Pakdaman et al., 2022 - Google Patents
BLINC: lightweight bimodal learning for low-complexity VVC intra-codingPakdaman et al., 2022
View PDF- Document ID
- 3731898148717590411
- Author
- Pakdaman F
- Adelimanesh M
- Hashemi M
- Publication year
- Publication venue
- Journal of Real-Time Image Processing
External Links
Snippet
The latest video coding standard, versatile video coding (VVC), achieves almost twice coding efficiency compared to its predecessor, the high efficiency video coding (HEVC). However, achieving this efficiency (for intra coding) requires 31× computational complexity …
- 230000002902 bimodal 0 title abstract description 27
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
- H04N19/147—Data rate or code amount at the encoder output according to rate distortion criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Duan et al. | Video coding for machines: A paradigm of collaborative compression and intelligent analytics | |
US11405626B2 (en) | Video compression using recurrent-based machine learning systems | |
Ding et al. | Advances in video compression system using deep neural network: A review and case studies | |
Wang et al. | Towards analysis-friendly face representation with scalable feature and texture compression | |
TWI830107B (en) | Encoding by indicating feature map data | |
US20200329233A1 (en) | Hyperdata Compression: Accelerating Encoding for Improved Communication, Distribution & Delivery of Personalized Content | |
Ryu et al. | Machine learning-based fast angular prediction mode decision technique in video coding | |
EP3583547A1 (en) | Method for image processing and video compression | |
TWI806199B (en) | Method for signaling of feature map information, device and computer program | |
US20230336759A1 (en) | Decoding with signaling of segmentation information | |
US20230353764A1 (en) | Method and apparatus for decoding with signaling of feature map data | |
EP4305839A1 (en) | Learned b-frame coding using p-frame coding system | |
US11399198B1 (en) | Learned B-frame compression | |
Abdallah et al. | Low-complexity QTMT partition based on deep neural network for Versatile Video Coding | |
Kim | Fast coding unit (CU) determination algorithm for high-efficiency video coding (HEVC) in smart surveillance application | |
Pakdaman et al. | BLINC: lightweight bimodal learning for low-complexity VVC intra-coding | |
Hari et al. | Ctu partition for intra-mode hevc using convolutional neural network | |
Hassan et al. | Predicting split decisions of coding units in HEVC video compression using machine learning techniques | |
KR20240051076A (en) | Encoders and decoders for video coding for machines (VCM) | |
Hadizadeh et al. | Learned scalable video coding for humans and machines | |
Zhang et al. | An early CU partition mode decision algorithm in VVC based on variogram for virtual reality 360 degree videos | |
Wood | Task Oriented Video Coding: A Survey | |
US11831887B1 (en) | Scalable video coding for machine | |
US20240013441A1 (en) | Video coding using camera motion compensation and object motion compensation | |
US11743477B1 (en) | Video-stream format for machine analysis using NPU |