NO122692B - - Google Patents
Download PDFInfo
- Publication number
- NO122692B NO122692B NO5138/69A NO513869A NO122692B NO 122692 B NO122692 B NO 122692B NO 5138/69 A NO5138/69 A NO 5138/69A NO 513869 A NO513869 A NO 513869A NO 122692 B NO122692 B NO 122692B
- Authority
- NO
- Norway
- Prior art keywords
- explosive
- nitrate
- mixture
- hydrazine
- weight
- Prior art date
Links
- 239000002360 explosive Substances 0.000 claims description 69
- 239000000203 mixture Substances 0.000 claims description 69
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 54
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 24
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 21
- RAESLDWEUUSRLO-UHFFFAOYSA-O aminoazanium;nitrate Chemical compound [NH3+]N.[O-][N+]([O-])=O RAESLDWEUUSRLO-UHFFFAOYSA-O 0.000 claims description 13
- 229910021529 ammonia Inorganic materials 0.000 claims description 13
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 11
- 230000001590 oxidative effect Effects 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 239000002562 thickening agent Substances 0.000 claims description 8
- 230000001603 reducing effect Effects 0.000 claims description 4
- 239000003975 dentin desensitizing agent Substances 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 description 22
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 239000007788 liquid Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229940090898 Desensitizer Drugs 0.000 description 7
- 229910002651 NO3 Inorganic materials 0.000 description 7
- 238000007710 freezing Methods 0.000 description 7
- 230000008014 freezing Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- UUZSPXJCBLJUQH-UHFFFAOYSA-O aminoazanium hydrazine nitrate Chemical compound [N+](=O)([O-])[O-].[NH3+]N.NN UUZSPXJCBLJUQH-UHFFFAOYSA-O 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- -1 ammonium cations Chemical class 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000001457 metallic cations Chemical class 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005474 detonation Methods 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XGSVQGOPJUAOQH-UHFFFAOYSA-N aluminum;2-methyl-1,3,5-trinitrobenzene Chemical compound [Al+3].CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O XGSVQGOPJUAOQH-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- AGUIVNYEYSCPNI-UHFFFAOYSA-N N-methyl-N-picrylnitramine Chemical group [O-][N+](=O)N(C)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O AGUIVNYEYSCPNI-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910001963 alkali metal nitrate Inorganic materials 0.000 description 1
- 229910001485 alkali metal perchlorate Inorganic materials 0.000 description 1
- PVTHIYCCXJJALA-UHFFFAOYSA-N aminoazanium;thiocyanate Chemical compound [NH3+]N.[S-]C#N PVTHIYCCXJJALA-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- ZXNIRGPMYQWIJS-UHFFFAOYSA-O azanium azane nitrate Chemical compound [N+](=O)([O-])[O-].[NH4+].N ZXNIRGPMYQWIJS-UHFFFAOYSA-O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AFEBXVJYLNMAJB-UHFFFAOYSA-N hydrazine;nitric acid Chemical compound NN.O[N+]([O-])=O AFEBXVJYLNMAJB-UHFFFAOYSA-N 0.000 description 1
- HFPDJZULJLQGDN-UHFFFAOYSA-N hydrazine;perchloric acid Chemical compound [NH3+]N.[O-]Cl(=O)(=O)=O HFPDJZULJLQGDN-UHFFFAOYSA-N 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-O hydrazinium(1+) Chemical compound [NH3+]N OAKJQQAXSVQMHS-UHFFFAOYSA-O 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B31/00—Compositions containing an inorganic nitrogen-oxygen salt
- C06B31/28—Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
- C06B31/32—Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with a nitrated organic compound
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B25/00—Compositions containing a nitrated organic compound
- C06B25/34—Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Air Bags (AREA)
Description
Sprengstoffer. Explosives.
Oppfinnelsens bakgrunn The background of the invention
Oppfinnelsens anvendelsesområde Scope of the invention
Denne oppfinnelse vedrorer nye eksplosive blandinger som dr kjennetegnet ved et bydraziniumnitrat/hydrazin/aiuminium sprengstoffsystem,sammen med labile likevektsmengder av amuoniumni-trat og i enkelte tilfelle ammoniakk, og sammen med forskjellige bestanddeler til å variere de fysikalske egenskaper for å bibringe bnsket stabilitet, tetthet, viskositet, og frysepunktegenskaper i blandingen. This invention relates to new explosive mixtures characterized by a bydrazinium nitrate/hydrazine/aluminium explosive system, together with labile equilibrium amounts of ammonium nitrate and in some cases ammonia, and together with various components to vary the physical properties to impart the desired stability, density , viscosity, and freezing point properties of the mixture.
