Tsai et al., 2020 - Google Patents
Beam AoD-based indoor positioning for 60 GHz MmWave systemTsai et al., 2020
- Document ID
- 3586316016593611255
- Author
- Tsai T
- Shen L
- Chiu C
- Feng K
- Publication year
- Publication venue
- 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall)
External Links
Snippet
Millimeter wave (mmWave) is capable of supporting ultra-high system performance due to its spatial diversity from directional transmission techniques in fifth generation (5G) wireless networks. Improved by the beamforming, mmWave could be applied to potentially achieve …
- 238000004088 simulation 0 abstract description 9
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/14—Systems for determining direction or deviation from predetermined direction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0252—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by comparing measured values with pre-stored measured or simulated values
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/12—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical, radial
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/06—Arrays of individually energised active aerial units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised active aerial units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q25/00—Aerials or aerial systems providing at least two radiating patterns
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Synthesizing omnidirectional antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave communications | |
Palacios et al. | JADE: Zero-knowledge device localization and environment mapping for millimeter wave systems | |
Ash et al. | Sensor network localization via received signal strength measurements with directional antennas | |
El-Sayed et al. | Evaluation of localization methods in millimeter-wave wireless systems | |
Malhotra et al. | Location estimation in ad hoc networks with directional antennas | |
Vukmirović et al. | Position estimation with a millimeter-wave massive MIMO system based on distributed steerable phased antenna arrays | |
Tsai et al. | Beam AoD-based indoor positioning for 60 GHz MmWave system | |
Peng et al. | Power-angular spectra correlation based two step angle of arrival estimation for future indoor terahertz communications | |
Lee et al. | Fundamentals of received signal strength‐based position location | |
Wang et al. | Pursuance of mm-level accuracy: Ranging and positioning in mmWave systems | |
Stratidakis et al. | A cooperative localization-aided tracking algorithm for THz wireless systems | |
Kornaros et al. | A novel model for direction finding and phase center with practical considerations | |
Jiao et al. | An indoor mmwave joint radar and communication system with active channel perception | |
Meles et al. | Measurement based performance evaluation of drone self-localization using AoA of cellular signals | |
Ali et al. | Time of arrival estimation for WLAN indoor positioning systems using matrix pencil super resolution algorithm | |
Maddio et al. | Smart antennas for direction‐of‐arrival indoor positioning applications | |
Lotti et al. | Multiband sub-THz double angular characterization in indoor scenario | |
Peng et al. | Two-step angle-of-arrival estimation for terahertz communications based on correlation of power-angular spectra in frequency | |
JP2010048708A (en) | ,system, method, and program for estimating direction | |
Honma et al. | RSS-based DOA/DOD estimation using bluetooth signal and its application for indoor tracking | |
Tao et al. | Indoor localization with smart antenna system: multipath mitigation with MIMO beamforming scheme | |
Shahmansoori et al. | Survey on 5G positioning | |
Werner et al. | Primary user localization in cognitive radio networks using sectorized antennas | |
US8760347B1 (en) | System of systems approach for direction finding and geolocation | |
Zhao et al. | Mobile positioning based on relaying capability of mobile stations in hybrid wireless networks |