[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

NL2016328B1 - A method of manufacturing a plurality of through-holes in a layer of first material. - Google Patents

A method of manufacturing a plurality of through-holes in a layer of first material. Download PDF

Info

Publication number
NL2016328B1
NL2016328B1 NL2016328A NL2016328A NL2016328B1 NL 2016328 B1 NL2016328 B1 NL 2016328B1 NL 2016328 A NL2016328 A NL 2016328A NL 2016328 A NL2016328 A NL 2016328A NL 2016328 B1 NL2016328 B1 NL 2016328B1
Authority
NL
Netherlands
Prior art keywords
layer
base
etching
probe
base substrate
Prior art date
Application number
NL2016328A
Other languages
Dutch (nl)
Inventor
Sarajlic Edin
Original Assignee
Smarttip B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smarttip B V filed Critical Smarttip B V
Priority to NL2016328A priority Critical patent/NL2016328B1/en
Priority to EP17158208.3A priority patent/EP3210936B1/en
Priority to EP17158214.1A priority patent/EP3210937B1/en
Priority to US15/444,086 priority patent/US9975761B2/en
Priority to US15/444,010 priority patent/US10207244B2/en
Application granted granted Critical
Publication of NL2016328B1 publication Critical patent/NL2016328B1/en

Links

Landscapes

  • Micromachines (AREA)

Abstract

A method of manufacturing a plurality of through-holes in a layer of first material, for example for the manufacturing of a probe comprising a tip containing a channel. To manufacture the through-holes in a batch process, - a layer of first material is deposited on a wafer comprising a plurality of pits - a second layer is provided on the layer of first material, and the second layer is provided with a plurality of holes at central locations of the pits; - using the second layer as a shadow mask when depositing a third layer at an angle, covering a part of the first material with said third material at the central locations, and - etching the exposed parts of the first layer using the third layer as a protective layer.