Beskrivelse av teknikkens stand Description of the state of the art
Sprengstoff- og drivstoffsammensetninger som innbefatter blandinger av hydrazin og hydraziniumnitrat er generelt kjent (og-så kjent som hydrazinnitrat eller hydrazinmononitrat), slik som åpenbart i Audrieth's US patent nr. 2.704.706 og Audrieth et al US patent nr. 2.943.927. US patent nr. 2.704.706 åpenbarer ammoniumnitrat sensibilisert med hydraziniumnitrat for bruk i forbindelse med kjenté sprengstoffer slike som TNT. I disse forefinnes nitra-tene i fast tilstand og uten noe fritt hydrazin tilstede. I US patent nr. 2.943.927 er åpenbart at et hydrazin-hydraziniumnitrat-system har et kjennetegnende lavt frysepunkt og er nyttig for bruk som brennstoff i forbindelse med konvensjonelle oxydanter slike som hydrogenperoxyd, rykende salpetersyre og flytende oxygen. Hydrazin-hydraziniumnitrat inneholder i dette tilfelle minst 18 vekt% hydrazin for å gi brennstoffet et frysepunkt på ca. -50°C. I brennstoffet i henhold til Audrieth et al, som nevnt ovenfor, er vektforhol-dehe i hydrazin-hydraziniumnitratblandingen bestemt utelukkende under hensyntagen til frysepunktdepresjonen, og ikke fra noen be-traktninger om den stokiometriske balanse eller maksimale effekti-vitet som sprengstoff, og mere spesielt innbefattes ingen betrakt-ninger vedrorende den stokiometriske balanse eller maksimale effekt i det tilfelle hvor hydrazin-hydraziniumnitratblandingen benyttes i forbindelse med en uforbundet metallisk reduserende bestanddel som f.eks. aluminium, slik som er tilfelle i den foreliggende oppfinnelse. Explosive and propellant compositions comprising mixtures of hydrazine and hydrazinium nitrate are generally known (also known as hydrazine nitrate or hydrazine mononitrate), as disclosed in Audrieth's US Patent No. 2,704,706 and Audrieth et al US Patent No. 2,943,927. US Patent No. 2,704,706 discloses ammonium nitrate sensitized with hydrazinium nitrate for use in connection with known explosives such as TNT. In these, the nitrates are found in a solid state and without any free hydrazine present. In US patent no. 2,943,927 it is obvious that a hydrazine-hydrazinium nitrate system has a characteristically low freezing point and is useful for use as a fuel in connection with conventional oxidants such as hydrogen peroxide, fuming nitric acid and liquid oxygen. In this case, hydrazine-hydrazinium nitrate contains at least 18% by weight of hydrazine to give the fuel a freezing point of approx. -50°C. In the fuel according to Audrieth et al, as mentioned above, the weight ratio in the hydrazine-hydrazinium nitrate mixture is determined solely taking into account the freezing point depression, and not from any considerations of the stoichiometric balance or maximum effectiveness as an explosive, and more particularly no considerations regarding the stoichiometric balance or maximum effect are included in the case where the hydrazine-hydrazinium nitrate mixture is used in connection with an unbound metallic reducing component such as e.g. aluminium, as is the case in the present invention.
Det er også kjent sprengstoffer som inneholder ammoniumnitrat sammen med et hydrogeninneholdende opplosningsmiddel for dette, slik som flytende ammoniakk eller ammoniakalsk ammoniumnit-ratopplosninger, og med en metallisk brennstoffbestanddel som aluminium eller magnesiumpartikler; slike sprengstoffer er åpenbart i Hradel US patent nr. 3.124.495. T disse sprengstoffer forefinnes ammoniakken eller lignende opplbsningsmiddel for ammoniumnitrat i forholdet fra 2 vekt% til 5 vekt%, det tilstedeværende ammoniumnitrat forefinnes fra 10 vekt% til 83 vekt% og metallbestanddelen forefinnes i mengder fra 15 vekt% til 60 vekt%. I sprengstoffet i henhold til Hradel er det fastslått at partikkelstorrelsen for me-tallbes tanddelen i det vesentlige må være storre enn 20 US standard sikt, i den hensikt at sprengstoffet skal være tilfredsstillende ufolsomt for å unngå for tidlig detonasjon under behandling. Selvom Hradel gir en generell uttalelse om at det hydrogenholdige opplosningsmiddel for ammoniumnitrat skal være enten flytende a mm on i a"1;;:, vann, ammoniumhydroxyd eller hydrazin (hvor alle de viste ekseupl; r omfatter ammoniakk i en vandig opplosning som opplosningsmiddel). gjor Hradel ingen forskjell på de forskjellige opplosningsmidlar. han gir heller ingen antydning om de spesielle fordelaktige fysikalske egenskaper eller detonasjonskarakteristika av spesielle kom-binasjoner av hydrazin eller hydrazininneholdende opplosningsmiddel med et nitrat eller lignende oxyderingsmidler opplost i dette og i nærvær av aluminiumpartikler slik som kjennetegner foreliggende oppfinnelse. I virkeligheten åpenbarer Hradel bare et ammoniakk-ammoniumnitrat/aluminium eller magnesiumtypesprengstoffsystfi-mer, siden hydrazin og magnesium kan være eksotermisk ustabile og gi selvtennende brennbare sprengstoffer. There are also known explosives which contain ammonium nitrate together with a hydrogen-containing solvent for this, such as liquid ammonia or ammoniacal ammonium nitrate solutions, and with a metallic fuel component such as aluminum or magnesium particles; such explosives are disclosed in Hradel US Patent No. 3,124,495. In these explosives, the ammonia or similar solvent for ammonium nitrate is present in the ratio from 2% by weight to 5% by weight, the ammonium nitrate present is present from 10% by weight to 83% by weight and the metal component is present in amounts from 15% by weight to 60% by weight. In the explosive according to Hradel, it has been established that the particle size for the metal tooth part must essentially be larger than 20 US standard sieve, with the intention that the explosive must be satisfactorily inert to avoid premature detonation during processing. Although Hradel gives a general statement that the hydrogen-containing solvent for ammonium nitrate should be either liquid ammonia in a"1;;:, water, ammonium hydroxide or hydrazine (where all the examples shown include ammonia in an aqueous solution as a solvent). Hradel makes no distinction between the various solvents, nor does he give any hint of the special advantageous physical properties or detonation characteristics of particular combinations of hydrazine or hydrazine-containing solvent with a nitrate or similar oxidizing agents dissolved therein and in the presence of aluminum particles such as characterize the present invention In reality, Hradel only discloses an ammonia-ammonium nitrate/aluminum or magnesium type explosive system, since hydrazine and magnesium can be exothermically unstable and yield self-igniting combustible explosives.
