[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

MX2021007642A - Programacion predictiva de semillas para soya. - Google Patents

Programacion predictiva de semillas para soya.

Info

Publication number
MX2021007642A
MX2021007642A MX2021007642A MX2021007642A MX2021007642A MX 2021007642 A MX2021007642 A MX 2021007642A MX 2021007642 A MX2021007642 A MX 2021007642A MX 2021007642 A MX2021007642 A MX 2021007642A MX 2021007642 A MX2021007642 A MX 2021007642A
Authority
MX
Mexico
Prior art keywords
field
fields
sub
target
historical
Prior art date
Application number
MX2021007642A
Other languages
English (en)
Inventor
Morrison Jacobs
Allan Trapp
David Rock
Shilpa Sood
Jigyasa Bhagat
Nicholas Helland
Susan A Macisaac
Original Assignee
Climate Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Climate Llc filed Critical Climate Llc
Publication of MX2021007642A publication Critical patent/MX2021007642A/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • A01C7/08Broadcast seeders; Seeders depositing seeds in rows
    • A01C7/10Devices for adjusting the seed-box ; Regulation of machines for depositing quantities at intervals
    • A01C7/102Regulating or controlling the seed rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/68Food, e.g. fruit or vegetables

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Soil Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Primary Health Care (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Multimedia (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Se proporciona un método y aparato para ajustar tasas de siembra en un nivel de subcampo. El método comprende identificar, utilizando una computadora servidor, un conjunto de campos agrícolas objetivo con variabilidad de cultivo intracampo basado en datos agrícolas históricos que comprenden datos de rendimiento y datos agrícolas históricos observados para una pluralidad de campos; recibir, sobre una red de comunicación de datos digital en la computadora servidor, una pluralidad de imágenes digitales del conjunto de campos agrícolas objetivo; determinar, utilizando la computadora servidor, valores de índice vegetativo para geolocalizaciones dentro de cada campo de conjunto de campos agrícolas objetivo utilizando subconjuntos de la pluralidad de imágenes digitales, en donde cada subconjunto entre los subconjuntos de la pluralidad de imágenes digitales corresponde a un campo objetivo específico en el conjunto de campos agrícolas objetivo; para cada campo objetivo en el conjunto de campos agrícolas objetivo, determinar, utilizando la computadora servidor, una pluralidad de zonas de subcampo basadas en valores de índice vegetativo para geolocalizaciones dentro de cada campo objetivo, en donde cada zona de subcampo de la pluralidad de zonas de subcampo contiene valores de índice vegetativo similares; determinar, utilizando la computadora servidor, puntuaciones de productividad de índice vegetativo para cada zona de subcampo de cada campo objetivo en el conjunto de campos agrícolas objetivo, en donde las puntuaciones de productividad de índice vegetativo representan una productividad de cultivo relativa específica con un tipo de semilla plantada dentro de las zonas de subcampos correspondientes; recibir, sobre una red de comunicación de datos digital en la computadora servidor, tasas de siembra actuales para cada una de las zonas de subcampo del conjunto de campos agrícolas objetivo; determinar, utilizando la computadora servidor, tasas de siembra ajustadas para cada uno de los subcampos del conjunto de campos agrícolas objetivo al ajustar las tasas de siembra actuales utilizando las puntuaciones de productividad de índice vegetativo que corresponden a cada una de las zonas de subcampo; enviar las tasas de siembra ajustadas para cada una de las zonas de subcampo de cada uno de los campos agrícolas objetivo a un dispositivo informático de programa gestor de campo.
MX2021007642A 2018-12-24 2019-12-20 Programacion predictiva de semillas para soya. MX2021007642A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862784625P 2018-12-24 2018-12-24
PCT/US2019/068064 WO2020139781A1 (en) 2018-12-24 2019-12-20 Predictive seed scripting for soybeans

Publications (1)

Publication Number Publication Date
MX2021007642A true MX2021007642A (es) 2021-08-11

Family

ID=71098956

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2021007642A MX2021007642A (es) 2018-12-24 2019-12-20 Programacion predictiva de semillas para soya.

Country Status (9)

