyphae have the form of lateral branches with attachment to the aerial mycelium. The spores take the form of uneven wavy chains and rarely form loosely twisted spirals. The spores are separated from each other by short intermediate parts without protoplasm and have an oval, round or tangerine-like shape with a size of 0.7 — 1.2 x 0.7 — 0.8 |x.

Kulturens egenskaper ved dyrking på The characteristics of the culture when grown on

de nedenstående substrater (etter 7 dagers forløp ved 25° C, hvis ikke anderledes angis): the substrates below (after 7 days at 25° C, unless otherwise stated):

Uavreagar : Uavre agar :

God vekst. Det vegetative mycelium og baksiden er fargeløs. Etter 28 dager noen få kolonier ved rørets bunn og topp. På baksiden graf arget («chamois»), etter 57 dager litt mørkere («warm buff»). Kolonien er praktisk talt flat, enkelte kolonier noe høyere på midten. Blekt musegrått («pale mouse gray») til lyst musegrått («light mouse gray») pulverformet og filtet luftmycelium, som etter 28 dagers forløp blir mellomgrått («one third gray») og etter 57 dager mørkere grått («drab gray»). Jordliknende noe sur lukt. Ingen oppløse-lige pigmenter. Good growth. The vegetative mycelium and the back are colorless. After 28 days a few colonies at the bottom and top of the tube. On the back, graph arget ("chamois"), after 57 days a little darker ("warm buff"). The colony is practically flat, some colonies somewhat higher in the middle. Pale mouse gray ("pale mouse gray") to light mouse gray ("light mouse gray") powdered and felted aerial mycelium, which after 28 days becomes medium gray ("one third gray") and after 57 days darker gray ("drab gray") . Earthy somewhat sour smell. No soluble pigments.

Potetagar: Potato agar:

Moderat vekst. Det vegetative mycelium har en lys mineralgrå («light mineral gray») til blek brungul («pale olive buff») farge. Baksiden: kremfarge («cream color»), etter 57 dager mørkere («cream buff to chamois»). Koloniene er fuktige og delvis dekket av et svakt hevet, luftmycelium. Luftmyceliet, som etter 7 dager er hvitt og filtet, etter 28 dager mellomgrått («drab gray») dekker 30—70 pst. av kolonien. Ingen oppløselige pigmenter. Jordaktig ubehagelig lukt. Moderate growth. The vegetative mycelium has a light mineral gray ("light mineral gray") to pale brownish yellow ("pale olive buff") color. Reverse: cream color ("cream color"), after 57 days darker ("cream buff to chamois"). The colonies are moist and partially covered by a slightly raised aerial mycelium. The aerial mycelium, which after 7 days is white and felt, after 28 days medium gray ("drab gray") covers 30-70 per cent of the colony. No soluble pigments. Earthy unpleasant smell.

Potet: Potato:

God vekst. Det vegetative mycelium er fuktig og noe hevet og klumpet og har en blek rødlig brungul («pale pinkish buff») til rødlig brungul («pinkish buff») farge, som etter 28 dager går over til en mørk brungul farge som oliven («deep olive buff»). Etter 28 dager er glassveggens bak-side brunfarget («chamois»). Etter 7 dager intet luftmycelium. Etter 28 dager en god del luftmycelium, som først er hvitt, deretter blekt musegrått («pale mouse gray») og etter 27 dager mellomgrått («drab gray»). Poteten er ikke misfarget etter 7 dager, etter 57 dager er den på samme måte som væsken på rørets bunn misfarget og har fått en mørk brungul farge («buffy brown»). Good growth. The vegetative mycelium is moist and somewhat raised and lumpy and has a pale pinkish buff to pinkish buff color, which after 28 days changes to a dark brownish olive color (deep olive buff”). After 28 days, the back side of the glass wall is brown ("chamois"). After 7 days no aerial mycelium. After 28 days a good deal of aerial mycelium, which is first white, then pale mouse gray ('pale mouse grey') and after 27 days medium gray ('drab grey'). The potato is not discolored after 7 days, after 57 days it is, in the same way as the liquid at the bottom of the tube, discolored and has acquired a dark brown-yellow color ("buffy brown").

Sabouraudglucoseagar: Sabouraud glucose agar:

Middels vekst. Vegetativt mycelium, klumpet, hevet, etter 7 dager en lysebrun olivenfarge («olive buff») som på baksiden, etter 28 dager er mørkere («deep olive buff to dark olive buff»). Baksiden nu leirfarget. Luftmyceliet er hvitt, kort og filtet og deretter blekt musegrått. Ingen synlige, opp-løselige pigmenter etter 7 dager, men etter 57 dager er fargen middels rødbrun («medium auburn»). Medium growth. Vegetative mycelium, lumpy, raised, after 7 days a light brown olive color ("olive buff") which, on the back, after 28 days is darker ("deep olive buff to dark olive buff"). The back now clay-coloured. The aerial mycelium is white, short and felted and then pale mouse grey. No visible, soluble pigments after 7 days, but after 57 days the color is medium red-brown ("medium auburn").

Emerson agar: Emerson agar:

Meget god vekst. Vegetativt mycelium, olivenfarget («olive buff»). Baksiden mør-kere («cream buff to chamois»). Ingen oppløselige pigmenter. Luftmyceliet kort og filtet, hvitt. Ingen oppløselige pigmenter. Sterk jordaktig lukt. Very good growth. Vegetative mycelium, olive colored ("olive buff"). The back is softer («cream buff to chamois»). No soluble pigments. Aerial mycelium short and felted, white. No soluble pigments. Strong earthy smell.

Stivelse agar: Starch agar:

Middels vekst. Det vegetative mycelium og baksiden er blekt lysegul som oliven («pale olive buff»). Kolonien svakt hevet, omtrent halvparten dekket av filtet, hvitt luftmycelium. Ingen oppløselige pigmenter. Sterkt jordaktig lukt. Medium growth. The vegetative mycelium and the back are pale olive-yellow ("pale olive buff"). Colony slightly raised, about half covered by felty, white aerial mycelium. No soluble pigments. Strong earthy smell.

Glukosenitratagar: Glucose nitrate agar:

God vekst. Runde, fuktige, grå kolonier, svakt hevet i midten, ca. 2 til 2,5 mm's diameter, fargen er blek olivenbrun («pale olive buff»). Luftmyceliet sparsomt, i form av punkter eller konsentriske ringer, filtet, hvitt. Ingen oppløselige pigmenter. Jordaktig lukt. Good growth. Round, moist, gray colonies, slightly raised in the middle, approx. 2 to 2.5 mm's diameter, the color is pale olive brown («pale olive buff”). Aerial mycelium sparse, in the form of points or concentric rings, felted, white. No soluble pigments. Earthy smell.

Natriumcitrat agar: Sodium citrate agar:

Meget sparsom vekst: Runde, fuktige, grå kolonier, svakt hevet i midten, ca. 1 mm i diameter. Lysere enn blek lysebrun olivenfarge («pale olive buff»). Baksiden blek lysebrun olivenfarge («pale olive buff»). Intet oppløselig pigment. Very sparse growth: Round, moist, gray colonies, slightly raised in the middle, approx. 1 mm in diameter. Lighter than pale light brown olive color ("pale olive buff"). The back is a pale light brown olive color ("pale olive buff"). No soluble pigment.

N æring sagar: Nutrition saga:

God vekst. Kolonien er fuktig, svakt hevet, meget liten, i form av meget små, våte knudrete og matte totter, med små og utydelige langaktige forhøyninger, hvit til lysegul kremfarge («cream color to cream buff»). Ubehagelig lukt. Intet oppløselig pigment. Good growth. The colony is moist, slightly raised, very small, in the form of very small, wet knotty and dull tufts, with small and indistinct oblong elevations, white to light yellow cream color ("cream color to cream buff"). Unpleasant smell. No soluble pigment.