Description

A method of manufacturing a plurality of through-holes in a layer of first material
The present invention relates to a method of manufacturing a plurality of through-holes in a layer of first material wherein an intermediate product is subjected to a plurality of method steps, the intermediate product - defining a first side and a second side, and - comprises a base substrate, said base substrate comprising a base material, wherein at the first side the surface of the base substrate defines a main plane; wherein the plurality of method steps comprises the steps of - providing the intermediate product as a base substrate, said base substrate comprising a base material, wherein at the first side the surface of the base substrate defines a main plane; - providing the base substrate of the intermediate product at the first side with a plurality of pits in said base material, and - providing the base substrate with a layer of first material at the first side of the intermediate product, the first material being different from the base material so as to result in the intermediate product having pits comprising a layer of said first material, and - etching part of the layer of said first material to provide through-holes in the layer of first material.
Various MEMS devices, such as i) probes comprising a hollow cantilever or ii) sieves, comprise at least one through-hole in a layer of first material such as silicon nitride. The through-hole is for example in a face of a pyramidal tip of the cantilever of a MEMS probe. MEMS probes comprising hollow cantilevers having a tip are used in life sciences for a variety of purposes, two of them being the delivery of a substance to or extraction of material from a cell. In that case, the tip of the MEMS probe will have to penetrate through the cell wall. Material of the cell wall should not clog the opening at the tip of the probe. For this reason, preference is given to probes having the opening (through-hole) in a side wall or pyramidal edge of the tip, instead of at the tip's distal end. In the art, probes with a cantilever comprising a conduit and having a tip are routinely produced. To create the opening of the conduit at the tip, use is made of ion beam etching, wherein a beam of ions is focussed on a wall of a tip to locally etch said wall of first material and form the through-hole .
While MEMS techniques allow MEMS devices such as probes comprising cantilevers having a tip to be manufactured in large numbers simultaneously, this step of creating the opening (a through-hole) at the tip, has to be performed for each tip individually and consecutively by focussed ion beam milling, which is time consuming and costly. Also, there is a risk of damage to the opposite wall of the tip once the focussed beam has penetrated the wall of the tip.
The objective of the present invention is to provide a method allowing for the creation of through-holes in a batch process, i.e. simultaneously creating a multitude of through-holes. It is a further object of the present invention to provide a method allowing for the batch-wise production of through-holes in pits comprising a layer of the first material, the through-holes being at a distance from the distal ends of said tips.
To this end, a method according to the preamble is characterized in that the method further comprises - after the step of providing the layer of first material and before the step of etching - providing a second layer of a second material different from the first material on the layer of first material, and - providing the second layer of the second material with a plurality of holes, the holes being provided at central locations of the pits; - depositing a third layer of a third material different from the first material on the second layer of the second material, said depositing being performed at an angle a to the normal to the base main plane of at least 5° using said second layer of second material as a shadow mask, covering a part of the first material of the first layer with said third material at the central locations, and - performing the step of etching the exposed parts of the layer of said first material using the third layer of third material as a protective layer.
Thus, the layer of first material is exposed at off-center areas of the central locations and subjected to etching at a plurality of exposed off-center locations simultaneously, as a result of which holes are formed in said layer of first material. Subsequent removal of base material at the location of the pits will result in a plurality of through-holes accessible from both the first side and the second side.
In the present application, the base substrate will in general be a wafer. The wafer is for example a silicon wafer, which may be used to manufacture probes comprising four-sided or three-sided pyramidal pits, as desired, depending on the crystal orientation of the starting wafer with respect to the base main plane. For four-sided and three-sided pyramidal tips these are 100 and 111 silicon respectively.
The method according to the invention is less sensitive to the processing conditions of the step of directional dry etching, because over etching merely results in damage to the base material of the substrate, which for many applications will be removed anyway.
After locally penetrating the layer of first material, the method will be continued using any conventional steps for manufacturing the MEMS device that is desired. By way of example, for a probe comprising a hollow conduit, a sacrificial conduit layer will be provided, followed by further wall material for the conduit covering said sacrificial conduit layer, and etching to remove the sacrificial conduit layer material, so as to result in a hollow conduit. Removing crystalline base material at the location of the pyramidal pit will result in a freely extending cantilever. Such methods are known in the art, for example from WO2012/096571.
The angle a will in general be less than 45°, such as less than 35° .
The step of etching may be performed using wet etching, although for improved process control dry etching will in general be preferred.
The second material of the second layer and the third material of the third layer may be the same, e.g. a metal such as chromium.
According to a favourable embodiment, the step of etching is comprises directional dry etching, preferably Reactive Ion Etching (RIE) .
This allows to further control the formation of the through-hole.
According to a favourable embodiment, the method further comprises after the step of etching part of the layer of first material using the third layer of third material as a protective layer a step of removing the second layer and third layer.
Thus after serving their purpose these helper layers are removed. According to a favourable embodiment, the method comprises at least one further method step for manufacturing a plurality of MEMS devices, a MEMS device comprising a through-hole in the layer of first material formed by the step of etching part of the layer of said first material. A typical MEMS device according to the present invention is a probe, e.g. for taking a sample from a cell, or introducing material into a cell.
According to a favourable embodiment, the method comprises further steps for manufacturing a plurality of probes wherein - each probe of the plurality of probes comprises - a probe base section - having a probe base main plane, and - comprising a first opening of a conduit; and - a cantilever protruding from said probe base section parallel with the probe base main plane, said cantilever having - a proximal end connected to the probe base section, and - a distal cantilever end; said cantilever comprising a tip having a distal tip end, said tip comprising a second opening of said conduit at a location away from the distal tip end; wherein the second opening is formed by at least one step comprising the step of etching part of the layer of said first material using the third layer of third material as a protective layer. MEMS probes are an important application area and for the state of the art forming the second opening in a face of the tip, i.e. not at the terminal point of the tip, is a major cost factor because so far they had to be milled individually with accurate aiming of a focussed ion beam. The present invention does not require ion beam milling individual tips. The term "in a face" does not exclude that the hole is in two adjacent faces, i.e. crossing a pyramidal ridge.