Country Link
US (1) US20200202458A1 (es)
EP (1) EP3902386A4 (es)
CN (1) CN113226009B (es)
AR (1) AR117512A1 (es)
AU (1) AU2019417596A1 (es)
BR (1) BR112021010533A2 (es)
CA (1) CA3121647A1 (es)
MX (1) MX2021007642A (es)
WO (1) WO2020139781A1 (es)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157032A1 (ja) * 2020-02-06 2021-08-12 株式会社ナイルワークス 生育診断システム、生育診断サーバ及び生育診断方法
US10878967B1 (en) * 2020-02-21 2020-12-29 Advanced Agrilytics Holdings, Llc Methods and systems for environmental matching
EP3923231A1 (en) * 2020-06-11 2021-12-15 KWS SAAT SE & Co. KGaA Method and system for managing agricultural processes
US11845449B2 (en) * 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11874669B2 (en) * 2020-10-09 2024-01-16 Deere & Company Map generation and control system
WO2022246548A1 (en) * 2021-05-24 2022-12-01 Croptimistic Technology Inc. Method and system for automatically capturing and extracting data from images of agricultural field crops and weeds using machine learning processes
CN113378793A (zh) * 2021-07-09 2021-09-10 北京京东乾石科技有限公司 一种农作物产量预测方法和装置
CN114332461B (zh) * 2021-12-29 2023-03-24 江苏业派生物科技有限公司 智慧农业用虫害远程检测系统及方法
CN116584316A (zh) * 2023-06-19 2023-08-15 广东省农业科学院农业生物基因研究中心 一种用于筛选地区农作物种质资源的方法
EP4562992A1 (en) * 2023-11-29 2025-06-04 BASF Agro Trademarks GmbH Method for generating control data for controlling seeding operation, computing unit, and machine learning model
CN117726194B (zh) * 2024-02-07 2024-05-07 安徽农业大学 一种基于大数据的林业环境分析系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009441B2 (ja) * 2001-08-08 2007-11-14 株式会社日立製作所 作物育成評価システム
US20140277959A1 (en) * 2013-03-15 2014-09-18 Jesse L. Wagers Multi-seed planter control system and method for the same
SE537880C2 (sv) * 2013-11-04 2015-11-10 Väderstad Verken Ab Ett system och metod hos en jordbruksmaskin för att optimeraarbetskapacitet
US11113649B2 (en) * 2014-09-12 2021-09-07 The Climate Corporation Methods and systems for recommending agricultural activities
US10564316B2 (en) * 2014-09-12 2020-02-18 The Climate Corporation Forecasting national crop yield during the growing season
US10667456B2 (en) * 2014-09-12 2020-06-02 The Climate Corporation Methods and systems for managing agricultural activities
US10028426B2 (en) * 2015-04-17 2018-07-24 360 Yield Center, Llc Agronomic systems, methods and apparatuses
US10251347B2 (en) * 2016-01-07 2019-04-09 The Climate Corporation Generating digital models of crop yield based on crop planting dates and relative maturity values
CN205373764U (zh) * 2016-01-07 2016-07-06 陕西国际商贸学院 一种农产品信息系统
US10467540B2 (en) * 2016-06-02 2019-11-05 The Climate Corporation Estimating confidence bounds for rainfall adjustment values
US10028451B2 (en) * 2016-11-16 2018-07-24 The Climate Corporation Identifying management zones in agricultural fields and generating planting plans for the zones
US10398096B2 (en) * 2016-11-16 2019-09-03 The Climate Corporation Identifying management zones in agricultural fields and generating planting plans for the zones
US11263707B2 (en) * 2017-08-08 2022-03-01 Indigo Ag, Inc. Machine learning in agricultural planting, growing, and harvesting contexts
CN107733321B (zh) * 2017-10-26 2020-09-25 江苏大学 一种播种机监控系统和监控方法
US20200005166A1 (en) * 2018-07-02 2020-01-02 The Climate Corporation Automatically assigning hybrids or seeds to fields for planting

Also Published As

Publication number Publication date
AR117512A1 (es) 2021-08-11
BR112021010533A2 (pt) 2021-08-24
WO2020139781A1 (en) 2020-07-02
CA3121647A1 (en) 2020-07-02
AU2019417596A1 (en) 2021-07-15
EP3902386A4 (en) 2022-09-28
CN113226009A (zh) 2021-08-06
CN113226009B (zh) 2023-06-23
US20200202458A1 (en) 2020-06-25
EP3902386A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
MX2021007642A (es) Programacion predictiva de semillas para soya.
MX2020012606A (es) Estudio entre productores y seleccion de campos.
Van Roekel et al. Physiological and management factors contributing to soybean potential yield
Lauer et al. Corn response to within row plant spacing variation
Andrade et al. Response of maize and soybean to variability in stand uniformity
MX2020014198A (es) Colocacion optima y orientacion de la cartera de oportunidades.
Thompson et al. Mid‐South soybean yield and net return as affected by plant population and row spacing
MX2021004578A (es) Genética de apalancamiento e ingeniería de características para potenciar la previsibilidad de la colocación para selección del producto de semilla y recomendación por campo.
Howeler The cassava handbook: a reference manual based on the Asian regional cassava training course, held in Thailand
Sabiel et al. Genetic variability and estimates of heritability in sorghum (Sorghum bicolor L.) genotypes grown in a semiarid zone of Sudan
Cavalieri et al. Pod drop and pod shatter are not closely related in canola
Raina et al. Mutagenesis in plant breeding for disease and pathogen resistance
Doerge et al. Planting outcome effects on corn yield
Parmar et al. Impact of frontline demonstration in adoption of chickpea production technology by the farmers of Sehore district, Madhya Pradesh, India
Pulvento et al. Quinoa in Italy: Research and Perspectives.
Rohila et al. Constraints in adoption of smart agricultural practices
MA43463A1 (fr) Quantite et rendement accrus de sucres solubles attribues aux fruits dans des plans de tomate
Yaligar et al. Land levelling and its temporal variability under different levelling, cultivation practices and irrigation methods for paddy
Mahale et al. Impact of frontline demonstrations on Yield, Adoption and Horizontal spread of oilseed crops
CN116137999B (zh) 可实现播种宽度、深度和均匀度控制的信息反馈调节系统
Manukyan et al. Environmental adaptivity and stability of winter triticale varieties in the conditions of the foothill zone of the Central Caucasus
Daniel et al. 5 years of Nitrogen research–Have we got the system right?
Klein et al. EMPower Breastfeeding Initiative: Impact on Key Process and Outcome Monitoring Measures
Pauline et al. Information source utilization behaviour of paddy farmers about farm mechanization
Licht Estimating corn yields using yield components