Czapek agar ( 13 dager) : Czapek agar (13 days):

Meget sparsom vekst. Klart gjennomsiktig vegetativt mycelium. Intet luftmycelium. Intet oppløselig pigment. Very sparse growth. Clear transparent vegetative mycelium. No aerial mycelium. No soluble pigment.

Bacto agar 2 % : Bacto agar 2%:

Meget sparsom vekst, først synlig etter 13 dager. Klart gjennomsiktig vegetativt Very sparse growth, first visible after 13 days. Clearly transparent vegetatively

mycelium. Intet luftmycelium. Intet opp-løselig pigment. mycelium. No aerial mycelium. No soluble pigment.

Organismen som ifølge oppfinnelsen brukes for fremstilling av pimaricin til-hører streptomycesslekten og er ikke iden-tisk med noen hittil beskrevet streptomycesart. Som det fremgår av ovenstående i detalj angitte egenskaper tilhører den gruppe 1 i Waksmans gruppeinndeling i Bergey's Manual (se også S. A. Waksman «The Actinomycetes», 1950, side 30). The organism which, according to the invention, is used for the production of pimaricin belongs to the genus Streptomyces and is not identical to any previously described Streptomyces species. As can be seen from the above detailed characteristics, it belongs to group 1 in Waksman's classification in Bergey's Manual (see also S. A. Waksman "The Actinomycetes", 1950, page 30).

Streptomyces natalensis nov. spee. kan også klassifiseres i Baldacci's «Neo-Ingri» rekke (se Symposium Actinomycetales, VI Congr. Intern. Microb. Rom, 1953, side 31). Det bemerkes at navnet Streptomyces natalensis nov. spee. ikke utelukkende er be-grenset til actinomycetes, som på en stereo-typ og rigorøs måte svarer til den her gitte beskrivelse, men at uttrykket også omfatter alle beslektede stammer, som generelt har de samme spesifikke egenskaper og frembringer det nye antibiotikum, pimaricin. Det dekker også mutanter av Streptomyces natalensis, som kan fåes av denne ved hjelp av alle midler eller stoffer som bevirker mutasjon, f. eks. bestråling eller behandling med stoffer med giftvirkning. Streptomyces natalensis nov. spee. can also be classified in Baldacci's "Neo-Ingri" series (see Symposium Actinomycetales, VI Congr. Intern. Microb. Rom, 1953, page 31). It is noted that the name Streptomyces natalensis nov. spee. is not exclusively limited to actinomycetes, which correspond in a stereotypical and rigorous way to the description given here, but that the expression also includes all related strains, which generally have the same specific properties and produce the new antibiotic, pimaricin. It also covers mutants of Streptomyces natalensis, which can be obtained from it by means of any means or substances which cause mutation, e.g. irradiation or treatment with substances with a toxic effect.

Det nye antibiotikum, pimaricin, er hovedsaklig aktivt likeoverfor saprofytiske og parasitiske fungi og gjærsopper. The new antibiotic, pimaricin, is mainly active against saprophytic and parasitic fungi and yeasts.

Tabell II gir en oversikt over pimaricins virkning på gjærsopper og fungi som er uten patoligisk virkning på mennesker. For hver av disse arter angis den pimaricin-konsentrasjon i mikrogram/ml i nærings-midlet som nettopp er istand til å stanse gjærsoppens vekst. Table II gives an overview of pimaricin's effect on yeasts and fungi which have no pathological effect on humans. For each of these species, the pimaricin concentration in micrograms/ml in the nutrient that is just capable of stopping the yeast's growth is indicated.

Tabell III angir på samme måte for-holdet likeoverfor et antall gjærsopper og fungi med patologisk virkning på mennesker. Table III similarly indicates the relationship directly opposite a number of yeasts and fungi with a pathological effect on humans.

Det fremgår av ovenstående tabeller bl. a. at pimaricin har en utpreget virkning på fytopatogene fungi, f. eks. Verti-cillium, Cladosporium og Fusarium .Virk-ningen på Candida albicans er også meget sterk. It appears from the above tables, among other things. a. that pimaricin has a pronounced effect on phytopathogenic fungi, e.g. Verti-cillium, Cladosporium and Fusarium. The effect on Candida albicans is also very strong.

Et annet meget viktig trekk ved det nye antibiotikum er at pimaricin har en meget liten fytotoksisk virkning, i mot-setning til de fleste andre hittil kjente fun-gicide antibiotika. Det nye antibiotikum er derfor meget egnet til bruk i aker- og hagebruk og for bekjempelse av plante-sykdommer, dette så meget mere fordi det dif funderer lett og virker systematisk. Another very important feature of the new antibiotic is that pimaricin has a very small phytotoxic effect, in contrast to most other fungicidal antibiotics known to date. The new antibiotic is therefore very suitable for use in arable and horticulture and for combating plant diseases, all the more so because it diffuses easily and works systematically.

Pimaricin vil således trenge inn i f. eks. erter (Pisum sativum) etter neddykking i en fortynnet vandig oppløsning. Dette fremgår av at pimaricin kan ekstraheres fra de behandlede erters cotyledoner og spirer. Pimaricin will thus penetrate into e.g. peas (Pisum sativum) after immersion in a dilute aqueous solution. This is evident from the fact that pimaricin can be extracted from the cotyledons and sprouts of the treated peas.

Tabell IV a og b viser den indre desin-fiserende virking. Myceliumsopper (blant disse Ascochyta pisi) drepes i frøet. Table IV a and b shows the internal disinfecting action. Mycelium fungi (among these Ascochyta pisi) are killed in the seed.

Inngående prøver viste at primaricin i en konsentrasjon av 75 deler pr. million som er effektiv fungicid, ikke har noen skadelig innvirkning på ertenes spireevne og plantens vekst (se tabell IV c og d). Incoming samples showed that primaricin in a concentration of 75 parts per million, which is an effective fungicide, has no harmful effect on the pea's ability to germinate and the plant's growth (see Table IV c and d).

Alle data i disse tabeller angår erte-sorten Eminent, som er overordentlig føl-som overfor Ascochyta pisi. All data in these tables relate to the pea variety Eminent, which is extremely sensitive to Ascochyta pisi.

Forsøk med rotter og mus viser en meget lav giftvirkning. For å bestemme pimaricins akutte giftvirkning på hvite rotter fikk rottene et materiale, som inneholdt 985 mikrogram/mg, og resultatet ble notert etter 7 dagers forløp. Experiments with rats and mice show a very low toxic effect. To determine pimaricin's acute toxic effect on white rats, the rats were given a material containing 985 micrograms/mg, and the result was recorded after 7 days.

Med pimaricin i vann fikk man f01-jgende resultater: With pimaricin in water, f01-like results were obtained:

Pimaricin irriterer hverken hud eller slimhinner. Pimaricin does not irritate the skin or mucous membranes.