Beskrivelse av oppfinnelsen Description of the invention
Sammenlignet med Hradels eksplosive stoffer inneholder hydraziniumnitrat/hydrazin/aluminiumsprengstoffene i henhold til foreliggende oppfinnelse fritt hydrazin som, selv om det er tilstede i overskudd, ikke virker forhindrende på den eksplosive reaksjon, da det selv dekomponerer til gassformige reaksjonsprodukter under frigjorelse av energi, mens ammoniakken eller ammoniakk og vann som utgjor den flytende bestanddel i Hradels sprengstoffer krever energi for dekomposisjon og således virker reduserende på den energi som frigjores ved eksplosjonen. Det må derfor for st åe:-: at under disse forhold utgjor hydrazin meget mere enn et opplosningsmiddel i sprengstoffene i henhold til den foreliggende oppfinnelse. Hydrazin tjener også som et usedvanlig effektivt arbeidsme-dium i det foreliggende eksplosive system, idet det gir mere ener-gitilskudd til blandingen da det reagerer til gassformige sluttpro-dukter og derved bidrar vesentlig til mere gass pr. initialvekten-het av blandingen. Det kanskje mest betydningsfulle ved sammenligning av ammoniakk/ammoniumnitrat/alumimium- eller magnesiumspren.j-stoffsystem i henhold til Hradel med hydrazin-hydraziniumnitrat/ aluminiumsprengstoffsystem i henhold til foreliggende oppfinnelse er den betraktning at Hradels "væske" (den normalt flytende andel av sprengstoffet, dvs.... ammoniumnitrat opplost i ammoniakaisk vandig opplosning) ikke vil detonere hvis ikke tnetallbes tanddelen er tilstede, mens "væsken" i henhold til foreliggende oppfinnelse (dvs. ammoniumnitrat opplost i hydrazin under solvolyti.sk dannelse-av en ionelikevekt av hydrazinium og ammoniumkationer og .nitrat- anioner sammen med en betydelig andel,av fritt hydrazin og dessut-en forefinnes fri ammoniakk) er i sig selv et sprengstoff uten me-tall (aluminium)bestanddelen. De eksplosive blandinger i henhold til foreliggende oppfinnelse er i det folgende antatt teoretisk å gi hva kan kalles et totrinns sprengstoffsystem, hvor den initiale eksplosive sjokkbolge skyldes i forste rekke en rask reaksjon mellom hydrazinet og oxydanten, mens reaksjonen med metallbestanddelen tilsynelatende foregår i to trinn for derved å gi et eftersjokk. Som folge1 av en slik totrinns reaksjon av aluminiumbestanddelen er det vist at optimaliserte blandinger i henhold til den foreliggende oppfinnelse gir ca. to ganger så sterkt luftsjokk som TNT, mens luftsjokket som gis av sprengstoffer i henhold til Hradel er om-trent det samme som for TNT. Compared to Hradel's explosives, the hydrazinium nitrate/hydrazine/aluminum explosives according to the present invention contain free hydrazine which, even if present in excess, does not inhibit the explosive reaction, as it itself decomposes into gaseous reaction products with the release of energy, while the ammonia or ammonia and water, which make up the liquid component in Hradel's explosives, require energy for decomposition and thus have a reducing effect on the energy released by the explosion. It must therefore be understood:-: that under these conditions hydrazine constitutes much more than a solvent in the explosives according to the present invention. Hydrazine also serves as an exceptionally effective working medium in the present explosive system, as it provides more energy addition to the mixture as it reacts to gaseous end products and thereby contributes significantly to more gas per initial weight of the mixture. Perhaps the most significant thing when comparing the ammonia/ammonium nitrate/aluminum or magnesium explosive system according to Hradel with the hydrazine-hydrazinium nitrate/aluminum explosive system according to the present invention is the consideration that Hradel's "liquid" (the normally liquid portion of the explosive, i.e.... ammonium nitrate dissolved in ammoniacal aqueous solution) will not detonate if the tnetalbe tooth part is not present, while the "liquid" according to the present invention (i.e. ammonium nitrate dissolved in hydrazine during solvolytic formation-of an ionic equilibrium of hydrazinium and ammonium cations and .nitrate- anions together with a significant proportion of free hydrazine and in addition there is free ammonia) is in itself an explosive without the metal (aluminium) component. In the following, the explosive mixtures according to the present invention are assumed theoretically to give what can be called a two-stage explosive system, where the initial explosive shock wave is primarily due to a rapid reaction between the hydrazine and the oxidant, while the reaction with the metal component apparently takes place in two stages for thereby giving an aftershock. As a result of such a two-stage reaction of the aluminum component, it has been shown that optimized mixtures according to the present invention give approx. twice as strong air shock as TNT, while the air shock given by explosives according to Hradel is about the same as for TNT.
Et aluminiumnitrid-mellomprodukt kan dannes, som er helt spesielt for den eksplosive blanding i henhold til foreliggende oppfinnelse, og er en mulig forklaring på den okede sprengkraft. An aluminum nitride intermediate can be formed, which is quite specific to the explosive mixture according to the present invention, and is a possible explanation for the increased explosive force.