According to a favourable embodiment, the base material is a crystalline base material, and before the base substrate is provided with the layer of first material, the method comprises the step of - etching the base substrate at the first side to form a plurality of pits in said crystalline base material, the pits comprising a face that is at an angle to the main plane.
Pits are typically formed using anisotropic etching of the base material, which allows for the formation of pyramidal pits. Thus MEMS techniques allow for the manufacture of probes having a sharp pyramidal tip. With a probe comprising a sharp tip, excessive damage to the cell is to be avoided. The probe may also serve a dual role, because the tip may be used for scanning using one of a variety of scanning techniques known in the art. A typical crystalline base material used in the art is silicon (1,0,0) .
The present invention will now be illustrated with reference to the drawing where
Fig. 1 shows a probe as can be manufactured using the method according to the invention, in top view (top) and cross-sectional view (bottom), both views being vertically aligned;
Fig. 2A to Fig. 2J illustrate a method of manufacturing the probe according to Fig. 1 in top view (top) and cross-sectional view (bottom), both views being vertically aligned;
Fig. 3a shows a Scanning Electron Microscope image of a probe manufactured according to the invention; and
Fig. 3b shows a detail of the probe of Fig. 3A.
Fig. 1 shows a probe 100 as can be manufactured using the method according to the invention, in top view (top) and cross-sectional view (bottom), both views being vertically aligned.
The probe 100 comprises a probe base section 110 and a cantilever 120 extending from the probe base section 110. The cantilever 120 has a proximal end 121 connected to the probe base section 110 and a distal cantilever end 122.
The distal cantilever end 122 comprises a pyramidal tip 130 comprising a pyramidal tip end 131. In a face of the pyramidal tip 130, i.e. away from the pyramidal tip end 131, there is a through-hole 132 manufactured in accordance with the present invention.
The probe 100 comprises an elongated conduit 140 extending from a reservoir 150 at the probe base section 110 through the cantilever 120 to the through-hole 132.
The conduit 140 comprises a first opening 141 and the second opening is defined by the through-hole 132.
The method according to the invention will now be illustrated using Fig. 2A to Fig. 2J, which show in top view and cross-sectional view a method of manufacturing the probe 100 of Fig. 1. The method according to the present invention allows for a multitude of through-holes 132 and hence probes 100 to be manufactured at once, but the figures will show one probe 100 in the making only. A silicon wafer 200 having a thickness of 380 urn is shown (Fig. 2A) in top view. The silicon wafer 200 used as base substrate 200 is of (1,0,0) silicon. If a pyramidal tip with three faces is desired, (1,1,1) silicon may be used instead.
The top surface of the silicon wafer defines a main base plane.
Using a mask, pyramidal pits 210 (only one shown, singulars are used in the remainder of the figure description) is etched by wet anisotropic etching of the silicon using 25% KOH (Fig. 2B). The pyramidal pit 210 is 10 urn x 10 urn. A thin layer of first material 220 (350 nm), here silicon nitride, is deposited (Fig. 2C) on the silicon wafer 200 comprising a pyramidal pit 210 (Fig. 2C). The silicon nitride will be part of a wall defining the conduit 140 and the pyramidal tip 130. A thin layer of a second material 230 in this case 400 nm thick silicon oxide was formed as a shadow mask material on top of the first layer of first material 220 and provided with a small opening 231 centrally located at the bottom of the pyramidal pit 210 using corner lithography (Fig. 2D).
Other techniques can be used instead, for example deposition of silicon oxide by Low Pressure or Plasma Enhanced Chemical Vapor Deposition (LPCVD or PECVD) followed by optical lithography and silicon oxide etching.
The central location of a pit is the location where the pit is the deepest. Typically the central openings 231 are concentric holes.
The wafer 200 provided with the second layer of second material 230 (silicon dioxide; 200 urn) is provided with a protective third layer of a third material 240 (chromium) using a directional depositing technique. We used evaporation at an angle a to the normal to the main base plane of 25°. The second layer of second material 230 and the angle of the pit 210 (35.26° relative to the line normal to the surface of the main base plane) cooperate and the second layer of second material 230 acts as a shadow mask, as a result of which chromium is deposited only on an off-center part of the first layer of first material 220 exposed by the opening 231. The thickness of the third layer of third material 240 was 80 urn.
With the third metal layer of third material 240 in place, the wafer is subjected to etching, such as wet etching. In this case, Reactive Ion Etching (RIE) was performed, exposing the third layer of third material as a layer protecting against the RIE, and exposing and etching the first layer of first material 220 where chromium was not deposited due to the shadow mask effect of the second layer of the second material 230. RIE was performed as usual, i.e. perpendicular to the main base plane.
This results in through-hole 132 (Fig. 2F). Because a plurality of probes is manufactured using the present method, a plurality of through-holes 132 is formed at the same time, and not formed consecutively. The position of the through-hole 132 can to some extent be tuned by adjusting the angle a at which the protective third layer of third material is deposited and/or in case of directional etching such as RIE on the angle of directional etching.
Now the silicon dioxide layer of material 230 and the metalic third layer 240, i.e. the layers that served as a masking material, are removed using commericially avaible chromium etchant and using hydrofluoric acid in accordance with standard practice (Fig. 2G).
The remainder of the probe 100 is manufactured according to well-known practices, by providing the wafer obtained in the previous step with a patterned layer of sacrificial material 245, here polycrystalline silicon with a thickness of 1 urn (Fig. 2H). A further layer 250 of silicon nitride having a thickness of 350 nm is deposited, covering the silicon nitride layer of material 220 and the layer of sacrificial material 245. It is subsequently etched by RIE (Reactive Ion Etching) to create an etching window 251 so as to expose part of the sacrificial layer of material 245 at a location that will later on be at the probe base section 110.
The further layer of material 250 is bonded to a glass cover 260 by anodic bonding (Fig. 2J) . The glass cover 260 has a cover hole 261 (a through-hole) that will allow access of etchant to the polycrystalline sacrificial material at the location of the cover hole 261 and, once the silicon of the wafer has been etched away, at the through-hole 132.
Etching with Tetramethylammonium hydroxide (TMAH) results in the probe 100, shown in Fig. 1.
Fig. 3A shows a Scanning Electron Microscope image of a probe 100 manufactured according to the invention. The pyramidal tip 130 and part of cantilever 120 are visible. The through-hole 132 is near the very end of the pyramidal tip.
Fig. 3B shows a zoomed in SEM picture, showing a detail of the probe 100 of Fig. 3A. The through-hole 132 is visible near the tip end 131 of the pyramidal tip 130.