I en ren tilstand er pimaricin en hvit krystallinsk amfotær forbindelse, hvis salter kan fremstilles på vanlige måter. Med FeCl., gir det ingen fargereaksjon, men med kons. fosforsyre en lyserød ustabil farge. Konsentrert saltsyre og svovelsyre frembringer en blå og olivengrønn misfarg-ning. Bromvann avfarges. På grunn herav og også med henblikk på det infrarøde og det ultrafiolette spektrum (se nedenfor) må pimaricin betraktes som et av de såkalte polyene antibiotika. Det er meget lite oppløselig i vann, nemlig 8 mg i 100 ml ved 20° C. Det er lettere oppløselig i organiske oppløsningsmidler, særlig i alkoholer med 1 til 6 kullstoffatomer, f. eks. metanol og n-butanol og i celluloseoppløsningsmid-ler. Videre er det oppløselig i pyridin, dimetylformamid, dimetylacetamid, iseddik og alkalihydroksyd. I alifatiske kullvann-stoffer, som pentan, heksan, cykloheksan og liknende er det praktisk talt uoppløselig. In a pure state, pimaricin is a white crystalline amphoteric compound, the salts of which can be prepared in the usual ways. With FeCl., it gives no color reaction, but with conc. phosphoric acid a pink unstable color. Concentrated hydrochloric acid and sulfuric acid produce a blue and olive-green discoloration. Bromine water is decoloured. Because of this and also with regard to the infrared and ultraviolet spectrum (see below), pimaricin must be considered one of the so-called polyene antibiotics. It is very slightly soluble in water, namely 8 mg in 100 ml at 20° C. It is more easily soluble in organic solvents, especially in alcohols with 1 to 6 carbon atoms, e.g. methanol and n-butanol and in cellulose solvents. Furthermore, it is soluble in pyridine, dimethylformamide, dimethylacetamide, glacial acetic acid and alkali hydroxide. In aliphatic coal water substances, such as pentane, hexane, cyclohexane and the like, it is practically insoluble.

Ved værelsestemperatur er pimaricin en meget stabil forbindelse. En oppløsning i vann (15 mg i 100 ml) beholder sin fulle aktivitet i 7 dager ved pH — 7,0 ved 25° C. Ved pH = 2 mister samme oppløsning 50 At room temperature, pimaricin is a very stable compound. A solution in water (15 mg in 100 ml) retains its full activity for 7 days at pH — 7.0 at 25° C. At pH = 2, the same solution loses 50

pst. av sin aktivitet i løpet av 3 dager ved samme temperatur og ved pH = 10 i løpet percent of its activity during 3 days at the same temperature and at pH = 10 during the course

av 6 dager. Ved høyere temperaturer er oppløsningen mindre stabil. Således vil en oppløsning med ovenstående pimaricin-konsentrasjon i vann og pH = 2 og ved 90° C miste 90 pst. av sin aktivitet i løpet av 15 minutter, ved pH = 6,5 15 pst. og ved pH = 9 50 pst. av sin aktivitet. I metanol er pimaricin stabilt ved høyere (25° —60° C) temperaturer. Pimaricins antibiotiske virkning ble prøvet mikrobiologisk med Saccharomyces cerevisae — Hollands varietet .som prøveorganisme i forhold til et rent standardpreparat. of 6 days. At higher temperatures, the solution is less stable. Thus, a solution with the above pimaricin concentration in water and pH = 2 and at 90° C will lose 90 per cent of its activity within 15 minutes, at pH = 6.5 15 per cent and at pH = 9 50 per cent. of its activity. In methanol, pimaricin is stable at higher (25° -60° C) temperatures. Pimaricin's antibiotic effect was tested microbiologically with Saccharomyces cerevisae — Holland's variety as a test organism in relation to a pure standard preparation.

Pimaricin har intet smeltepunkt, men viser begynnende spaltning ved over 150° C. Pimaricin has no melting point, but shows incipient decomposition at above 150°C.

Den spesifikke rotasjon The specific rotation

(c = 0,083 pst. i 100 pst. metanol). Stoffets molekylvekt er ca. 727, og antas å ha føl-gende empiriske formel C3.,H-0NOU. Ele-mentaranalysen var følgende: 57,7 pst. C, 7,27 pst. H, 1,95 pst. N og 33,01 pst. O. (c = 0.083 percent in 100 percent methanol). The substance's molecular weight is approx. 727, and is assumed to have the following empirical formula C3.,H-0NOU. The elemental analysis was as follows: 57.7 percent C, 7.27 percent H, 1.95 percent N and 33.01 percent O.

Pimaricins ultrafiolette absorpsjons-spektrum har et maksimum ved 290, 304 og 318 m|A med en «topp» ved omtrent 280 og et minimum ved omtrent 250 rri|i (C = 3,93 mikrogram/ml i metanol). En prøve av pimaricin presset inn i en kaliumbromidplate (C = 0,5 pst.) viser følgende infra-røde absorpsjon (i cm-<1>): 3460, 2985, 1721, 1637, 1577, 1441, 1401, 1381, 1275, 1269, 1238, 1192, 1176, 1136, 1109, 1066, 1006, 988, 948, 887, 855, 844, 803, 794 (for de kurtiverte bølgelengder er absorpsjonen sterk til meget sterk.) The ultraviolet absorption spectrum of pimaricin has maxima at 290, 304 and 318 m|A with a "peak" at about 280 and a minimum at about 250 rri|i (C = 3.93 micrograms/ml in methanol). A sample of pimaricin pressed into a potassium bromide plate (C = 0.5 per cent) shows the following infra-red absorption (in cm-<1>): 3460, 2985, 1721, 1637, 1577, 1441, 1401, 1381, 1275 , 1269, 1238, 1192, 1176, 1136, 1109, 1066, 1006, 988, 948, 887, 855, 844, 803, 794 (for the curvilinear wavelengths the absorption is strong to very strong.)

Fig. 1 viser grafisk pimaricins infra-røde spektrum i en kaliumbromidplate. Fig. 1 shows graphically the infrared spectrum of pimaricin in a potassium bromide plate.

For fremstilling av pimaricin dyrkes Streptomyces natalensis aerobisk i stille-stående kulturer eller neddykket i et flytende næringsmedium under sterile betingelser i lukkete med omrøringsinnretnin-ger utstyrte kar, som under dyrkningen til-føres sterilt surstoff eller luft for luftning. For the production of pimaricin, Streptomyces natalensis is grown aerobically in stationary cultures or immersed in a liquid nutrient medium under sterile conditions in closed vessels equipped with stirring devices, which during cultivation are supplied with sterile oxygen or air for aeration.

Dyrkningens varighet, temperaturen og de andre betingelser som må oppfylles for å oppnå gode utbytter av pimaricin be-stemmes eksperimentelt. De vil bli nær-mere diskutert i det følgende. The duration of cultivation, the temperature and the other conditions that must be met in order to obtain good yields of pimaricin are determined experimentally. They will be discussed in more detail below.

Næringsmediet kan bestå av de vanlige stoffer. Det må inneholde en kullstoffkilde og en fermenterbar organisk og/eller an-organisk kvelstoffkilde, men også mineralsalter, f. eks. fosfater, kalium- og natrium-salter og spormetaller, bør være til stede. Men utgangsstoffene som brukes ved opp-finnelsens utførelse er ofte forurenset med disse mineralsalter, så noen ekstra tilsetning ikke er nødvendig. The nutrient medium can consist of the usual substances. It must contain a carbon source and a fermentable organic and/or inorganic nitrogen source, but also mineral salts, e.g. phosphates, potassium and sodium salts and trace metals should be present. But the starting materials used in the execution of the invention are often contaminated with these mineral salts, so no additional addition is necessary.

Som kullstoffkilde kan man bruke både oppløselige og uoppløselige kullhydrater, f. eks. glukose, sakkarose, laktose og stivelse. Sukkeralkoholer, f. eks. glycerol, kan også brukes. Mengden av kullstoffkilden i mediet kan variere sterkt og avhenger av det anvendte kullhydrats natur og mediets øvrige bestanddeler, og utgjør vanligvis omtrent mellom 0,15 og 5 pst. av mediets vekt. Both soluble and insoluble carbohydrates can be used as a carbon source, e.g. glucose, sucrose, lactose and starch. Sugar alcohols, e.g. glycerol, can also be used. The amount of the carbon source in the medium can vary greatly and depends on the nature of the carbohydrate used and the medium's other components, and usually amounts to approximately between 0.15 and 5 percent of the medium's weight.

