MX2022000163A - Sistemas y metodos de aprendizaje de maquina para localizacion mejorada de falsificacion de imagenes. - Google Patents
Sistemas y metodos de aprendizaje de maquina para localizacion mejorada de falsificacion de imagenes.Info
- Publication number
- MX2022000163A MX2022000163A MX2022000163A MX2022000163A MX2022000163A MX 2022000163 A MX2022000163 A MX 2022000163A MX 2022000163 A MX2022000163 A MX 2022000163A MX 2022000163 A MX2022000163 A MX 2022000163A MX 2022000163 A MX2022000163 A MX 2022000163A
- Authority
- MX
- Mexico
- Prior art keywords
- input image
- localization
- methods
- encoder
- machine learning
- Prior art date
Links
- 230000004807 localization Effects 0.000 title abstract 3
- 238000010801 machine learning Methods 0.000 title 1
- 238000000034 method Methods 0.000 title 1
- 238000013528 artificial neural network Methods 0.000 abstract 2
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/77—Retouching; Inpainting; Scratch removal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/755—Deformable models or variational models, e.g. snakes or active contours
- G06V10/7557—Deformable models or variational models, e.g. snakes or active contours based on appearance, e.g. active appearance models [AAM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Collating Specific Patterns (AREA)
Abstract
Un sistema para mejorar la localización de la falsificación de imágenes. El sistema genera una función objetivo de cuello de botella de información variacional y trabaja con parches de imagen de entrada para implementar una arquitectura de codificador-decodificador. La arquitectura de codificador-decodificador controla un flujo de información entre los parches de imagen de entrada y una capa de representación. El sistema utiliza el cuello de botella de información para aprender patrones de ruido residual útiles e ignorar el contenido semántico presente en cada parche de imagen de entrada. El sistema entrena una red neuronal para aprender una representación indicativa de una huella dactilar estadística de un modelo de cámara de origen de cada parche de imagen de entrada mientras excluye el contenido semántico del mismo. El sistema puede determinar una localización de manipulación de empalme por la red neuronal entrenada.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962865414P | 2019-06-24 | 2019-06-24 | |
PCT/US2020/039394 WO2020264006A1 (en) | 2019-06-24 | 2020-06-24 | Machine learning systems and methods for improved localization of image forgery |
Publications (1)
Publication Number | Publication Date |
---|---|
MX2022000163A true MX2022000163A (es) | 2022-05-20 |
Family
ID=74039358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
MX2022000163A MX2022000163A (es) | 2019-06-24 | 2020-06-24 | Sistemas y metodos de aprendizaje de maquina para localizacion mejorada de falsificacion de imagenes. |
Country Status (6)
Country | Link |
---|---|
US (1) | US11663489B2 (es) |
EP (1) | EP3987483A4 (es) |
AU (1) | AU2020306013A1 (es) |
CA (1) | CA3145241A1 (es) |
MX (1) | MX2022000163A (es) |
WO (1) | WO2020264006A1 (es) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11094135B1 (en) | 2021-03-05 | 2021-08-17 | Flyreel, Inc. | Automated measurement of interior spaces through guided modeling of dimensions |
CN113112518B (zh) * | 2021-04-19 | 2024-03-26 | 深圳思谋信息科技有限公司 | 基于拼接图像的特征提取器生成方法、装置和计算机设备 |
US11967184B2 (en) | 2021-05-21 | 2024-04-23 | Ford Global Technologies, Llc | Counterfeit image detection |
US20220374641A1 (en) * | 2021-05-21 | 2022-11-24 | Ford Global Technologies, Llc | Camera tampering detection |
CN113627503B (zh) * | 2021-07-30 | 2023-10-24 | 中国科学院计算技术研究所 | 生成图像溯源方法与装置、模型训练方法与装置、电子设备及存储介质 |
CN114331974B (zh) * | 2021-12-09 | 2024-06-21 | 上海大学 | 一种基于特征融合的图像篡改检测方法 |
CN114758364B (zh) * | 2022-02-09 | 2022-09-23 | 四川大学 | 基于深度学习的工业物联网场景融合定位方法及系统 |
CN114612693B (zh) * | 2022-03-21 | 2024-08-02 | 华南理工大学 | 基于编解码网络的图像拼接伪造定位方法 |
WO2023196858A1 (en) * | 2022-04-05 | 2023-10-12 | North Carolina State University | Diversity based deep learning system |
CN114491135A (zh) * | 2022-04-06 | 2022-05-13 | 成都考拉悠然科技有限公司 | 一种基于变分信息瓶颈的跨视角地理图像检索方法 |
CN114764858B (zh) * | 2022-06-15 | 2022-11-01 | 深圳大学 | 一种复制粘贴图像识别方法、装置、计算机设备及存储介质 |
CN115063979B (zh) * | 2022-08-19 | 2022-12-23 | 合肥工业大学 | 一种智能网联环境下的交通信息量化方法及其系统 |
CN117275068B (zh) * | 2023-09-21 | 2024-05-17 | 北京中科闻歌科技股份有限公司 | 含不确定性引导的测试阶段训练人脸伪造检测方法及系统 |