For ytterligere å oppsummere egenskapene til den foreliggende oppfinnelse, er det funnet at de eksplosive blandinger i henhold til oppfinnelsen skal inneholde de folgende bestanddeler som angitt nedenfor i tilnærmede vektprosenter: To further summarize the properties of the present invention, it has been found that the explosive mixtures according to the invention must contain the following components as indicated below in approximate weight percentages:
i - in -
Med hensyn til de ovenfor gitte sammensetninger kan nitrationet eller tilsvarende være tilstede i en eller.flere forbin- . deiser utvalgt fra en gruppe som omfattes av nitrat(er) og blandinger av disse med mindre mengder perklorat(er). Eventuelt kan det oxyderende salt også omfatte mindre mengder av e± eller flere oxyderende salter som har visse metalliske kationer i stedet for det stabile hydronitrogentypekation, dvs. det oxyderende salt(er) kan omfatte en mindre andel av et oxyderende salt utvalgt fra en gruppe bestående av alkalimetallhitrater, kalsiumnitrat, aluminiumnitrat, hydraziniumperklorat, alkalimetallperklorater, kaliumperklorat, og blandinger av disse. Imidlertid, for vanlig bruk av sprengstoff-sammensetningene byr tilstedeværelsen av mindre mengder metallisk kation ingen fordel, og vil til en viss grad redusere den eksplosive effekt av blandingen, idet det metalliske kation danner faste reaksjonsprodukter i stedet for gassformige reaksjonsprodukter. I visse tilfelle vil imidlertid mindre mengder av et metallisk kation i det oxyderende salt være fordelaktig med hensyn til å redusere skum under blandingens fremstilling, eller med hensyn til en forbedret langringskarakteristikk eller andre onskede fysikalske egenskaper. With regard to the compositions given above, the nitrate ion or the equivalent may be present in one or more compounds. deis selected from a group comprised of nitrate(s) and mixtures thereof with smaller amounts of perchlorate(s). Optionally, the oxidizing salt may also comprise smaller amounts of e± or more oxidizing salts having certain metallic cations instead of the stable hydronitrogen type cation, i.e. the oxidizing salt(s) may comprise a smaller proportion of an oxidizing salt selected from a group consisting of of alkali metal nitrates, calcium nitrate, aluminum nitrate, hydrazinium perchlorate, alkali metal perchlorates, potassium perchlorate, and mixtures thereof. However, for ordinary use of the explosive compositions, the presence of smaller amounts of metallic cation offers no advantage, and will to some extent reduce the explosive effect of the mixture, the metallic cation forming solid reaction products instead of gaseous reaction products. In certain cases, however, smaller amounts of a metallic cation in the oxidizing salt will be beneficial with respect to reducing foaming during the preparation of the mixture, or with respect to an improved ring elongation characteristic or other desired physical properties.
Sprengstoffblandingere ifolge foreliggende oppfinnelse kan generelt formuleres ved å blande ammoniumnitrat og hydrazin med en efterfolgende tilsetning av aluminiumpartikler, eller ved å blande hydraziniumnitrat med hydrazin med en efterfolgende tilsetning av aluminiumpartikler. I det forste tilfelle er nitratet tilstede i den ferdige blanding i form av hydraziniumnitrat og ammoniumnitrat i en ustabil likevekt med hydrazin og ammoniakk. I det annet tilfelle er nitrationet tilstede vesentlig i form av hydraziniumnitrat uten betydelige mengder av tilstedeværende ammoniumnitrat. Som en variant av den forste måte til å danne blandingen, Explosive mixtures according to the present invention can generally be formulated by mixing ammonium nitrate and hydrazine with a subsequent addition of aluminum particles, or by mixing hydrazinium nitrate with hydrazine with a subsequent addition of aluminum particles. In the first case, the nitrate is present in the finished mixture in the form of hydrazinium nitrate and ammonium nitrate in an unstable equilibrium with hydrazine and ammonia. In the second case, the nitrate ion is present substantially in the form of hydrazinium nitrate without significant amounts of ammonium nitrate present. As a variant of the first way of forming the mixture,
og for å komme frem til en blanding hvori nitratet er tilstede i det vesentlige som hydrazinnitrat med praktisk talt ikke noe ammoniakk tilstede, kan blandingen av ammoniumnitrat og hydrazin foregå ved forhdyet temperatur og/eller under vakuum for å fjerne utviklet ammoniakk i gassform. Ser man på den type sprengstoffer som frem-kommer ved den forst omtalte metode for fremstilling, dvs. den type sprengstoffer som omfattes av en blanding av hydraziniumnitrat og ammoniumnitrat i en ustabil likevekt med hydrazin og ammoniakk, and to arrive at a mixture in which the nitrate is present essentially as hydrazine nitrate with practically no ammonia present, the mixture of ammonium nitrate and hydrazine can take place at elevated temperature and/or under vacuum to remove evolved ammonia in gaseous form. If you look at the type of explosives produced by the first-mentioned method of production, i.e. the type of explosives that comprise a mixture of hydrazinium nitrate and ammonium nitrate in an unstable equilibrium with hydrazine and ammonia,
med hensyn til de relative tilnærmede vektprosenter av utgangsmate-rialene, innbefatter de eksplosive blandinger ifolge oppfinnelsen de folgende bestanddeler i de tilnærmet angitte prosenter: with regard to the relative approximate percentages by weight of the starting materials, the explosive mixtures according to the invention include the following components in the approximate percentages indicated:
I det tilfelle hvor den eksplosive blanding hvori nitrationet vesentlig utgjores av hydraziniumnitrat, blir forholdene av hydraziniumnitrat og hydrazin, som gitt i tabellen ovenfor, som folger: In the case where the explosive mixture in which the nitrate ion is made up essentially of hydrazinium nitrate, the proportions of hydrazinium nitrate and hydrazine, as given in the table above, are as follows:
De relative mengder av vanlig brukte fortykningsmidler og/eller gelatineringsmidler som skal innarbeides i sprengstoff-blandingene, ' må. også vurderes. Med hensyn til slike bestanddeler og vektprosenten av disse i den totale eksplosive blanding, er det videre område av fortykkelse og/eller gelatineringsmiddel 0-20 vekt%, det foretrukne område er fra 1 til 5 vekt%, og den optimale The relative amounts of commonly used thickeners and/or gelatinizers to be incorporated into the explosive mixtures must. are also considered. With regard to such components and the weight percentage thereof in the total explosive mixture, the further range of thickener and/or gelatinizing agent is 0-20% by weight, the preferred range is from 1 to 5% by weight, and the optimum
i in
andel er ca..3 vekt%. share is approx. 3% by weight.