Som kvelstoffkilde kan et stort antall stoffer finne anvendelse. Man kan her nevne hydrolysert eller ikke hydrolysert kasein, maisstøp, pepton, kjøttekstrakt, soyamel (avfettet eller ikke), peanøttmel, fiskemel og nitrater. Valget av kvelstoffkilde vil som oftest avhenge av mediets øvrige bestanddeler som igjen velges slik at det antibiotiske stoff kan fremstilles så økonomisk som mulig. I denne forbindelse kan det nevnes at små mengder kvelstoff-holdig utgangsmateriale, f. eks. gjæreks-trakt, «distillers' solubles», limvann etc. er i stand til å øke pimaricinutbyttet i visse media. Også lipoidholdige stoffer, som dyre-og plantefett, f. eks. soyaolje og fiskeolje) er i stand til å øke utbyttene i vesentlig grad. A large number of substances can be used as a nitrogen source. One can mention here hydrolysed or non-hydrolysed casein, corn meal, peptone, meat extract, soya flour (defatted or not), peanut flour, fish meal and nitrates. The choice of nitrogen source will usually depend on the medium's other constituents, which in turn are chosen so that the antibiotic substance can be produced as economically as possible. In this connection, it can be mentioned that small amounts of nitrogen-containing starting material, e.g. yeast extract, "distillers' solubles", glue water etc. are able to increase the pimaricin yield in certain media. Also lipoid-containing substances, such as animal and vegetable fats, e.g. soya oil and fish oil) are capable of increasing yields to a significant extent.

Fermenteringstiden er sterkt avhengig av næringsmediets sammensetning. Den varierer vanligvis mellom 48 og 120 timer, men kan også fortsettes f. eks. inntil 14 dager, hvis de herved oppnådde større utbytter gjør en slik forlengelse berettiget, sett fra et økonomisk synspunkt. The fermentation time is strongly dependent on the composition of the nutrient medium. It usually varies between 48 and 120 hours, but can also be continued, e.g. up to 14 days, if the greater dividends obtained thereby justify such an extension from a financial point of view.

Fermenteringstemperaturen kan prin-sippielt variere mellom 15 og 30° C, men man foretrekker temperaturer mellom ca. 26 og 28° C. The fermentation temperature can in principle vary between 15 and 30° C, but temperatures between approx. 26 and 28° C.

Ved optimal vekst av mikroorganismen og optimalt utbytte av pimaricin kan pH variere, særlig under den første fermen-teringsfase, f. eks. mellom 5,0 og 8,0. Etter sterilisering innstilles næringsmediets pH fortrinsvis på en verdi av mellom 6 og 7. Fermenteringen utføres fortrinnsvis ved en pH mellom 6,5 og 8, da man herved oppnår de beste utbytter. pH kan holdes konstant under fermenteringen ved tilsetning av alkalihydroksyd eller syre med jevne tids-mellomrom, og under sterile betingelser. Vanligvis anvendes imidlertid kalsiumkar-bonat som en slags puffer i mengder fra 0,2 til 1,0 vektprosent beregnet på mediet. Mengden av luft som under sterile betingelser ledes inn i mediet under fermenteringen avhenger i høy grad av karets form, hastig-heten og omrørernes form. Vanligvis varierer mengden mellom 0,1 og 4 liter pr. liter næringsmedium pr. minutt. With optimal growth of the microorganism and optimal yield of pimaricin, the pH can vary, particularly during the first fermentation phase, e.g. between 5.0 and 8.0. After sterilization, the pH of the nutrient medium is preferably set to a value of between 6 and 7. The fermentation is preferably carried out at a pH between 6.5 and 8, as this achieves the best yields. The pH can be kept constant during the fermentation by adding alkali hydroxide or acid at regular intervals, and under sterile conditions. Usually, however, calcium carbonate is used as a kind of buffer in amounts from 0.2 to 1.0 percent by weight calculated on the medium. The amount of air which, under sterile conditions, is introduced into the medium during fermentation depends to a large extent on the shape of the vessel, the speed and the shape of the stirrers. Usually the quantity varies between 0.1 and 4 liters per liter of nutrient medium per minute.

Som inokuleringsmateriale i hovedfermenteringskaret anvendes fortrinnsvis fra 48 til 72 timer gamle forkulturer av Streptomyces natalensis. For å få gode utbytter og unngå varierende resultater ut-føres okuleringen fortrinnsvis med kultur-mengder som utgjør fra 1 til 7 volpst. av næringsmediet i hovedfermenteringskaret. Det er klart at man med store fermenteringskar må man anvende noen få trin av for-kulturer. Men det er også mulig å lagre en del, f. eks. 10 pst. av kulturen i hovedfermenteringskaret for fremstilling av en ny kultur. Hele fermenteringen kan også utføres kontinuerlig. Precultures of Streptomyces natalensis from 48 to 72 hours old are preferably used as inoculation material in the main fermentation vessel. In order to obtain good yields and avoid varying results, the inoculation is preferably carried out with culture amounts of from 1 to 7 volpst. of the nutrient medium in the main fermentation vessel. It is clear that with large fermentation vessels one must use a few steps of pre-cultures. But it is also possible to save a part, e.g. 10 percent of the culture in the main fermentation vessel for the production of a new culture. The entire fermentation can also be carried out continuously.

Pimaricin kan fremstilles av kultur-væsken på mange måter. Ifølge oppfinnelsen kan man dra nytte av pimaricinets oppløselighet i organiske oppløsningsmid-ler, som bare til en viss grad kan blandes med vann, f. eks. butanol. Men kan f. eks. gå frem på følgende måte: Etter at man har fått en tilstrekkelig aktiv væske, innstilles denne på en pH av ca. 10 for å fri-gjøre det aktive stoff fra det såkalte mycelium, hvoretter dette frafiltreres. Væsken kan derpå ekstraheres, f. eks. med n-butanol, ved en pH mellom 3 og 10. Hvis væsken surgjøres, så gjøres dette helst med fosforsyre og det eventuelt herved dannede bunnfall fjernes og ekstraheres om nød-vendig, n-butanolekstrakten konsentreres ved azeotropisk destillasjon og den aktive råsubstans krystalliserer ut. Denne kan renses ved selektiv utfelling i f. eks. iseddik, pyridin, dimetylformamid o. 1. Ved fermen-tering med større utbytter enn 700 mikrogram/ml kan pimaricinutbyttet økes vesentlig ved ekstraksjon av myceliet. Ved denne ekstraksjon er det fordelaktig å fore-ta ekstraksjonen med metanol, hvori det er oppløst 1—3 pst. kalsiumklorid, for å øke oppløsningsevnen. Pimaricin can be produced from the culture liquid in many ways. According to the invention, one can take advantage of pimaricin's solubility in organic solvents, which can only be mixed with water to a certain extent, e.g. butanol. But can e.g. proceed as follows: After you have obtained a sufficiently active liquid, this is adjusted to a pH of approx. 10 to release the active substance from the so-called mycelium, after which this is filtered off. The liquid can then be extracted, e.g. with n-butanol, at a pH between 3 and 10. If the liquid is acidified, this is preferably done with phosphoric acid and any resulting precipitate is removed and extracted if necessary, the n-butanol extract is concentrated by azeotropic distillation and the active raw substance crystallizes out . This can be purified by selective precipitation in e.g. glacial acetic acid, pyridine, dimethylformamide etc. 1. When fermenting with yields greater than 700 micrograms/ml, the pimaricin yield can be increased significantly by extraction of the mycelium. In this extraction, it is advantageous to carry out the extraction with methanol, in which 1-3 per cent calcium chloride is dissolved, in order to increase the solubility.

Eksempel 1. Example 1.

