MX2021007642A - Programacion predictiva de semillas para soya. - Google Patents
Programacion predictiva de semillas para soya.Info
- Publication number
- MX2021007642A MX2021007642A MX2021007642A MX2021007642A MX2021007642A MX 2021007642 A MX2021007642 A MX 2021007642A MX 2021007642 A MX2021007642 A MX 2021007642A MX 2021007642 A MX2021007642 A MX 2021007642A MX 2021007642 A MX2021007642 A MX 2021007642A
- Authority
- MX
- Mexico
- Prior art keywords
- field
- fields
- sub
- target
- historical
- Prior art date
Links
- 235000010469 Glycine max Nutrition 0.000 title 1
- 244000068988 Glycine max Species 0.000 title 1
- 238000010899 nucleation Methods 0.000 abstract 3
- 238000000034 method Methods 0.000 abstract 2
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C21/00—Methods of fertilising, sowing or planting
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C7/00—Sowing
- A01C7/08—Broadcast seeders; Seeders depositing seeds in rows
- A01C7/10—Devices for adjusting the seed-box ; Regulation of machines for depositing quantities at intervals
- A01C7/102—Regulating or controlling the seed rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06315—Needs-based resource requirements planning or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/68—Food, e.g. fruit or vegetables
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Tourism & Hospitality (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Quality & Reliability (AREA)
- Soil Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Primary Health Care (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Agronomy & Crop Science (AREA)
- Environmental Sciences (AREA)
- Multimedia (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Se proporciona un método y aparato para ajustar tasas de siembra en un nivel de subcampo. El método comprende identificar, utilizando una computadora servidor, un conjunto de campos agrícolas objetivo con variabilidad de cultivo intracampo basado en datos agrícolas históricos que comprenden datos de rendimiento y datos agrícolas históricos observados para una pluralidad de campos; recibir, sobre una red de comunicación de datos digital en la computadora servidor, una pluralidad de imágenes digitales del conjunto de campos agrícolas objetivo; determinar, utilizando la computadora servidor, valores de índice vegetativo para geolocalizaciones dentro de cada campo de conjunto de campos agrícolas objetivo utilizando subconjuntos de la pluralidad de imágenes digitales, en donde cada subconjunto entre los subconjuntos de la pluralidad de imágenes digitales corresponde a un campo objetivo específico en el conjunto de campos agrícolas objetivo; para cada campo objetivo en el conjunto de campos agrícolas objetivo, determinar, utilizando la computadora servidor, una pluralidad de zonas de subcampo basadas en valores de índice vegetativo para geolocalizaciones dentro de cada campo objetivo, en donde cada zona de subcampo de la pluralidad de zonas de subcampo contiene valores de índice vegetativo similares; determinar, utilizando la computadora servidor, puntuaciones de productividad de índice vegetativo para cada zona de subcampo de cada campo objetivo en el conjunto de campos agrícolas objetivo, en donde las puntuaciones de productividad de índice vegetativo representan una productividad de cultivo relativa específica con un tipo de semilla plantada dentro de las zonas de subcampos correspondientes; recibir, sobre una red de comunicación de datos digital en la computadora servidor, tasas de siembra actuales para cada una de las zonas de subcampo del conjunto de campos agrícolas objetivo; determinar, utilizando la computadora servidor, tasas de siembra ajustadas para cada uno de los subcampos del conjunto de campos agrícolas objetivo al ajustar las tasas de siembra actuales utilizando las puntuaciones de productividad de índice vegetativo que corresponden a cada una de las zonas de subcampo; enviar las tasas de siembra ajustadas para cada una de las zonas de subcampo de cada uno de los campos agrícolas objetivo a un dispositivo informático de programa gestor de campo.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862784625P | 2018-12-24 | 2018-12-24 | |