Fortykningsmidler og/eller gelatineringsmidler blir vanligvis tilsatt de eksplosive blandinger i henhold til oppfinnelsen for å holde det finfordelte aluminium i det vesentlige jevnt for-delt i den eksplosive blanding, som ellers i mange tilfelle er en flytende velling, som folge av at det hydrazininneholdende opplds-ningsmiddel og opploste oxydantbestanddeler forefinnes som væske eller i form'av en flytende velling. Fortykning eller gelatinering av blandingen kan oppnåes ved forskjellige tilsetningsmidler som i og for sig ef kjent for dette formål, og tilsettes i de dnskede mengder opp til 20 vekt%. Typiske fortyknings- eller gelatineringsmidler er "Cab-O-Sil" (et finfordelt Si02 for tonings middel, vanligvis brukbart i mengder opp til 10 vekt%) og "Guartec 503" (et tverrbindende gelatineringsmiddel som kan benyttes i mengder opp til 5 vekt%). Annet nyttig gelatineringsmiddel er f.eks. "Carbopol". Gelatineringsmidler tilbys vanligvis i form av et pul-ver, og slike pulvere kan tilsettes til den flytende blanding eller til en flytende bestanddel forut for tilsetning av en eller flere av de andre eksplosive bestanddeler. Således kan f.eks. gelatiner-ingsmidlet gjerne tilsettes til hydrazin sammen med, eller som en forblandet tilsetning til det faste ammoniumnitrat. Tilsetning av "Guartec 503" til sprengstoffet er også fordelaktig med hensyn til å gjore sprengstoffet vannsikkert, hvilket kan være gunstig for mange formål; f.eks. ved bruk hvor opptagelse av omliggende vann ellers ville desensibil.isere sprengstoffet unddvendig. Kjdnrdk er også et effektivt fortykningsmiddel som er typisk for sin type som fungerer uten å være et gelatineringsmiddel. Thickeners and/or gelatinizers are usually added to the explosive mixtures according to the invention in order to keep the finely divided aluminum essentially evenly distributed in the explosive mixture, which is otherwise in many cases a liquid slurry, as a result of the hydrazine-containing oplds -nitrating agent and dissolved oxidant components are present as a liquid or in the form of a liquid gruel. Thickening or gelatinization of the mixture can be achieved by various additives known in and of themselves for this purpose, and added in the desired amounts up to 20% by weight. Typical thickeners or gelatinizers are "Cab-O-Sil" (a finely divided SiO2 for toning agent, usually usable in amounts up to 10% by weight) and "Guartec 503" (a cross-linking gelatinizer which can be used in amounts up to 5% by weight ). Other useful gelatinizing agents are e.g. "Carbopol". Gelatinizing agents are usually offered in the form of a powder, and such powders can be added to the liquid mixture or to a liquid component prior to the addition of one or more of the other explosive components. Thus, e.g. the gelatinizing agent is often added to hydrazine together with, or as a premixed addition to, the solid ammonium nitrate. Adding "Guartec 503" to the explosive is also beneficial in making the explosive waterproof, which can be beneficial for many purposes; e.g. in use where absorption of surrounding water would otherwise desensitize the explosive. Kjdnrdk is also an effective thickener typical of its type that works without being a gelatinizing agent.
For mange av sprengstoffblandingenes anvendelser er det dnskelig å tilsette desensibiliseringsmidler for å motvirke blandingens folsomhet, enten under fabrikasjonsprosessen eller ved bruk. Vann er en effektiv desensibilisator og, selv om det har en utpreget effekt på sprengstoffets energiproduserende egenskaper, kan vann væ-re en dnsket desensibilisator i mengder opp til 10 vekt% for visse blandinger. Andre effektive desensibilisatorer er glycerol, glycol, voks og andre forskjellige hydrocarbonoljer, som f.eks. ovnsolje. I det tilfelle der brukes ovnsolje, kan mengden av slik desensibilisator være opp til 20 vekt% av den totale blanding. I det tilfelle der benyttes faste, men forvæskbare desensibilisatorer som voks, blir desensibilisatoren fortrinnsvis varmet og blandet med blandingen ved forhdyet temperatur, som ved avkjoling går over i fast form og bidrar til fortykning av blandingen. Generelt kan hvilket som helst ikke flyktig materiale som utviser lagringsstabilitet i blanding med hydrazin/hydrazinsaltbestanddelene i sprengstoffet virke som desensibilisatorer. For many of the explosive mixtures' applications, it is desirable to add desensitizing agents to counteract the sensitivity of the mixture, either during the manufacturing process or during use. Water is an effective desensitizer and, although it has a pronounced effect on the explosive's energy-producing properties, water can be a useful desensitizer in amounts up to 10% by weight for certain mixtures. Other effective desensitizers are glycerol, glycol, wax and other various hydrocarbon oils, such as e.g. oven oil. In the case where furnace oil is used, the amount of such desensitizer can be up to 20% by weight of the total mixture. In the case where solid but liquefiable desensitizers such as wax are used, the desensitiser is preferably heated and mixed with the mixture at a preheated temperature, which on cooling turns into solid form and contributes to thickening of the mixture. In general, any non-volatile material that exhibits storage stability when mixed with the hydrazine/hydrazine salt components of the explosive can act as desensitizers.
Visse sprengstoffblandinger ifolge foreliggende oppfinnelse har et frysepunkt nær normal temperatur, hvilket gjor del on-skelig å inkludere i dette et frysepunktnedsettende middel. Som eksempel på et blandbart frysepunktnedsettende middel for dette formål kan nevnes hydraziniumthiocyanat (N^H^SCN). Certain explosive mixtures according to the present invention have a freezing point close to normal temperature, which makes it partly desirable to include in this a freezing point lowering agent. As an example of a miscible freezing point depressant for this purpose, hydrazinium thiocyanate (N^H^SCN) can be mentioned.