(Fremstilling av inokuleringskulturen). (Preparation of the inoculation culture).

Fra et rør med en kultur av Streptomyces natalensis nov. spee. på f. eks. havre-melsagar på hvilken en god sporedannelse har funnet sted, overføres små mengder konidier under sterile betingelser til 2 liters rysteflasker, som er påfylt 500 ml flytende næringsmedium. Næringsmediet består av From a tube with a culture of Streptomyces natalensis nov. spee. on e.g. oat flour agar on which good spore formation has taken place, small amounts of conidia are transferred under sterile conditions to 2 liter shaking bottles, which are filled with 500 ml of liquid nutrient medium. The nutrient medium consists of

Etter inkubering under stadig omryst-ning ved 26° C i 48 timer er kulturen ferdig til inokulering i hovedfermenteringsmediet. After incubation with constant shaking at 26°C for 48 hours, the culture is ready for inoculation into the main fermentation medium.

Eksempel II. Example II.

(Fremstilling av kulturen) (Creating the Culture)

En liter av den ifølge eksempel 1 frem-stilte inokuleringskultur overføres under sterile betingelser til et fermenteringskar, som er utstyrt med en omrører og en an-ordning for innblåsing av steril luft og inneholder 15 liter av et kulturmedium av følgende sammensetning: One liter of the inoculation culture prepared according to example 1 is transferred under sterile conditions to a fermentation vessel, which is equipped with a stirrer and a device for blowing in sterile air and contains 15 liters of a culture medium of the following composition:

Ovenstående kulturmedium innstilles på en pH-verdi av 6—9 med alkalihydroksyd. Etter 8 timers inkubering ved 27° C under stadig luftning og omrøring av kulturen viste det seg at den inneholdt 610 mikrogram pr. ml. The above culture medium is adjusted to a pH value of 6-9 with alkali hydroxide. After 8 hours of incubation at 27° C with constant aeration and stirring of the culture, it turned out that it contained 610 micrograms per ml.

Andre kulturmedia med hvilke man kan oppnå like store utbytter kan ha føl-gende sammensetning: Other cultural media with which you can achieve equally large dividends can have the following composition:

Med dette medium fikk man med 4 pst. inokuleringskultur og 72 timers inkubering og luftning ved 26° C, 590 mikrogram pimaricin pr. ml væske. With this medium, with 4% inoculation culture and 72 hours of incubation and aeration at 26° C, 590 micrograms of pimaricin per ml of liquid.

Med dette medium fikk man etter inokulering med 5 pst. av inokuleringskulturen og 120 timers inkubering og luftning ved 27° C, 640 mikrogram pimaricin pr. ml fermenteringsvæske. With this medium, 640 micrograms of pimaricin per ml of fermentation liquid.

I dette medium dannet det seg etter inokulering med 3 pst. inokuleringskultur og 148 timers inkubering og luftning ved 26° C, 535 mikrogram pimaricin pr. ml. fermenteringsvæske. In this medium, after inoculation with 3% inoculation culture and 148 hours incubation and aeration at 26° C, 535 micrograms of pimaricin per ml. fermentation liquid.

I dette medium dannet det seg, etter inokulering med 3 pst. inokuleringskultur i en 15 liters fermenteringsballong og inkubering og luftning i 168 timer ved 28° C, 690 mikrogram pimaricin pr. ml. fermenteringsvæske. Etter behandling av myceliet, som var frapresset og omrørt i en del vann, med fortynnet alkalihydroksyd til pH = 10, fant man 20,4 g pimaricin i myce-liumfiltratet. In this medium, after inoculation with 3% inoculation culture in a 15 liter fermentation balloon and incubation and aeration for 168 hours at 28° C, 690 micrograms of pimaricin per ml. fermentation liquid. After treatment of the mycelium, which had been squeezed out and stirred in a portion of water, with diluted alkali hydroxide to pH = 10, 20.4 g of pimaricin was found in the mycelium filtrate.

Eksempel III. Example III.

(Isolering av råpimaricin). (Isolation of crude pimaricin).

Fire liter av en ferdigfermentert kul-turvæske som inneholdt 590 mikrogram/ml pimaricin ble innstilt på pH = 10,0 med 10 pst.'s natronlut og deretter befridd for mycelium ved filtrering med kiselgur som filtreringsmiddel (2 pst.). Den filtrerte kultur, som hadde et volum av 3,7 liter og en aktivitet av 570 mikrogram/ml ble surgjort med fosforsyre til pH = 3,0. Det sur-gjorte filtrat ble ekstrahert med resp. 750, 350 og 350 ml n-butanol. Butanolekstråkten ble vasket tre ganger med 120 ml 4 pst.'s boraksoppløsning og til slutt to ganger med 120 ml vann. Butanolekstråkten inneholdt da 1400 mikrogram/ml. Etter azeotropisk inndampning av ekstrakten til 100 ml utskiltes 0,64 g ikke helt ren pimaricin i form av krystaller (aktivitet 900 mikrogram/ml). Av resten av ekstrakten fikk man ved fort-satt inndampning 1,42 g urent pimaricin (aktivitet 395 mikrogram/ml). Utbyttet var 48 pst., beregnet på den helt ferdigfermen-terte væskes totale aktivitet. Four liters of a pre-fermented culture liquid containing 590 micrograms/ml pimaricin was adjusted to pH = 10.0 with 10% caustic soda and then freed from mycelium by filtration with diatomaceous earth as a filter medium (2%). The filtered culture, which had a volume of 3.7 liters and an activity of 570 micrograms/ml, was acidified with phosphoric acid to pH = 3.0. The acidified filtrate was extracted with resp. 750, 350 and 350 ml of n-butanol. The butanol funnel was washed three times with 120 ml of 4% borax solution and finally twice with 120 ml of water. The butanol funnel then contained 1400 micrograms/ml. After azeotropic evaporation of the extract to 100 ml, 0.64 g of not completely pure pimaricin was separated in the form of crystals (activity 900 micrograms/ml). From the rest of the extract, 1.42 g of impure pimaricin (activity 395 micrograms/ml) was obtained by continued evaporation. The yield was 48 per cent, calculated on the total activity of the fully fermented liquid.

Eksempel IV. Example IV.

(Isolering av råpimaricin). (Isolation of crude pimaricin).

15 liter helt ferdigfermentert kultur-væske, som inneholdt 610 mikrogram/ml pimaricin ble innstilt på pH = 10,3 med 35 pst.'s kalilut og deretter befridd for mycelium ved hjelp av 50 g Hyflo som filtreringsmiddel. Deretter ble filtratet surgjort tii pH = 2,8 med fosforsyre. Det utfelte bunnfall ble frafiltrert, denne gang med 10 pst. Hyflo. Bunnfallet ble omrørt i en halv time med 100 ml n-butanol. Etter henstand ble det som hadde avsatt seg på bun-nen vasket med 100 ml vann. Den hele mengde butanolekstrakt ble vasket tre ganger med 10 ml 4 pst.'s boraksoppløsning, deretter tre ganger med 10 ml vann og inndampet i vakuum til 40 ml ved 44° C. Etter avkjøling til 0° C, avsugning og tørking fikk man 0,51 g blekgult, krystallinsk pimaricin med en aktivitet av 850 mikrogram/mg. Det filtrerte kulturfiltrat ble deretter be-handlet på den i eksempel 3 beskrevne måte. Man fikk følgende to fraksjoner: 3,21 g (akt. 890 mikrogram/mg) og 6,8 g (akt. 223 mikrogram/mg. 15 liters of fully fermented culture liquid, which contained 610 micrograms/ml of pimaricin, was adjusted to pH = 10.3 with 35 percent potash and then freed from mycelium using 50 g of Hyflo as a filtering agent. The filtrate was then acidified to pH = 2.8 with phosphoric acid. The precipitate was filtered off, this time with 10% Hyflo. The precipitate was stirred for half an hour with 100 ml of n-butanol. After a period of time, what had settled on the bottom was washed with 100 ml of water. The entire amount of butanol extract was washed three times with 10 ml of 4% borax solution, then three times with 10 ml of water and evaporated in vacuo to 40 ml at 44° C. After cooling to 0° C, suction and drying, 0 .51 g of pale yellow, crystalline pimaricin with an activity of 850 micrograms/mg. The filtered culture filtrate was then treated in the manner described in example 3. The following two fractions were obtained: 3.21 g (act. 890 micrograms/mg) and 6.8 g (act. 223 micrograms/mg.