Claims (6)

C O N C L U S T F. SC O N C L U S T F. S 1. Werkwijze voor de vervaardiging van een veelheid aan doorgaande gaten (132) in een laag van eerste materiaal (220) waarbij een tussenproduct wordt onderworpen aan een veelheid aan werkwijze-stappen, waarbij het tussenproduct - een eerste zijde en een tweede zijde definieert, en - een basis-substraat (200) omvat, waarbij het genoemde basis-substraat (200) een basis-materiaal omvat, waarbij aan de eerste zijde het oppervlak van het basis-substraat (200) een hoofdvlak definieert; waarbij de veelheid aan werkwijze-stappen de stappen omvat van - het verschaffen van het tussenproduct als een basis-substraat (200), waarbij het genoemde basis-substraat (200) een basis-materiaal omvat, waarbij aan de eerste zijde het oppervlak van het basis-substraat (200) een hoofdvlak definieert; - het aan de eerste zijde aan het basis-substraat (200) van het tussenproduct verschaffen van een veelheid aan putjes (210) in het genoemde basis-materiaal, en - het voorzien van de eerste zijde van het tussenproduct aan het basis-substraat (200) van een laag van eerste materiaal (220), waarbij het eerste materiaal (220) anders is dan het basis-materiaal teneinde te resulteren in een tussenproduct dat putjes (210) met een laag van het genoemde eerste materiaal (220) bezit, en - het etsen van een deel van de laag van het genoemde eerste materiaal (220) voor het verschaffen van doorgaande gaten (132) in de laag van eerste materiaal (220); met het kenmerk, dat de werkwijze verder omvat - na de stap van het verschaffen van de laag van eerste materiaal (220) en vóór de stap van het etsen - het verschaffen van een tweede laag van een tweede materiaal (230) dat anders is dan het eerste materiaal (220) op de laag van eerste materiaal (220), en - het voorzien van de tweede laag van het tweede materiaal (230) met een veelheid aan gaten (231), waarbij de gaten (231) zijn voorzien bij centrale locaties van de putjes (210); - het aanbrengen van een derde laag van een derde materiaal (240) dat anders is dan het eerste materiaal (220) op de tweede laag van het tweede materiaal (230), waarbij het genoemde aanbrengen wordt uitgevoerd onder een hoek α ten opzichte van de normaal op het basishoofdvlak van ten minste 5° onder gebruikmaking van de genoemde tweede laag van tweede materiaal (230) als een schaduw-masker, waarbij een deel van het eerste materiaal (220) van de eerste laag met het genoemde derde materiaal (240) wordt bedekt bij de centrale locaties, en - het uitvoeren van de stap van het etsen van de blootliggende delen van de laag van het genoemde eerste materiaal (220) onder gebruikmaking van de derde laag van derde materiaal (240) als een beschermende laag.A method of manufacturing a plurality of through holes (132) in a layer of first material (220) wherein an intermediate is subjected to a plurality of process steps, wherein the intermediate defines - a first side and a second side, and - a base substrate (200), wherein said base substrate (200) comprises a base material, the surface of the base substrate (200) defining a major surface on the first side; the plurality of method steps comprising the steps of - providing the intermediate as a base substrate (200), said base substrate (200) comprising a base material, the surface of the base substrate (200) defines a major plane; - providing a plurality of pits (210) in said base material on the first side to the base substrate (200) of the intermediate, and - providing the first side of the intermediate to the base substrate ( 200) of a layer of first material (220), the first material (220) being different from the base material to result in an intermediate product having pits (210) with a layer of said first material (220), and - etching a portion of the layer of said first material (220) to provide through holes (132) in the layer of first material (220); characterized in that the method further comprises - after the step of providing the layer of first material (220) and before the step of etching - providing a second layer of a second material (230) other than the first material (220) on the layer of first material (220), and - providing the second layer with the second material (230) with a plurality of holes (231), the holes (231) being provided at central locations of the wells (210); - applying a third layer of a third material (240) that is different from the first material (220) to the second layer of the second material (230), said application being carried out at an angle α with respect to the normally on the base major plane of at least 5 ° using said second layer of second material (230) as a shadow mask, wherein a portion of the first material (220) of the first layer with said third material (240) is covered at the central locations, and - performing the step of etching the exposed portions of the layer of said first material (220) using the third layer of third material (240) as a protective layer. 2. Werkwijze volgens conclusie 1, waarbij de stap van het etsen directioneel droog etsen, bij voorkeur Reactieve Ionen Etsen (RIE) omvat.The method of claim 1, wherein the step of etching comprises directional dry etching, preferably Reactive Ion Etching (RIE). 