Beskrivelse av foretrukne utfdrelsesformer Description of preferred forms of parenting
I tabell 1 er vist en sammenligning mellom stdpt TNT og forskjellige eksplosive blandinger,- med sammensetninger som vist nedenfor, og som er typisk for den foreliggende oppfinnelse. Table 1 shows a comparison between stdpt TNT and various explosive mixtures, with compositions as shown below, which are typical of the present invention.
I hvert av tilfellene for eksemplene 1-5 ble der forst fremstillet en ikke-eksplosiv flytende bestanddel ved å pppldse ca, 5 deler ammoniumnitrat i hydrazinet ved romtemperatur. Da denne opplosning <y>ar blitt normal, ble resten av amnoniumnitratet og for-tykningsmidlet tilsatt under omrdring for tilnærmet å gi en fullstendig opplosning av nitratet i hydrazinet. Aluminiumpulveret (Reynolds "atomized" aluminium A-5111 med en partikkelstorrelse i det vesentlige i området 30-40 microner) ble tilsatt i porsjoner mens blandingen ble omrort med en "Lightening mixer" (1750 omdrei-ninger pr. minutt), og omrdringen fortsatte inntil viskositeten av blandingen var tilstrekkelig til å forhindre at aluminiumpartiklene separerte ut. Tre ladninger (454 g) ble i hvert tilfelle fremstil- In each of the cases for examples 1-5, a non-explosive liquid component was first prepared by adding approx. 5 parts of ammonium nitrate to the hydrazine at room temperature. When this solution became normal, the rest of the ammonium nitrate and the thickener were added with stirring to give an approximately complete dissolution of the nitrate in the hydrazine. The aluminum powder (Reynolds "atomized" aluminum A-5111 with a particle size essentially in the range of 30-40 microns) was added in portions while the mixture was stirred with a "Lightening mixer" (1750 revolutions per minute), and the stirring continued until the viscosity of the mixture was sufficient to prevent the aluminum particles from separating out. Three charges (454 g) were produced in each case.
I IN
let; beholderen brukt for eksemplene 1-5 var en vanlig "Boston easy; the container used for Examples 1-5 was a regular "Boston
Round" 0,5 1: polyethylenf laske. Alle skudd ble avfyrt ved hjelp av 50 grams tetryl-overdragere, med'du Pont SSS"seismografiske fenghetter "EB",detonator-overdrageranordningen var pakket i en polyethylen-pose for å forhindre reaksjon med sprengstoffet. Polyethylenflaske-ne var skåret ut på siden over innholdet av sprengstoff for innfor-ing av detonator-overforingsanordningen og for utforelse av detonator ledningene . Alle ladninger ble derpå gravet ned i en dybde på 51 cm i lik sandholdig formleire. Alle ladninger ble plasert med be-holderbunnen ned og fordemmet i skytehullene, dybden av ladningen ble målt til bunnen av den eksplosive ladning. Den målte kraterdannende egenskap ble uttrykt i kraterdybden i centimeter i kraterets senter og i den midlere diameter av krateret. Den midlere diameter ble bestemt som midlet av fire diametre tvers over krateret. Den kraterdannende egenskap for de forskjellige eksempler 1 - 5 og for sammenligningen eksempel X er vist i tabellen ovenfor. Den forbed-rede kraterdannende egenskap for alle eksempler er åpenbar overfor den stdpte TNT ladning (eksempel X). Det er også åpenbart i dette tilfelle at mengdeforholdet av aluminium ikke er særlig kritisk (sammenligning ca. 20 vekt% aluminium i eksempel 3 med ca. 32,7 vekt% aluminium i eksempel 1), og videre at mengden av en betydelig mengde vann (ca. 5 % i eksempel 5 ikke vesentlig forandrer den kraterdannende egenskap (sammenlign eksempler 1 og 5). Round" 0.5 1: polyethylene bottle. All rounds were fired using 50 gram tetryl primers, with' du Pont SSS" seismographic capture caps "EB", the detonator primer assembly was packed in a polyethylene bag to prevent reaction with the explosive. The polyethylene bottles were cut out on the side above the content of explosives for the insertion of the detonator transfer device and for the execution of the detonator wires. All charges were then buried to a depth of 51 cm in similar sandy mold clay. All charges were placed with the container bottom down and dammed in the firing holes, the depth of the charge was measured to the bottom of the explosive charge. The measured cratering property was expressed in the crater depth in centimeters at the center of the crater and in the mean diameter of the crater. The mean diameter was determined as the average of four diameters across the crater. The cratering property for the various examples 1-5 and for the comparison example X is shown in the table above. The improved cratering property for all examples is evident against the standard TNT charge (Example X). It is also obvious in this case that the quantity ratio of aluminum is not particularly critical (comparing approx. 20% by weight of aluminum in example 3 with approx. 32.7% by weight of aluminum in example 1), and further that the amount of a significant amount of water ( about 5% in example 5 does not significantly change the cratering property (compare examples 1 and 5).
Eksempel 6 Example 6
For ytterligere å beskrive egenskapene for typiske sprenq-stoffblandinger, nemlig sprengstoffet efter eksempel 1, og fremstillet som ovenfor indikert, ble funnet å ha en spesifikk vekt på 1,61 ved 21°C og en folsomhet på 70 kg/cm. For sammenlignings skyld ble To further describe the properties of typical sprenq mixtures, namely the explosive of Example 1, and prepared as indicated above, was found to have a specific gravity of 1.61 at 21°C and a sensitivity of 70 kg/cm. For the sake of comparison,
i in
en eksempel 6 blanding formulert med de samme vektforhold av be-standdelene som i eksempel 1 (med unntagelse av 3 deler "Cabosil"), an example 6 mixture formulated with the same weight ratio of the ingredients as in example 1 (with the exception of 3 parts "Cabosil"),
i dette tilfelle ble hydrazinet forvarmet til 65,5°C og derpå lang-somt tilsatt ammoniumnitratét under omroring, efterfulgt av en opp-varmning av blandingen til 49°C for fullstendig å opplose alt nitrat i opplesningen og for å avdrive ammoniakk i gassform. Denne frem-gangsmåte resulterte i en detonerbar blanding og med en lignende folsomhet og en egenvekt på 1,752 ved 20°C. in this case the hydrazine was preheated to 65.5°C and then the ammonium nitrate was slowly added with stirring, followed by heating the mixture to 49°C to completely dissolve all nitrate in the reading and to drive off gaseous ammonia. This procedure resulted in a detonable mixture with a similar sensitivity and a specific gravity of 1.752 at 20°C.