Totalutbytte 51,5 pst. Total dividend 51.5 per cent.

Eksempel V. Example V.

(Isolering av rå pimaricin). (Isolation of crude pimaricin).

Ti liter fullstendig utfermentert kulturmedium (akt. 640 mikrogram/ml) ble Ten liters of completely fermented culture medium (act. 640 micrograms/ml) were

innstilt på pH = 10 med 15 pst.'s kalilut. Myceliet ble frasentrifugert og sentrifuga-tet innstilt på pH = 6,9 med 10 n saltsyre og deretter ekstrahert med resp. 2000, 1000 og 1000 ml isoamylalkohol. Isoamyleks-traktene ble slått sammen og vasket tre ganger med 300 ml 4 pst.'s natriumkarbo-natoppløsning og derpå med 300 ml vann. Den på denne måte behandlede ekstrakt ble inndampet azeotropisk til 100 ml. Herved utskiltes 2,62 g blekgul, krystallinsk pimaricin med en aktivitet av 900 mikrogram/ mg. Utbytte, 36,8 pst. adjusted to pH = 10 with 15 percent potash. The mycelium was centrifuged off and the centrifuge set to pH = 6.9 with 10 n hydrochloric acid and then extracted with resp. 2000, 1000 and 1000 ml isoamyl alcohol. The isoamyl extracts were combined and washed three times with 300 ml of 4% sodium carbonate solution and then with 300 ml of water. The extract treated in this way was evaporated azeotropically to 100 ml. 2.62 g of pale yellow, crystalline pimaricin with an activity of 900 micrograms/mg is thereby secreted. Dividend, 36.8 per cent.

Eksempel VI. Example VI.

(Isolering av rå pimaricin). (Isolation of crude pimaricin).

Tyve liter av en fullstendig utfermentert kultur av Streptomyces natalensis (akt. 700 mikrogram/ml) ble innstilt på pH = 10 med 20 pst. natronlut. Myceliet ble frafiltrert ved hjelp av Hyflo (200 g). Det klare kulturfiltrat ble ekstrahert med resp. 4000, 2000 og 1000 ml n-butanol. Ekstrakt-ene ble slått sammen og vasket to ganger med 500 ml 4 pst.'s boraksoppløsning og derpå to ganger med 500 ml vann. Etter innstilling av den på denne måte behandlede ekstrakt på pH = 6,8, ble den inndampet azeotropisk i vakuum til 250 ml. Herved utskiltes 9,85 g blekgul, krystallinsk pimaricin (akt. 913 mikrogram/mg). Twenty liters of a completely fermented culture of Streptomyces natalensis (act. 700 micrograms/ml) was adjusted to pH = 10 with 20% caustic soda. The mycelium was filtered off using Hyflo (200 g). The clear culture filtrate was extracted with resp. 4000, 2000 and 1000 ml of n-butanol. The extracts were combined and washed twice with 500 ml of 4% borax solution and then twice with 500 ml of water. After adjusting the extract treated in this way to pH = 6.8, it was azeotropically evaporated in vacuo to 250 ml. 9.85 g of pale yellow, crystalline pimaricin (act. 913 micrograms/mg) is thereby excreted.

Eksempel VII. Example VII.

(Isolasjon av råpimaricin fra mycelium). (Isolation of crude pimaricin from mycelium).

Femten liter av en fullstendig utfermentert kultur av Streptomyces natalensis nov. spee. ble innstilt på pH = 4,1 med iseddik. Oppløsningen ble tilsatt og omrørt sammen med 200 g Hyflo som filtreringsmiddel. Myceliet ble derpå presset for å fjerne mest mulig vann og veiet da 1700 g. Fifteen liters of a completely fermented culture of Streptomyces natalensis nov. spee. was adjusted to pH = 4.1 with glacial acetic acid. The solution was added and stirred together with 200 g of Hyflo as a filtering agent. The mycelium was then pressed to remove as much water as possible and then weighed 1700 g.

1 g av dette mycelium i denne tilstand ble 1 g of this mycelium in this condition was

ekstrahert i en time med 40 ml metanol for å bestemme antall mikrogram pimaricin. Metanolekstraktens volum ble øket til extracted for one hour with 40 ml of methanol to determine the number of micrograms of pimaricin. The volume of the methanol extract was increased to

100 ml og deretter målt spektrofotometrisk. 100 ml and then measured spectrophotometrically.

Metanoloppløsningen inneholdt 120 mikrogram/ml. The methanol solution contained 120 micrograms/ml.

Pimaricininnholdet i den hele mengde mycelium utgjorde 20,4 g. Det pressede mycelium ble ekstrahert i en halv time ved værelsestemperatur med 8 1 metanol, hvori 2 pst. kalsiumklorid var oppløst. Ekstrakten ble fortynnet med 1 1 vann og befridd for metanol i vakuum. Herved utskiltes krystallinsk pimaricin, som etter avsugning, vasking og tørking i vakuum veiet 14,73 g og hadde en aktivitet av 900 mikrogram/ mg = 65 pst. av det teoretiske utbytte. The pimaricin content in the entire amount of mycelium was 20.4 g. The pressed mycelium was extracted for half an hour at room temperature with 8 l of methanol, in which 2 per cent calcium chloride was dissolved. The extract was diluted with 1 1 of water and freed from methanol in vacuum. In this way, crystalline pimaricin was secreted, which after aspiration, washing and drying in vacuum weighed 14.73 g and had an activity of 900 micrograms/mg = 65 per cent of the theoretical yield.

Eksempel VIII. Example VIII.

(Rensing av pimaricin). (Purification of pimaricin).

Ti gram uren pimaricin (akt. 890 mikrogram/mg) ble under forsiktig oppvarmning oppløst i 80 ml iseddik hvoretter uopp-løste forurensninger ble frafiltrert hurtigst mulig. Det klare gulbrune filtrat ble opp-løst i 1500 ml vann og oppløsningen innstilt på pH = 6,3 med 33 pst.'s natronlut. Etter avkjøiing ble de utskilte krystaller fracen-trigugert, vasket to ganger med ialt 500 ml vann og avsuget. Krystallene ble også vasket på filtret med 200 ml vann og tørket i vakuum over fosforpentoksyd. Det erholdte sterkt blekgule produkt veiet 7,07 g og hadde en aktivitet av 960 mikrogram/mg. Ten grams of impure pimaricin (act. 890 micrograms/mg) were dissolved in 80 ml of glacial acetic acid under careful heating, after which undissolved impurities were filtered out as quickly as possible. The clear yellow-brown filtrate was dissolved in 1,500 ml of water and the solution adjusted to pH = 6.3 with 33% caustic soda. After cooling, the separated crystals were fractionated, washed twice with a total of 500 ml of water and suctioned off. The crystals were also washed on the filter with 200 ml of water and dried in vacuum over phosphorus pentoxide. The very pale yellow product obtained weighed 7.07 g and had an activity of 960 micrograms/mg.

