[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wang et al., 2018 - Google Patents

Improved characterization of GNSS jammers using short-term time-frequency Rényi entropy

Wang et al., 2018

Document ID
3677899048345525621
Author
Wang P
Cetin E
Dempster A
Wang Y
Wu S
Publication year
Publication venue
IEEE Transactions on Aerospace and Electronic Systems

External Links

Snippet

Availability of global navigation satellite system (GNSS) jammers sold as “personal privacy devices” poses a severe threat to civilian systems that rely on GNSS signals to function. Typically, the large sweep bandwidth of these jammers within a short sweep time makes it …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/71Interference-related aspects the interference being narrowband interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference induced by transmission
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference induced by transmission
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference induced by transmission assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference induced by transmission assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Receivers interference related issues; Issues related to cross-correlation, spoofing or other methods of denial of service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/22Multipath-related issues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Details of receivers or network of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/22Countermeasures against jamming including jamming detection and monitoring
    • H04K3/224Countermeasures against jamming including jamming detection and monitoring with countermeasures at transmission and/or reception of the jammed signal, e.g. stopping operation of transmitter or receiver, nulling or enhancing transmitted power in direction of or at frequency of jammer
    • H04K3/228Elimination in the received signal of jamming or of data corrupted by jamming

Similar Documents

Publication Publication Date Title
Wang et al. Improved characterization of GNSS jammers using short-term time-frequency Rényi entropy
Wang et al. GNSS interference detection using statistical analysis in the time-frequency domain
Savasta et al. Interference mitigation in GNSS receivers by a time-frequency approach
Wang et al. GNSS jamming mitigation using adaptive-partitioned subspace projection technique
US10281556B2 (en) Interference detection and rejection for wide area positioning systems
CN104155662B (en) The mutual disturbance restraining method of self adaptation based on GNSS correlation peak detector
Sun et al. A new interference detection method based on joint hybrid time–frequency distribution for GNSS receivers
Ferrara et al. A new implementation of narrowband interference detection, characterization, and mitigation technique for a software-defined multi-GNSS receiver
CN103634026A (en) Digital zero intermediate frequency self-adaptation wave trapping method based on FPGA (filed programmable gate array)
Wang et al. Time frequency and statistical inference based interference detection technique for GNSS receivers
Wang et al. Time-frequency jammer mitigation based on Kalman filter for GNSS receivers
RU2513028C2 (en) Device for suppressing narrow-band interference in satellite navigation receiver
US20090004990A1 (en) Automatic gain control locked on to the received power probability density
Kim et al. STAP for GPS receiver synchronization
Anyaegbu et al. An integrated pulsed interference mitigation for GNSS receivers
Fadaei et al. Detection, characterization and mitigation of GNSS jammers using windowed HHT
Zhou et al. The Influence of Automatic Gain Control on Narrowband Frequency Domain GPS Anti-Jamming Receiver
Abdizadeh et al. New decision variables for GNSS acquisition in the presence of CW interference
Merwe et al. Exotic FMCW waveform mitigation with an advanced multi-parameter adaptive notch filter (MPANF)
Borio et al. Analysis of the one-pole notch filter for interference mitigation: Wiener solution and loss estimations
Abdoush et al. Time-frequency interference rejection based on the S-transform for GNSS applications
Nguyen et al. An adaptive bandwidth notch filter for GNSS narrowband interference mitigation
Zhu et al. An adaptive hybrid blanking algorithm to mitigate the DME pulse interference on BDS B2a receivers
Hu et al. Interference mitigation for the GPS receiver utilizing the cyclic spectral analysis and RR-MSWF algorithm
Nunes et al. Interference detection in GNSS signals using the Gaussianity criterion