[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Poulos, 2022 - Google Patents

Use of shear wave velocity for foundation design

Poulos, 2022

View PDF
Document ID
3582631294977732206
Author
Poulos H
Publication year
Publication venue
Geotechnical and Geological Engineering

External Links

Snippet

This paper describes an approach for utilizing in-situ measurements of shear wave velocity Vs to carry out preliminary and check design calculations for shallow and deep foundations. For estimates of foundation movements, Vs can be used directly to estimate the small-strain …
Continue reading at www.researchsquare.com (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/42Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/0006Measuring stresses in a well bore pipe string or casing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/624Reservoir parameters
    • G01V2210/6248Pore pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/008Earthquake measurement or prediction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/30Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V11/00GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Similar Documents

Publication Publication Date Title
L’Heureux et al. Relationship between shear-wave velocity and geotechnical parameters for Norwegian clays
Li et al. Axial load tests and numerical modeling of single-helix piles in cohesive and cohesionless soils
Karlsrud et al. Strength and deformation properties of Norwegian clays from laboratory tests on high-quality block samples
Poulos Use of shear wave velocity for foundation design
Pradel et al. Case history of landslide movement during the Northridge earthquake
Duan et al. Correlations between shear wave velocity and geotechnical parameters for Jiangsu clays of China
Mascarucci et al. A numerical approach to estimate shaft friction of bored piles in sands
Aghayarzadeh et al. Interpretation of dynamic pile load testing for open-ended tubular piles using finite-element method
Weaver et al. Response of 0.6 m cast-in-steel-shell pile in liquefied soil under lateral loading
Long Design parameters from in situ tests in soft ground–recent developments
Yang et al. Field behavior of driven prestressed high-strength concrete piles in sandy soils
Zhou et al. Earthquake response and sliding displacement of submarine sensitive clay slopes
Cabangon et al. Modelling the transverse behaviour of circular tunnels in structured clayey soils during earthquakes
Buckley et al. Pile driveability in low-to medium-density chalk
Shahmoradi et al. Face stability analysis for the earth pressure balance method in nonhomogeneous inclined soil layers: case study
Kalantari et al. System reliability analysis for seismic stability of the soldier pile wall using the conditional random finite-element method
Cardoso Bernardes et al. Coupling hardening soil model and Ménard pressuremeter tests to predict pile behavior
Akbarpour et al. Wellbore stability analysis based on geomechanical modeling using finite element method
Fathani et al. Seismic microzonation studies considering local site effects for Yogyakarta City, Indonesia
Seol et al. Analytical method for load-transfer characteristics of rock-socketed drilled shafts
Raja Shoib et al. Shaft resistance of bored piles socketed in Malaysian granite
Győri et al. Liquefaction and post-liquefaction settlement assessment—a probabilistic approach
Zdravković et al. Integrating laboratory and field testing into advanced geotechnical design
Osborne et al. " InSafeJIP" Improved guidelines for the prediction of geotechnical performance of spudcan foundations during installation and removal of jack-up units: Joint Industry-funded Project
Shahverdiloo et al. A new correlation to predict rock mass deformability modulus considering loading level of dilatometer tests