Ovenstående behandling ble gjentatt med 60 ml iseddik og 1000 ml vann. Stoffet ble vasket tre ganger med 200 ml vann. Produktet veiet da 5,35 g og hadde en aktivitet av 995 mikrogram/mg. Totalutbyttet 59,8 pst. The above treatment was repeated with 60 ml of glacial acetic acid and 1000 ml of water. The fabric was washed three times with 200 ml of water. The product then weighed 5.35 g and had an activity of 995 micrograms/mg. Total yield 59.8 per cent.

Eksempel IX. Example IX.

(Rensing av pimaricin). (Purification of pimaricin).

Ti gram urent pimaricin (akt. 890 mikrogram/) ble under svak oppvarmning oppløst i 100 ml dimetylformamid. De uopp-løselige forurensninger ble frafiltrert og filtret vasket med 30 ml dimetylformamid. Det brunfargede, klare filtrat ble tilsatt 250 ml vann, og det antibiotiske stoff skilte seg ut i form av krystaller. Produktet ble avsuget, filteret vasket med 100 ml vann og krystallmassen tørket i vakuum. Det erholdte produkt veiet 9,24 g. Etter gjentatt behandling på samme måte fikk man et blekgult krystallinsk produkt som veiet 7,9 g og hadde en aktivitet av 985 mikrogram/ mg. Totalutbytte 87,5 pst. Ten grams of impure pimaricin (act. 890 micrograms/) were dissolved in 100 ml of dimethylformamide under gentle heating. The insoluble impurities were filtered off and the filter washed with 30 ml of dimethylformamide. The brown, clear filtrate was added to 250 ml of water, and the antibiotic substance separated in the form of crystals. The product was sucked off, the filter washed with 100 ml of water and the crystal mass dried in vacuum. The product obtained weighed 9.24 g. After repeated treatment in the same way, a pale yellow crystalline product was obtained which weighed 7.9 g and had an activity of 985 micrograms/mg. Total dividend 87.5 per cent.

Eksempel X. Example X.

(Fremstilling av natriumsaltet). (Preparation of the sodium salt).

2,5 g pimaricin (akt. 985 mikrogram/ mg) ble suspendert i 20 ml metanol ved omrøring og suspensjonen tilsattes 0,145 g natriumhydroksyd oppløst i 0,3 ml vann. Pimaricinet, som først oppløstes, krystal-lerte i løpet av få minutter i form av natriumsaltet. Etter 30 minutters omrøring og 24 timers henstand ved 0° C til krystallmassen frasuget og vasket med 5 ml eta-nol og 10 ml dietyleter. Etter tørkning i vakuum veiet natriumsaltet, som forelå i form av hvite, nålformete krystaller, 2,16 g (innhold 995 mikrogram/mg) = 87,3 pst. av den beregnede aktivitet. 2.5 g of pimaricin (act. 985 micrograms/mg) was suspended in 20 ml of methanol with stirring and 0.145 g of sodium hydroxide dissolved in 0.3 ml of water was added to the suspension. The pimaricin, which first dissolved, crystallized within a few minutes in the form of the sodium salt. After stirring for 30 minutes and standing for 24 hours at 0° C, the crystal mass was suctioned off and washed with 5 ml of ethanol and 10 ml of diethyl ether. After drying in vacuum, the sodium salt, which was present in the form of white, needle-shaped crystals, weighed 2.16 g (content 995 micrograms/mg) = 87.3 percent of the calculated activity.

Andre salter kan fremstilles på liknende måte. Other salts can be prepared in a similar way.

Claims (5)

1. Fremgangsmåte til fremstilling av et antibiotikum, pimaricin, karakterisert ved at Streptomyces natalensis nova species dyrkes under aerobe betingelser, fortrinnsvis submerst, i et vandig næringsmedium, hvorfra utvinnes pimaricin, som er et stoff med antibiotiske egenskaper overfor saprofytiske og parasitiske fungi og gjærsopper, og som i ren tilstand er et hvitt krystallinsk stoff, som begynner å spaltes ved ca. 150° 25 C, har en spesifikk rotasjon a — = + 250° C (i en konsentrasjon av 0,083 pst. i 100 pst.'s metanol), og ikke gir noen fargereaksjon med ferriklorid, danner en lyserød ustabil farge med fosforsyre, avfarger bromvann, er lite oppløselig i vann, mer oppløselig i alkoholer og oppløselig i pyridin, dimetylformamid, dimetylacetamid, iseddik, og alkalihydroksyder og praktisk talt uoppløselig i alifatiske kullvannstof-fer, samt viser maksimal absorbsjon av ul-trafiolett lys ved 290, 300 og 318 m^i med en topp ved ca. 280 og et minimum ved ca. 250 mji, og i en kaliumbromidplate viser følgende infrarøde absorbsjon (i cm-<1>):1. Process for the production of an antibiotic, pimaricin, characterized in that Streptomyces natalensis nova species is grown under aerobic conditions, preferably submerged, in an aqueous nutrient medium, from which pimaricin is extracted, which is a substance with antibiotic properties against saprophytic and parasitic fungi and yeasts, and which in its pure state is a white crystalline substance, which begins to decompose at approx. 150° 25 C, has a specific rotation a — = + 250° C (in a concentration of 0.083 per cent in 100 per cent methanol), and gives no color reaction with ferric chloride, forms a pink unstable color with phosphoric acid, decolourises bromine water, is slightly soluble in water, more soluble in alcohols and soluble in pyridine, dimethylformamide, dimethylacetamide, glacial acetic acid and alkali hydroxides and practically insoluble in aliphatic hydrocarbons, and shows maximum absorption of ultraviolet light at 290, 300 and 318 m^i with a peak at approx. 280 and a minimum of approx. 250 mji, and in a potassium bromide plate shows the following infrared absorption (in cm-<1>): 3460, 2985, 1721, 1637, 1577, 1441, 1401, 1381, 1275 1269, 1238, 1192, 1176, 1136, 1109, 1066, 1006, 988 948 887 855 844, 803, 794. 3460, 2985, 1721, 1637, 1577, 1441, 1401, 1381, 1275 1269, 1238, 1192, 1176, 1136, 1109, 1066, 1006, 988 948 887 855 844, 794.03 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at dyrkningen finner sted ved en temperatur mellom ca. 15 og ca. 30° C, fortrinnsvis mellom ca. 26 og ca. 28° C i et tidsrom på fra ca. to til fem dager. 2. Method according to claim 1, characterized in that the cultivation takes place at a temperature between approx. 15 and approx. 30° C, preferably between approx. 26 and approx. 28° C for a period of from approx. two to five days. 3. Fremgangsmåte ifølge påsfcand 1 —2, karakterisert ved at dyrkningen finner sted i en vandig, næringsmiddelholdig kull-hydratoppløsning med en pH-verdi på 6,5 til 8. 3. Method according to claims 1-2, characterized in that the cultivation takes place in an aqueous, nutrient-containing carbohydrate solution with a pH value of 6.5 to 8. 4. Fremgangsmåte ifølge påstand 1— 3, karakterisert ved at dyrkningen finner sted i et vandig medium som inneholder et oppløselig kullhydrat og en kilde av assimilerbart nitrogen. 4. Method according to claims 1-3, characterized in that the cultivation takes place in an aqueous medium containing a soluble carbohydrate and a source of assimilable nitrogen. 5. Fremgangsmåte ifølge påstand 1— 4, karakterisert ved at utvinningen av pimaricin omfatter ekstrahering av anti-biotikumet med butylalkohol ved en pH-verdi på ca. 3.5. Method according to claims 1-4, characterized in that the extraction of pimaricin comprises extracting the antibiotic with butyl alcohol at a pH value of approx. 3.
NO2016/69A 1968-05-17 1969-05-16 NO123738B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT476668A AT288660B (en) 1968-05-17 1968-05-17 Bulletproof composite panes