Eksempel 7 Example 7
For å vise effekten av desensibilisatorer på den kraterdannende egenskap ble den eksplosive blanding i henhold til eksempel 1 (med 3 deler "Cabosil") sammenlignet med en eksempel 7 eksplosiv blanding inneholdende de samme bestanddeler som eksempel 1, dess-uten 21 vekt% glycerol. Prover viste at denne blanding var mindre fdlsom, men fremdeles detonerbar. Mere spesielt ga blandingen i henhold til eksempel 1 en kraterdybde på 93 cm og en diameter på 295 cm, mens den desensibiliserte blanding ga et krater som var 66 cm dypt og med en diameter på 171 cm. Lignende forsok som innbefattet å variere glycerolandelen fra 16 % til 22 % viste at ingen av blan-dingene var fdlsomme for fenghetter når sprengstoffet forefantes i gummiforede stdpejernsrdr, med lav detonasjonsgrad med et glycerol-innhold på 20 % og lavere. To show the effect of desensitizers on the cratering property, the explosive mixture according to Example 1 (with 3 parts "Cabosil") was compared with an Example 7 explosive mixture containing the same ingredients as Example 1, except 21% by weight of glycerol. Tests showed that this mixture was less volatile but still detonable. More specifically, the composition according to Example 1 produced a crater depth of 93 cm and a diameter of 295 cm, while the desensitized composition produced a crater 66 cm deep and with a diameter of 171 cm. Similar experiments which included varying the glycerol proportion from 16% to 22% showed that none of the mixtures were suitable for arresting caps when the explosive was present in rubber-lined cast iron rounds, with a low degree of detonation with a glycerol content of 20% and below.
Eksempler 8 og 9 Examples 8 and 9
For ytterligere å undersdke den kraterdannende egenskap for desensibiliserte eksplosive blandinger ble en eksplosiv blanding eksempel 8 fremstillet ved å innarbeide 5 vekt% ovnsolje i sammensetningen i henhold til eksempel 1 og ytterligere en blanding (eks. 9) ble fremstillet ved å innbefatte 10 vekt% ovnsolje i sammensetningen i henhold til eksempel 1. Eksempel 8 viste sig å være folsomt for anslag av riflekule. (.30-06) og folsomt for tennhetter. Eksempel 9 derimot var ufdlsomt overfor anslag av rifleprojektil og overfor tennhetter. Ved hjelp av en overdrager bestående av 50 g cetryl var begge eksempler 8 og 9 detonerbare; eksempel 9 dannet et krater 105 cm dypt og med en diameter på 240 cm, sammenlignet med sprengstoffet i eksempel 1 som ga et krater med en dybde på 108 cm og med en diameter på ca. 300 cm. To further investigate the cratering property of desensitized explosive mixtures, an explosive mixture Example 8 was prepared by incorporating 5% by weight of furnace oil into the composition according to Example 1 and a further mixture (Ex. 9) was prepared by including 10% by weight of furnace oil in the composition according to example 1. Example 8 proved to be sensitive to the impact of a rifle bullet. (.30-06) and suitable for tooth caps. Example 9, on the other hand, was insensitive to the impact of a rifle projectile and to fuze caps. Using a transfer agent consisting of 50 g of cetryl, both examples 8 and 9 were detonable; example 9 formed a crater 105 cm deep and with a diameter of 240 cm, compared to the explosive in example 1 which produced a crater with a depth of 108 cm and with a diameter of approx. 300 cm.
Eksempel 10 Example 10
Sammensetningen i eksempel 1 blandet med 0,1 vekt% The composition of Example 1 mixed with 0.1% by weight
"Guartec 503" og 4 deler "Cab-O-Sil" ga en blanding med en kremlig-nende konsistens, med en viskositet lav nok til at blandingen kunne helles som en tykk sirup og hoy nok til å forhindre at aluminiumen separerte ut. Denne kombinasjon av "Guartec 503" og "Cab-O-Sil" vi- "Guartec 503" and 4 parts "Cab-O-Sil" produced a mixture of a creamy consistency, with a viscosity low enough to allow the mixture to be poured as a thick syrup and high enough to prevent the aluminum from separating out. This combination of "Guartec 503" and "Cab-O-Sil" we-
ste sig spesielt effektiv som fortykningsmiddel for blandingen i henhold til eksempel 1. proved particularly effective as a thickener for the mixture according to example 1.
Eksempler 11 og 12 Examples 11 and 12
For; ytterligere å undersoke den kraterdannende egenskap For; to further investigate the cratering property
av sprengstoffer som er karakteristisk for foreliggende oppfinnelse sammenlignet med kjente aluminiuminneholdende sprengstoffer, ble der utfort en serie prdveskudd som omfattet like mengder av sprengstof- of explosives that are characteristic of the present invention compared to known aluminum-containing explosives, a series of blast shots was carried out that included equal amounts of explosives
fene i henhold til eksempel 1 (med 5 deler "Cabosil") og eksempel 2, provet på samme underlag med tilsvarende mengder "Navy H-6" sprengstoff og "Tritonal" sprengstoff. H-6 er som kjent en 60/40 blanding av RDX og TNT iblandet 5 vekt% voks og 20 vekt% aluminiumpartikler. fin according to example 1 (with 5 parts "Cabosil") and example 2, tested on the same substrate with corresponding amounts of "Navy H-6" explosive and "Tritonal" explosive. As is known, H-6 is a 60/40 mixture of RDX and TNT mixed with 5% by weight of wax and 20% by weight of aluminum particles.