PCT/US2019/068064 WO2020139781A1 (en) | 2018-12-24 | 2019-12-20 | Predictive seed scripting for soybeans |
Publications (1)
Publication Number | Publication Date |
---|---|
MX2021007642A true MX2021007642A (es) | 2021-08-11 |
Family
ID=71098956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
MX2021007642A MX2021007642A (es) | 2018-12-24 | 2019-12-20 | Programacion predictiva de semillas para soya. |
Country Status (9)
Country | Link |
---|---|
US (1) | US20200202458A1 (es) |
EP (1) | EP3902386A4 (es) |
CN (1) | CN113226009B (es) |
AR (1) | AR117512A1 (es) |
AU (1) | AU2019417596A1 (es) |
BR (1) | BR112021010533A2 (es) |
CA (1) | CA3121647A1 (es) |
MX (1) | MX2021007642A (es) |
WO (1) | WO2020139781A1 (es) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021157032A1 (ja) * | 2020-02-06 | 2021-08-12 | 株式会社ナイルワークス | 生育診断システム、生育診断サーバ及び生育診断方法 |
US10878967B1 (en) * | 2020-02-21 | 2020-12-29 | Advanced Agrilytics Holdings, Llc | Methods and systems for environmental matching |
EP3923231A1 (en) * | 2020-06-11 | 2021-12-15 | KWS SAAT SE & Co. KGaA | Method and system for managing agricultural processes |
US11845449B2 (en) * | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
US11874669B2 (en) * | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
WO2022246548A1 (en) * | 2021-05-24 | 2022-12-01 | Croptimistic Technology Inc. | Method and system for automatically capturing and extracting data from images of agricultural field crops and weeds using machine learning processes |
CN113378793A (zh) * | 2021-07-09 | 2021-09-10 | 北京京东乾石科技有限公司 | 一种农作物产量预测方法和装置 |
CN114332461B (zh) * | 2021-12-29 | 2023-03-24 | 江苏业派生物科技有限公司 | 智慧农业用虫害远程检测系统及方法 |
CN116584316A (zh) * | 2023-06-19 | 2023-08-15 | 广东省农业科学院农业生物基因研究中心 | 一种用于筛选地区农作物种质资源的方法 |
EP4562992A1 (en) * | 2023-11-29 | 2025-06-04 | BASF Agro Trademarks GmbH | Method for generating control data for controlling seeding operation, computing unit, and machine learning model |
CN117726194B (zh) * | 2024-02-07 | 2024-05-07 | 安徽农业大学 | 一种基于大数据的林业环境分析系统 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4009441B2 (ja) * | 2001-08-08 | 2007-11-14 | 株式会社日立製作所 | 作物育成評価システム |
US20140277959A1 (en) * | 2013-03-15 | 2014-09-18 | Jesse L. Wagers | Multi-seed planter control system and method for the same |
SE537880C2 (sv) * | 2013-11-04 | 2015-11-10 | Väderstad Verken Ab | Ett system och metod hos en jordbruksmaskin för att optimeraarbetskapacitet |
US11113649B2 (en) * | 2014-09-12 | 2021-09-07 | The Climate Corporation | Methods and systems for recommending agricultural activities |
US10564316B2 (en) * | 2014-09-12 | 2020-02-18 | The Climate Corporation | Forecasting national crop yield during the growing season |
US10667456B2 (en) * | 2014-09-12 | 2020-06-02 | The Climate Corporation | Methods and systems for managing agricultural activities |
US10028426B2 (en) * | 2015-04-17 | 2018-07-24 | 360 Yield Center, Llc | Agronomic systems, methods and apparatuses |
US10251347B2 (en) * | 2016-01-07 | 2019-04-09 | The Climate Corporation | Generating digital models of crop yield based on crop planting dates and relative maturity values |
CN205373764U (zh) * | 2016-01-07 | 2016-07-06 | 陕西国际商贸学院 | 一种农产品信息系统 |
US10467540B2 (en) * | 2016-06-02 | 2019-11-05 | The Climate Corporation | Estimating confidence bounds for rainfall adjustment values |
US10028451B2 (en) * | 2016-11-16 | 2018-07-24 | The Climate Corporation | Identifying management zones in agricultural fields and generating planting plans for the zones |
US10398096B2 (en) * | 2016-11-16 | 2019-09-03 | The Climate Corporation | Identifying management zones in agricultural fields and generating planting plans for the zones |
