[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Afinogenov et al., 2014 - Google Patents

Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons

Afinogenov et al., 2014

View HTML
Document ID
388602516819154931
Author
Afinogenov B
Bessonov V
Fedyanin A
Publication year
Publication venue
Optics Letters

External Links

Snippet

Resonant enhancement of second-harmonic generation (SHG) intensity from a thin metal film is demonstrated in a Tamm plasmon-polariton mode excited at a metal/photonic crystal interface using nonlinear spectroscopy. Nonlinear effects enhancement in proposed …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam with frequency components different from those of the incident light beams is generated
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides

Similar Documents

Publication Publication Date Title
Afinogenov et al. Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons
Kravets et al. Sensitivity of collective plasmon modes of gold nanoresonators to local environment
Abutoama et al. Self-referenced biosensor based on thin dielectric grating combined with thin metal film
Poujet et al. 90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays
Chu et al. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model
Ünlü et al. Broadband plasmonic nanoantenna with an adjustable spectral response
Renger et al. Enhanced nonlinear response from metal surfaces
Zhu et al. Metallic nanofilm half-wave plate based on magnetic plasmon resonance
Ning et al. Third-harmonic UV generation in silicon nitride nanostructures
Wu et al. Designing surface plasmon resonance of subwavelength hole arrays by studying absorption
Khorasaninejad et al. Silicon nanowire arrays with enhanced optical properties
Cheng et al. Chiral selection rules for multi-photon processes in two-dimensional honeycomb materials
Chandrasekar et al. Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances
Kusa et al. Enhanced ultrafast infrared spectroscopy using coupled nanoantenna arrays
Takahashi et al. Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal
Zhao et al. Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects
Bai et al. Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes
Du et al. High-performance optical sensing based on electromagnetically induced transparency-like effect in Tamm plasmon multilayer structures
Alaverdyan et al. Spectral tunability of a plasmonic antenna with a dielectric nanocrystal
Lerman et al. Light transmission through a circular metallic grating under broadband radial and azimuthal polarization illumination
Mamonov et al. Coherent and incoherent second harmonic generation in planar G-shaped nanostructures
Oh et al. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method
Lin et al. Guided-mode resonance enhanced excitation and extraction of two-photon photoluminescence in a resonant waveguide grating
Lin et al. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating
Malvezzi et al. Second-harmonic generation in reflection and diffraction by a GaAs photonic-crystal waveguide