Oddershede et al., 2010 - Google Patents
Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffractionOddershede et al., 2010
View PDF- Document ID
- 3377768481361571733
- Author
- Oddershede J
- Schmidt S
- Poulsen H
- Sørensen H
- Wright J
- Reimers W
- Publication year
- Publication venue
- Journal of Applied Crystallography
External Links
Snippet
An algorithm is presented for characterization of the grain resolved (type II) stress states in a polycrystalline sample based on monochromatic X-ray diffraction data. The algorithm is a robust 12-parameter-per-grain fit of the centre-of-mass grain positions, orientations and …
- 238000002441 X-ray diffraction 0 title abstract description 9
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation
- G01N23/207—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation by means of diffractometry using detectors, e.g. using an analysing crystal or a crystal to be analysed in a central position and one or more displaceable detectors in circumferential positions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam
- G01N23/2252—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam and measuring excited X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material and forming a picture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/021—Treatment of the signal; Calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/0212—Theories, calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0286—Miniature specimen; Testing on micro-regions of a specimen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/025—Geometry of the test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/419—Imaging computed tomograph
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0654—Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oddershede et al. | Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction | |
Naragani et al. | Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy | |
Woracek et al. | Diffraction in neutron imaging—A review | |
Zhang et al. | Effect of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5 Sn | |
Jiang et al. | Deformation compatibility in a single crystalline Ni superalloy | |
Tamura | XMAS: A versatile tool for analyzing synchrotron X-ray microdiffraction data | |
Schuren et al. | New opportunities for quantitative tracking of polycrystal responses in three dimensions | |
Li et al. | Three-dimensional plastic response in polycrystalline copper via near-field high-energy X-ray diffraction microscopy | |
Ice et al. | Tutorial on x-ray microLaue diffraction | |
Gustafson et al. | Quantifying microscale drivers for fatigue failure via coupled synchrotron X-ray characterization and simulations | |
Siliqi et al. | SUNBIM: A package for X-ray imaging of nano-and biomaterials using SAXS, WAXS, GISAXS and GIWAXS techniques | |
Miller et al. | Understanding micromechanical material behavior using synchrotron X-rays and in situ loading | |
Erinosho et al. | Assessment of X-ray diffraction and crystal plasticity lattice strain evolutions under biaxial loading | |
Plancher et al. | On the accuracy of elastic strain field measurements by Laue microdiffraction and high-resolution EBSD: A cross-validation experiment | |
Alshibli et al. | Strain tensor determination of compressed individual silica sand particles using high-energy synchrotron diffraction | |
Pokharel | Overview of high-energy x-ray diffraction microscopy (HEDM) for mesoscale material characterization in three-dimensions | |
Bernier et al. | Measuring stress distributions in Ti-6Al-4V using synchrotron x-ray diffraction | |
Shen et al. | Voxel-based strain tensors from near-field high energy diffraction microscopy | |
Stinville et al. | Observation of bulk plasticity in a polycrystalline titanium alloy by diffraction contrast tomography and topotomography | |
Petit et al. | Laue-DIC: a new method for improved stress field measurements at the micrometer scale | |
Ludwig et al. | Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques | |
Park et al. | Far-field high-energy diffraction microscopy: a non-destructive tool for characterizing the microstructure and micromechanical state of polycrystalline materials | |
Petit et al. | Combining Laue microdiffraction and digital image correlation for improved measurements of the elastic strain field with micrometer spatial resolution | |
Tischler | Reconstructing 2D and 3D X-ray orientation maps from white-beam Laue | |
Schuren et al. | A mechanical testing capability for measuring the microscale deformation behavior of structural materials |