3. Werkwijze volgens conclusie 1 of 2, waarbij de werkwijze verder, na de stap van het etsen van een deel van de laag van eerste materiaal (220) onder gebruikmaking van de derde laag van derde materiaal (240) als een beschermende laag, een stap van het verwijderen van de tweede laag en derde laag omvat.The method of claim 1 or 2, wherein the method further comprises, after the step of etching a portion of the layer of first material (220) using the third layer of third material (240) as a protective layer, a step of removing the second layer and third layer. 4. Werkwijze volgens een der voorgaande conclusies, waarbij de werkwijze ten minste een verdere werkwijze-stap omvat voor de vervaardiging van een veelheid aan MEMS-inrichtingen, waarbij een MEMS-inrichting een doorgaand gat (132) in de laag van eerste materiaal (220) gevormd door de stap van het etsen van een deel van de laag van het genoemde eerste materiaal (220) omvat.A method according to any one of the preceding claims, wherein the method comprises at least one further method step for manufacturing a plurality of MEMS devices, wherein a MEMS device has a through hole (132) in the layer of first material (220) ) formed by the step of etching a portion of the layer of said first material (220). 5. Werkwijze volgens conclusie 4, waarbij de werkwijze verdere stappen omvat voor de vervaardiging van een veelheid aan probes (100) waarbij - elke probe (100) van de veelheid aan probes (100) omvat - een probe (100) basis-sectie (110) - die een probe (100) basis-hoofdvlak bezit, en - die een eerste opening (141) van een kanaal (140) omvat; en - een cantilever (120) die vanaf de genoemde probe (100) basis-sectie (110) uitsteekt parallel aan het probe (100) basis-hoofdvlak, waarbij de genoemde cantilever (120) - een proximaal eind (121) verbonden met de probe (100) basis-sectie (110) heeft, en - een distaai cantilever-eind (122) heeft; waarbij de genoemde cantilever (120) een tip omvat die een distaai tip-eind (131) bezit, welke genoemde tip een tweede opening (231) van het genoemde kanaal (140) omvat op een locatie die bij het distale tip-eind (131) vandaan gelegen is; waarbij de tweede opening (231) wordt gevormd door ten minste één stap welke de stap omvat van het etsen van een deel van de laag van het genoemde eerste materiaal (220) onder gebruikmaking van de derde laag van derde materiaal (240) als een beschermende laag.The method of claim 4, wherein the method comprises further steps for manufacturing a plurality of probes (100) wherein - each probe (100) of the plurality of probes (100) comprises - a probe (100) base section ( 110) - which has a probe (100) base-main surface, and - which comprises a first opening (141) of a channel (140); and - a cantilever (120) protruding from said probe (100) base section (110) parallel to the probe (100) base main surface, said cantilever (120) - a proximal end (121) connected to the probe (100) has base section (110), and - has a distal cantilever end (122); said cantilever (120) comprising a tip having a distal tip end (131), said tip including a second opening (231) of said channel (140) at a location adjacent the distal tip end (131) ) is from; wherein the second opening (231) is formed by at least one step which includes the step of etching a portion of the layer of said first material (220) using the third layer of third material (240) as a protective low. 6. Werkwijze volgens een der voorgaande conclusies, waarbij het basis-materiaal een kristallijn basis-materiaal is, en alvorens het basis-substraat (200) van de laag van eerste materiaal (220) wordt voorzien, de werkwijze de stap omvat van - het etsen van het basis-substraat (200) aan de eerste zijde voor het vormen van een veelheid aan putjes (210) in het genoemde kristallijne basis-materiaal, waarbij de putjes (210) een zijde omvatten die een hoek maakt met het hoofdvlak.The method of any one of the preceding claims, wherein the base material is a crystalline base material, and before the base substrate (200) is provided with the layer of first material (220), the method comprises the step of: etching the base substrate (200) on the first side to form a plurality of wells (210) in said crystalline base material, wherein the wells (210) comprise a side that makes an angle with the major surface.
NL2016328A 2016-02-25 2016-02-25 A method of manufacturing a plurality of through-holes in a layer of first material. NL2016328B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NL2016328A NL2016328B1 (en) 2016-02-25 2016-02-25 A method of manufacturing a plurality of through-holes in a layer of first material.
EP17158208.3A EP3210936B1 (en) 2016-02-25 2017-02-27 A method of manufacturing a plurality of through-holes in a layer
EP17158214.1A EP3210937B1 (en) 2016-02-25 2017-02-27 A method of manufacturing a plurality of through-holes in a layer
US15/444,086 US9975761B2 (en) 2016-02-25 2017-02-27 Method of manufacturing a plurality of through-holes in a layer of first material
US15/444,010 US10207244B2 (en) 2016-02-25 2017-02-27 Method of manufacturing a plurality of through-holes in a layer of first material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2016328A NL2016328B1 (en) 2016-02-25 2016-02-25 A method of manufacturing a plurality of through-holes in a layer of first material.

