[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Walach et al., 2018 - Google Patents

Data normalization and scaling: consequences for the analysis in omics sciences

Walach et al., 2018

Document ID
3908415455677140049
Author
Walach J
Filzmoser P
Hron K
Publication year
Publication venue
Comprehensive analytical chemistry

External Links

Snippet

Nowadays, the use of different types of measurement devices such as mass spectrometers or nuclear magnetic resonance spectrometers are standard in 'omics' disciplines. Such a device produces high-dimensional data, but they cannot immediately undergo a statistical …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/24Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/18Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/28Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/20Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for hybridisation or gene expression, e.g. microarrays, sequencing by hybridisation, normalisation, profiling, noise correction models, expression ratio estimation, probe design or probe optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/708Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/06Investment, e.g. financial instruments, portfolio management or fund management
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00496Recognising patterns in signals and combinations thereof

Similar Documents

Publication Publication Date Title
Walach et al. Data normalization and scaling: consequences for the analysis in omics sciences
Grissa et al. Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data
Liu et al. Comparison of five iterative imputation methods for multivariate classification
Blasco et al. Comparative analysis of targeted metabolomics: dominance-based rough set approach versus orthogonal partial least square-discriminant analysis
Xi et al. Statistical analysis and modeling of mass spectrometry-based metabolomics data
Filzmoser et al. What can go wrong at the data normalization step for identification of biomarkers?
Gromski et al. The influence of scaling metabolomics data on model classification accuracy
Kohl et al. State-of-the art data normalization methods improve NMR-based metabolomic analysis
Engel et al. Regularized MANOVA (rMANOVA) in untargeted metabolomics
Sampson et al. A comparison of methods for classifying clinical samples based on proteomics data: a case study for statistical and machine learning approaches
Wilms et al. Robust sparse canonical correlation analysis
Sun et al. Pretreating and normalizing metabolomics data for statistical analysis
Ahlmann-Eltze et al. proDA: probabilistic dropout analysis for identifying differentially abundant proteins in label-free mass spectrometry
Dong et al. Group aggregating normalization method for the preprocessing of NMR-based metabolomic data
Rousseau et al. Comparison of some chemometric tools for metabonomics biomarker identification
Monakhova et al. Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): Application to NMR fingerprinting of wine
Liu et al. Function-on-scalar quantile regression with application to mass spectrometry proteomics data
Wang et al. Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection
Liu et al. MetICA: independent component analysis for high-resolution mass-spectrometry based non-targeted metabolomics
Walach et al. Robust biomarker identification in a two-class problem based on pairwise log-ratios
Bowling et al. Analyzing the metabolome
Nezami Ranjbar et al. Gaussian process regression model for normalization of LC-MS data using scan-level information
Proust‐Lima et al. Describing complex disease progression using joint latent class models for multivariate longitudinal markers and clinical endpoints
Chi Multivariate methods
Polanska et al. Gaussian mixture decomposition in the analysis of MALDI‐TOF spectra