Mieczkowski, 2019 - Google Patents
Criterion for crack initiation from notch located at the interface of bi-material structureMieczkowski, 2019
View PDF- Document ID
- 356693940511541357
- Author
- Mieczkowski G
- Publication year
- Publication venue
- Eksploatacja i Niezawodność
External Links
Snippet
The fracture process of bi-material structure with the notch was analysed in this work. For fracture prediction, a criterion based on the Theory of Critical Distances was used. Under analysis were elements made of aluminium alloy and polymer combination (with a various …
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/0278—Thin specimens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/022—Environment of the test
- G01N2203/0222—Temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/0212—Theories, calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/025—Geometry of the test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02827—Elastic parameters, strength or force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/021—Treatment of the signal; Calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/04—Chucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/38—Investigating or analysing materials by specific methods not covered by the preceding groups concrete; ceramics; glass; bricks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/041—Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tserpes et al. | A review on failure theories and simulation models for adhesive joints | |
Mieczkowski | Criterion for crack initiation from notch located at the interface of bi-material structure | |
Quaresimin et al. | Fatigue behaviour and damage evolution of single lap bonded joints in composite material | |
Mirsayar | On fracture of kinked interface cracks–The role of T-stress | |
Chen et al. | Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method | |
Shen et al. | Dissipated energy concepts for HMA performance: fatigue and healing | |
da Costa Mattos et al. | Failure analysis of adhesively bonded joints in composite materials | |
Khoramishad et al. | Predicting fatigue damage in adhesively bonded joints using a cohesive zone model | |
Mirsayar et al. | The role of T-stress on kinking angle of interface cracks | |
Jumel et al. | Instrumented End Notched Flexure–Crack propagation and process zone monitoring. Part I: Modelling and analysis | |
Salem et al. | Investigation of the crack front process zone in the double cantilever beam test with backface strain monitoring technique | |
Stuparu et al. | Cohesive and XFEM evaluation of adhesive failure for dissimilar single-lap joints | |
Ayatollahi et al. | Brittle fracture assessment of engineering components in the presence of notches: a review | |
Torabi et al. | Large plasticity induced crack initiation from U-notches in thin aluminum sheets under mixed mode loading | |
Sistaninia et al. | Theoretical and experimental investigations on the mode II fracture toughness of brittle materials | |
Burlayenko et al. | FE modeling of delamination growth in interlaminar fracture specimens | |
Li et al. | Size effect investigation of a central interface crack between two bonded dissimilar materials | |
Zhu | Characterization of interlaminar fracture toughness of a carbon/epoxy composite material | |
Marzi | Innovations in fracture testing of structural adhesive bonds | |
Pelekis et al. | The Theory of Critical Distances to estimate static and dynamic strength of notched plain concrete | |
Haj-Ali et al. | Cohesive fracture modeling of crack growth in thick-section composites | |
Dagorn et al. | Development of a mixed mode double cantilever beam specimen for the fracture characterization of adhesives under high displacement rate | |
Schreurs | Lecture notes-course 4A780 Concept version | |
Pohlit | Dynamic mixed-mode fracture of bonded composite joints for automotive crashworthiness | |
Nimje et al. | Stress and failure analyses of functionally graded adhesively bonded joints of laminated frp composite plates and tubes: a critical review |