Publications (1)

Publication Number Publication Date
NO123738B true NO123738B (en) 1972-01-03

Family

ID=3568072

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2016/69A NO123738B (en) 1968-05-17 1969-05-16

Country Status (10)

Country Link
US (1) US3630814A (en)
AT (1) AT288660B (en)
BE (1) BE732910A (en)
CH (1) CH483554A (en)
DE (1) DE1802230A1 (en)
FR (1) FR2014131A1 (en)
GB (1) GB1223818A (en)
NL (1) NL6905833A (en)
NO (1) NO123738B (en)
SE (1) SE358466B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868805A (en) * 1971-04-26 1975-03-04 Usm Corp Double glazing unit
US3872804A (en) * 1971-09-21 1975-03-25 Commercial Plastics & Supply C Composite panel projectile barrier
SE370754B (en) * 1971-10-29 1974-10-28 Emmaboda Glasverk Ab
US3917891A (en) * 1974-04-11 1975-11-04 Asg Ind Inc Fragmentation shield for impact resisting optical medium
US4027443A (en) * 1975-10-14 1977-06-07 Aneomstat Products Division, Dynamics Corporation Of America Fire and impact resistant window assembly
US4058943A (en) * 1976-06-03 1977-11-22 Sturgill Lawrence W Glass block panel
GB1589878A (en) * 1976-11-26 1981-05-20 Bfg Glassgroup Method of manufacturing a hollow panel
US4316404A (en) * 1978-06-30 1982-02-23 Medlin Richard C Lightweight armored vehicle and method of making same
US4242386A (en) * 1978-11-28 1980-12-30 Christel Konrad Multiple glazing units
DE2856085C2 (en) * 1978-12-23 1982-10-14 Herbert 2000 Hamburg Mackenroth Bulletproof panel assembly for security purposes
US4312903A (en) * 1980-03-05 1982-01-26 General Electric Company Impact resistant double glazed structure
FR2516646A1 (en) * 1981-11-18 1983-05-20 Boussois Sa Bullet proof screens of multiple laminate construction - with gap between laminates of hard or tough materials
DE3244152A1 (en) * 1982-11-29 1984-05-30 HPS-Hildebrandt Gesellschaft für Kunststoffverarbeitung mbH & Co KG, 3167 Burgdorf Sight for a bombardment-proof protective helmet
DE8527571U1 (en) * 1985-09-27 1986-01-02 Körner, Lucy, 7012 Fellbach a book
DE9111130U1 (en) * 1991-09-07 1992-01-16 Trasco Export GmbH, 2820 Bremen Motor vehicle with armored window
DE9114530U1 (en) * 1991-11-22 1992-02-13 Bosse GmbH & Co. KG, 4440 Rheine Color block
SE470552B (en) * 1993-01-07 1994-08-22 Jerzy Kryszof Johansson Safe
DE9310957U1 (en) * 1993-07-22 1993-09-23 Vegla Vereinigte Glaswerke Gmbh, 52066 Aachen TINED GLASS WINDOW FOR MOTOR VEHICLES
US5506051A (en) * 1994-01-27 1996-04-09 Nicolectronix Ltd. Laboratories Transparent sheet composites for use as bullet-proof windows
GB9413180D0 (en) * 1994-06-30 1994-08-24 Glaverbel Multiple glazing unit
US5636484A (en) * 1994-08-11 1997-06-10 Odl Incorporated Hurricane door light
US6009790A (en) * 1998-02-03 2000-01-04 Tekorius; Paul Single-use, bullet-proof shield
DE10148483A1 (en) * 2001-10-01 2003-04-30 Knorr Bremse Ag Mobile partition
US6546682B1 (en) 2001-10-10 2003-04-15 Odl, Incorporated Hurricane door light
CN1795362B (en) * 2003-03-28 2012-09-05 艾伦-先锋公司 Head protector
US20050126091A1 (en) * 2003-12-12 2005-06-16 Kensington Windows, Inc. Impact resistant glass unit
IL172883A (en) * 2005-12-28 2011-10-31 Daniel Besserglik Compound protective glass
US8117790B2 (en) * 2007-02-06 2012-02-21 Vtech Patents Llc Overmolded fenestration building product and method of manufacture
US20090311449A1 (en) * 2008-06-11 2009-12-17 Hans Mark Fehlmann Method of manufacturing an insulated, impact resistant window
WO2012135407A1 (en) 2011-04-01 2012-10-04 Am General Llc Transparent armor structure
US10690451B2 (en) * 2017-09-17 2020-06-23 Kris McKenna Transparent projectile-proof panes, devices and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1988964A (en) * 1932-07-15 1935-01-22 Barrows Charles Storrs Pane
US2741809A (en) * 1952-03-28 1956-04-17 Pittsburgh Plate Glass Co Multiple glazed unit for test chambers
US3135645A (en) * 1958-12-05 1964-06-02 Goodyear Aerospace Corp Laminates
BE628875A (en) * 1963-02-26 1963-08-26
US3179553A (en) * 1963-03-12 1965-04-20 Philip J Franklin Lightweight armor plate
US3388034A (en) * 1965-01-13 1968-06-11 Mobay Chemical Corp Laminated safety glass
US3406086A (en) * 1965-03-31 1968-10-15 Mobay Chemical Corp Transparent safety laminates and method of making same
US3431818A (en) * 1965-04-26 1969-03-11 Aerojet General Co Lightweight protective armor plate

Also Published As

Publication number Publication date
FR2014131A1 (en) 1970-04-17
DE1802230A1 (en) 1970-02-12
AT288660B (en) 1971-03-10
CH483554A (en) 1969-12-31
US3630814A (en) 1971-12-28
BE732910A (en) 1969-10-16
GB1223818A (en) 1971-03-03
SE358466B (en) 1973-07-30
NL6905833A (en) 1969-11-19

Similar Documents

Publication Publication Date Title
NO123738B (en)
US3892850A (en) Pimaricin and process of producing same
SU1082304A3 (en) Method for preparing proteinaceous food products
US4032663A (en) Process for using cell wall-lysing enzymes
CN111925945A (en) Tobacco pipe strain G14 and application
CN1219879C (en) Hainan variety of lilac grey streptomycete and method for preparing agricultural antibiotic from variety
CN1970731A (en) Method for preparing high-performance bio-ironophore by using aspergillus niger
US3870600A (en) Selective and enrichment medium for the isolation identification and propagation of yeasts and fungi
WO1999050434A1 (en) Strain of the microorganism penicillium oxalicum var. armeniaca and its application
CN111471721A (en) Application of alternaria brassicae metabolite in preparation of aspergillus flavus bacteriostatic agent
CN114790438B (en) Method for improving yield and oxidation resistance of antrodia camphorata extracellular polysaccharide
CN111979157B (en) Potato dry rot antagonistic bacterium JZ3-1-15 and application thereof
US2689854A (en) Acetopyrrothine and preparation thereof
CN110564628B (en) Total nutrient substrate microorganism culture method
US2805185A (en) Antibiotic and production thereof
Wolf CITRUS CANKER¹
JP2003102429A (en) Fermented lemon and method for producing the same
CN112877218A (en) Antrodia camphorata fruiting body cultivation and application thereof
SU503532A3 (en) The method of obtaining the enzyme for lysis of microbial cells
US2972569A (en) Hortesin, an antifungal agent derived from streptomyces versipellis
US3058890A (en) Process for the preparation of pectolytic enzymes
NO119308B (en)
CN117305135A (en) Trichoderma pseudokoningii T0027 and application thereof in preventing and treating soft rot of kiwi fruits
BE555769A (en)
DE1184458B (en) Manufacture of a new antibiotic