CN118314449A (zh) * | 2024-03-15 | 2024-07-09 | 深圳大学 | 一种基于强化学习的图像篡改定位方法、系统及终端 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070091926A1 (en) | 2005-10-21 | 2007-04-26 | Apostolopoulos John G | Method for optimizing portions of data from a plurality of data streams at a transcoding node |
FR3019350B1 (fr) * | 2014-03-28 | 2017-07-21 | Univ De Tech De Troyes | Systeme d'identification d'un modele d'appareil photographique associe a une image compressee au format jpeg, procede, utilisations et applications associes |
US9721559B2 (en) | 2015-04-17 | 2017-08-01 | International Business Machines Corporation | Data augmentation method based on stochastic feature mapping for automatic speech recognition |
US11080591B2 (en) * | 2016-09-06 | 2021-08-03 | Deepmind Technologies Limited | Processing sequences using convolutional neural networks |
KR102458808B1 (ko) * | 2016-10-26 | 2022-10-25 | 딥마인드 테크놀로지스 리미티드 | 신경망을 이용한 텍스트 시퀀스 처리 |
EP3520037B1 (en) * | 2016-11-04 | 2024-01-03 | Google LLC | Training neural networks using a variational information bottleneck |
JP6929953B2 (ja) * | 2017-03-17 | 2021-09-01 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 部屋レイアウト推定方法および技法 |
US10452927B2 (en) * | 2017-08-09 | 2019-10-22 | Ydrive, Inc. | Object localization within a semantic domain |
US10636190B2 (en) * | 2018-05-31 | 2020-04-28 | Robert Bosch Gmbh | Methods and systems for exploiting per-pixel motion conflicts to extract primary and secondary motions in augmented reality systems |
US11107205B2 (en) * | 2019-02-18 | 2021-08-31 | Samsung Electronics Co., Ltd. | Techniques for convolutional neural network-based multi-exposure fusion of multiple image frames and for deblurring multiple image frames |
-
2020
- 2020-06-24 MX MX2022000163A patent/MX2022000163A/es unknown
- 2020-06-24 US US16/911,051 patent/US11663489B2/en active Active
- 2020-06-24 AU AU2020306013A patent/AU2020306013A1/en active Pending
- 2020-06-24 WO PCT/US2020/039394 patent/WO2020264006A1/en unknown
- 2020-06-24 EP EP20832023.4A patent/EP3987483A4/en active Pending
- 2020-06-24 CA CA3145241A patent/CA3145241A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2020264006A1 (en) | 2020-12-30 |
CA3145241A1 (en) | 2020-12-30 |
EP3987483A4 (en) | 2023-03-01 |
EP3987483A1 (en) | 2022-04-27 |
AU2020306013A1 (en) | 2022-02-10 |
US11663489B2 (en) | 2023-05-30 |
US20200402223A1 (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MX2022000163A (es) | Sistemas y metodos de aprendizaje de maquina para localizacion mejorada de falsificacion de imagenes. | |
EP4345746A3 (en) | Method and system for image segmentation and identification | |
WO2018231708A3 (en) | LEARNING ROBUST MACHINE ANTI-CONTRADICTORY | |
WO2019199475A3 (en) | Training machine learning model based on training instances with: training instance input based on autonomous vehicle sensor data, and training instance output based on additional vehicle sensor data | |
MX2019000713A (es) | Sistemas, aparatos y metodos para maquina de aprendizaje distribuido. | |
EP4361995A3 (de) | Verfahren und vorrichtung zum betreiben eines verkehrsüberwachungsgerätes, verkehrsüberwachungsgerät und verkehrsüberwachungssystem | |
PH12019501432A1 (en) | System and method for generating digital marks | |
JP2009501965A5 (es) | ||
EP3579144A3 (en) | Visual perception method, apparatus, device, and medium based on an autonomous vehicle | |
WO2010075310A3 (en) | Neural network based pattern recognizer | |
AU2017302833A8 (en) | Database construction system for machine-learning | |
GB2472932A (en) | Method and system for crowd segmentation | |
MX2021013985A (es) | Sistemas y metodo para calcular la responsabilidad de un conductor de un vehiculo. | |
FR3103047B1 (fr) | Procede et dispositif d'apprentissage par reseau de neurones artificiels pour l'aide a l'atterrissage d'aeronef | |
WO2019156930A3 (en) | Using machine learning to estimate or forecast resource use with time-varying demand in gaming platforms | |
ZA202202581B (en) | Machine learning based train control | |
CN108133236A (zh) | 一种城市管理图像智能识别分类的方法、集成装置及系统 | |
WO2022075678A3 (ko) | 의사 정상 데이터를 이용한 자가 감독 학습 기반의 차량 이상징후 탐지 장치 및 방법 | |
Ma et al. | A deep learning approach for online learning emotion recognition | |
CN103753570A (zh) | 舞蹈教学服务机器人 | |
CN106652605A (zh) | 一种远程情感教学方法 | |
MX2024008517A (es) | Sistemas y metodos para segmentar instancias de particulas rocosas. | |
MX2024007226A (es) | Tecnicas de aprendizaje automatico para el preprocesamiento de imagenes basado en componentes. | |
KR101881505B1 (ko) | 지문 위조 판별 모델 생성 방법 및 이를 이용한 지문 위조 판별 방법 | |
WO2020113240A3 (en) | Methods and apparatus for training optical deep diffractive neural networks |