Publications (1)

Publication Number Publication Date
NL2016328B1 true NL2016328B1 (en) 2017-09-11

Family

ID=59923135

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2016328A NL2016328B1 (en) 2016-02-25 2016-02-25 A method of manufacturing a plurality of through-holes in a layer of first material.

Country Status (1)

Country Link
NL (1) NL2016328B1 (en)

Similar Documents

Publication Publication Date Title
US6464842B1 (en) Control of solid state dimensional features
US20150328777A1 (en) Targets and processes for fabricating same
WO2000078668A1 (en) Control of solid state dimensional features
EP3210937B1 (en) A method of manufacturing a plurality of through-holes in a layer
US8828243B2 (en) Scanning probe having integrated silicon tip with cantilever
US20090160028A1 (en) Method for forming gaps in micromechanical device and micromechanical device
US20040248376A1 (en) Method for forming a cavity structure on soi substrate and cavity structure formed on soi substrate
NL2016328B1 (en) A method of manufacturing a plurality of through-holes in a layer of first material.
WO2006125691A1 (en) Micromechanical component comprising a membrane and method for the production of said type of component
WO2004016547A1 (en) Method for the production of a micromechanical device, particularly a micromechanical oscillating mirror device
EP3210935B1 (en) A method of manufacturing a plurality of through-holes in a layer of material
NL2016329B1 (en) A method of manufacturing a plurality of through-holes in a layer of first material.
NL2026676B1 (en) A method of manufacturing a micro-fluidic probe
US6086774A (en) Method of making released micromachined structures by directional etching
JP4714889B2 (en) Silicon prism and manufacturing method thereof
JP3945561B2 (en) Method for producing extraction electrode
NL2026730B1 (en) A method of manufacturing a MEMS device
US20060037932A1 (en) Method and micromechanical component
US20030215975A1 (en) Methods of coating contact holes in MEMS and similar applications
EP3953716B1 (en) A method of providing a mems device comprising a pyramidal protrusion, and a mold
RU2698486C1 (en) Method for manufacturing of integral converters
US20100224590A1 (en) Method for producing microneedle structures employing one-sided processing
GB2391384A (en) Method of removing a sacrificial portion of a functional micro device by etching with xenon difluoride
KR101361610B1 (en) Method of Fabricating Vertical Structure using Wet Etching
KR20130029208A (en) Method for manufacturing a micro-grid structure

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20190301