Som det også er kjent er "Tritonal" en 80/20 blanding av TNT og aluminiumpartikler. Alle skudd ble puttet i stålkanner og ladningene var i hvert tilfelle 453 g og ble begravet i en dybde av 51 cm. Den kraterdannende egenskap for disse skudd var som folger: As it is also known, "Tritonal" is an 80/20 mixture of TNT and aluminum particles. All shots were placed in steel jugs and the charges in each case were 453 g and were buried at a depth of 51 cm. The cratering properties of these shots were as follows:
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78799768A | 1968-12-30 | 1968-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO122692B true NO122692B (en) | 1971-07-26 |
Family
ID=25143133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO5138/69A NO122692B (en) | 1968-12-30 | 1969-12-29 |
Country Status (8)
Country | Link |
---|---|
US (1) | US3523047A (en) |
JP (1) | JPS491521B1 (en) |
BE (1) | BE743795A (en) |
CH (1) | CH555306A (en) |
FR (1) | FR2027374A1 (en) |
IL (1) | IL33590A (en) |
NL (1) | NL6919507A (en) |
NO (1) | NO122692B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4029747A (en) * | 1974-11-26 | 1977-06-14 | Molecular Energy Research Co., Inc. | Method of preparing inorganic monomeric and polymeric complexes and products so produced |
EP0044664A3 (en) * | 1980-07-21 | 1982-03-17 | Imperial Chemical Industries Plc | Emulsion type blasting agent containing hydrazine mononitrate |
JPS57189720A (en) * | 1981-05-15 | 1982-11-22 | Mitsubishi Electric Corp | Electric discharge machining device |
US4528049A (en) * | 1984-07-09 | 1985-07-09 | Udy Lex L | Seismic explosive composition |
US5542704A (en) * | 1994-09-20 | 1996-08-06 | Oea, Inc. | Automotive inflatable safety system propellant with complexing agent |
WO2020131099A1 (en) * | 2018-12-21 | 2020-06-25 | Aerojet Rocketdyne, Inc. | Reduced vapor-toxicity hydrazine composition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2704706A (en) * | 1950-04-06 | 1955-03-22 | Olin Mathieson | Explosive composition |
US3061489A (en) * | 1958-05-19 | 1962-10-30 | Commercial Solvents Corp | Stable propellants |
US2978864A (en) * | 1958-05-19 | 1961-04-11 | Commercial Solvents Corp | Ammonium nitrate explosives |
US3197348A (en) * | 1963-11-07 | 1965-07-27 | Skolnik Sol | Thixotropic propellant |
-
1968
- 1968-12-30 US US787997A patent/US3523047A/en not_active Expired - Lifetime
-
1969
- 1969-12-23 IL IL33590A patent/IL33590A/en unknown
- 1969-12-29 NO NO5138/69A patent/NO122692B/no unknown
- 1969-12-29 JP JP44105310A patent/JPS491521B1/ja active Pending
- 1969-12-29 NL NL6919507A patent/NL6919507A/xx not_active Application Discontinuation
- 1969-12-29 CH CH1932069A patent/CH555306A/en not_active IP Right Cessation
- 1969-12-29 BE BE743795D patent/BE743795A/xx unknown
- 1969-12-30 FR FR6945423A patent/FR2027374A1/fr not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
NL6919507A (en) | 1970-07-02 |
JPS491521B1 (en) | 1974-01-14 |
US3523047A (en) | 1970-08-04 |
FR2027374A1 (en) | 1970-09-25 |
DE1964537A1 (en) | 1970-12-17 |
IL33590A0 (en) | 1970-03-22 |
CH555306A (en) | 1974-10-31 |
BE743795A (en) | 1970-05-28 |
IL33590A (en) | 1976-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fordham | High explosives and propellants | |
US2929699A (en) | Explosive | |
US3395056A (en) | Inorganic oxidizer salt-alcohol explosive slurry containing an alcohol thickening agent | |
Oxley | The chemistry of explosives | |
NO122692B (en) | ||
US1890112A (en) | Igniter charge for blasting caps | |
US3111439A (en) | High explosive mixtures | |
Badgujar et al. | Thermal analysis and sensitivity studies on guanylurea dinitramide (GUDN or FOX-12) based melt cast explosive formulations | |
US3419443A (en) | Hydrazine containing explosive compositions | |
US6214140B1 (en) | Development of new high energy blasting products using demilitarized ammonium picrate | |
US3730789A (en) | Monopropellant composition including hydroxylamine perchlorate | |
Oxley | Explosives detection: potential problems | |
US9409830B1 (en) | Non-toxic primer mix | |
JPS5813519B2 (en) | explosive composition | |
US4874441A (en) | Explosive for warheads and solid rocket propellant | |
NO179972B (en) | Ignition kit material, and process for making it | |
US2929698A (en) | Explosive | |
US3580750A (en) | Tmetn-inorganic nitrate explosives blended with petroleum oil | |
KR102726063B1 (en) | Emulsion explosive composition for Priming of bulk explosives | |
US2060522A (en) | Nitrosoguanidine as a priming ingredient | |
US2425310A (en) | Explosive | |
US1984846A (en) | Ignition composition | |
US2829036A (en) | Fire damp proof explosive compositions | |
US3356546A (en) | Safety blasting composition with a metal formate as a fuel | |
EP4086238B1 (en) | Composition for forming an explosive comprising an emulsion of hydrogen peroxide and an oil type fuel |