US11263707B2 (en) * | 2017-08-08 | 2022-03-01 | Indigo Ag, Inc. | Machine learning in agricultural planting, growing, and harvesting contexts |
CN107733321B (zh) * | 2017-10-26 | 2020-09-25 | 江苏大学 | 一种播种机监控系统和监控方法 |
US20200005166A1 (en) * | 2018-07-02 | 2020-01-02 | The Climate Corporation | Automatically assigning hybrids or seeds to fields for planting |
-
2019
- 2019-12-20 WO PCT/US2019/068064 patent/WO2020139781A1/en unknown
- 2019-12-20 MX MX2021007642A patent/MX2021007642A/es unknown
- 2019-12-20 BR BR112021010533-6A patent/BR112021010533A2/pt unknown
- 2019-12-20 CA CA3121647A patent/CA3121647A1/en active Pending
- 2019-12-20 AU AU2019417596A patent/AU2019417596A1/en active Pending
- 2019-12-20 CN CN201980085486.4A patent/CN113226009B/zh active Active
- 2019-12-20 US US16/723,728 patent/US20200202458A1/en active Pending
- 2019-12-20 EP EP19902717.8A patent/EP3902386A4/en not_active Withdrawn
- 2019-12-23 AR ARP190103861A patent/AR117512A1/es active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
AR117512A1 (es) | 2021-08-11 |
BR112021010533A2 (pt) | 2021-08-24 |
WO2020139781A1 (en) | 2020-07-02 |
CA3121647A1 (en) | 2020-07-02 |
AU2019417596A1 (en) | 2021-07-15 |
EP3902386A4 (en) | 2022-09-28 |
CN113226009A (zh) | 2021-08-06 |
CN113226009B (zh) | 2023-06-23 |
US20200202458A1 (en) | 2020-06-25 |
EP3902386A1 (en) | 2021-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MX2021007642A (es) | Programacion predictiva de semillas para soya. | |
MX2020012606A (es) | Estudio entre productores y seleccion de campos. | |
Van Roekel et al. | Physiological and management factors contributing to soybean potential yield | |
Lauer et al. | Corn response to within row plant spacing variation | |
Andrade et al. | Response of maize and soybean to variability in stand uniformity | |
MX2020014198A (es) | Colocacion optima y orientacion de la cartera de oportunidades. | |
Thompson et al. | Mid‐South soybean yield and net return as affected by plant population and row spacing | |
MX2021004578A (es) | Genética de apalancamiento e ingeniería de características para potenciar la previsibilidad de la colocación para selección del producto de semilla y recomendación por campo. | |
Howeler | The cassava handbook: a reference manual based on the Asian regional cassava training course, held in Thailand | |
Sabiel et al. | Genetic variability and estimates of heritability in sorghum (Sorghum bicolor L.) genotypes grown in a semiarid zone of Sudan | |
Cavalieri et al. | Pod drop and pod shatter are not closely related in canola | |
Raina et al. | Mutagenesis in plant breeding for disease and pathogen resistance | |
Doerge et al. | Planting outcome effects on corn yield | |
Parmar et al. | Impact of frontline demonstration in adoption of chickpea production technology by the farmers of Sehore district, Madhya Pradesh, India | |
Pulvento et al. | Quinoa in Italy: Research and Perspectives. | |
Rohila et al. | Constraints in adoption of smart agricultural practices | |
MA43463A1 (fr) | Quantite et rendement accrus de sucres solubles attribues aux fruits dans des plans de tomate | |
Yaligar et al. | Land levelling and its temporal variability under different levelling, cultivation practices and irrigation methods for paddy | |
Mahale et al. | Impact of frontline demonstrations on Yield, Adoption and Horizontal spread of oilseed crops | |
CN116137999B (zh) | 可实现播种宽度、深度和均匀度控制的信息反馈调节系统 | |
Manukyan et al. | Environmental adaptivity and stability of winter triticale varieties in the conditions of the foothill zone of the Central Caucasus | |
Daniel et al. | 5 years of Nitrogen research–Have we got the system right? | |
Klein et al. | EMPower Breastfeeding Initiative: Impact on Key Process and Outcome Monitoring Measures | |
Pauline et al. | Information source utilization behaviour of paddy farmers about farm mechanization | |
Licht | Estimating corn yields using yield components |