[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Yu et al., 2024 - Google Patents

New SOA Design with Large Gain, Small Noise Figure and High Saturation Output Power Level

Yu et al., 2024

Document ID
3317431354011807325
Author
Yu S
Gallet A
Demirtzioglou I
Azouigui S
El Dahdah N
Brenot R
Publication year
Publication venue
IEEE Journal of Quantum Electronics

External Links

Snippet

We introduce a semiconductor optical amplifier (SOA) chip with high gain (> 40 dB) and high saturation power (> 21 dBm) with moderate drive current (1.3 A). A design model for optimizing the new dual-section SOA concept is presented. The model predictions are in …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
    • H01S5/125Distributed Bragg reflector lasers (DBR-lasers)
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting lasers (SE-lasers)
    • H01S5/183Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers)
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S2301/00Functional characteristics
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation; Circuits therefor
    • H01S5/0421Electrical excitation; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • H01S5/0424Electrical excitation; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer lateral current injection
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Similar Documents

Publication Publication Date Title
Davenport et al. Heterogeneous silicon/III–V semiconductor optical amplifiers
US7190861B2 (en) Monolithic semiconductor light source with spectral controllability
US10020638B2 (en) Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
Yamamoto et al. Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources
US7843982B2 (en) High power semiconductor device to output light with low-absorbtive facet window
US7030415B2 (en) Semiconductor quantum dot optical amplifier, and optical amplifier module and optical transmission system using the same
Sia et al. Compact, Hybrid III-V/Silicon Vernier Laser Diode Operating From 1955–1992 nm
Yu et al. Novel semiconductor optical amplifier with large gain and high saturation output power
Yu et al. New SOA Design with Large Gain, Small Noise Figure and High Saturation Output Power Level
US20240291240A1 (en) Wavelength-variable laser
Sia et al. Analysis of Compact Silicon Photonic Hybrid Ring External Cavity (SHREC) Wavelength-Tunable Laser Diodes Operating From 1881–1947 nm
US10511150B2 (en) Wavelength-variable laser
Yu et al. Flat noise figure semiconductor optical amplifiers
US20050088728A1 (en) Semiconductor optical amplifier and method for manufacturing the same, and optical communication device
Stevens Modulation properties of vertical cavity light emitters
Yin et al. Laser diode comb spectrum amplification preserving low RIN for WDM applications
Norberg et al. An InGaAsP/InP integration platform with low loss deeply etched waveguides and record SOA RF-linearity
Tishinin et al. 1.3-μm polarization insensitive amplifiers with integrated-mode transformers
Wang et al. A fully integratable 1.55-μm wavelength continuously tunable asymmetric twin-waveguide distributed Bragg reflector laser
Kovsh et al. Quantum dot comb-laser as efficient light source for silicon photonics
Yamamoto et al. 1-μm waveband, 10Gbps transmission with a wavelength tunable single-mode selected quantum-dot optical frequency comb laser
Jain et al. Integrated high speed hybrid silicon transmitter
Zhang et al. High-power wideband low-polarization semiconductor optical amplifier for 1.5 μm band
Raring et al. Single-Chip 40Gb/s widely-tunable transceivers with integrated SG-DBR laser, QW EAM, UTC photodiode, and low confinement SOA
Lohe et al. A multiple regrowth process for monolithically integrated InP-based mode-locked laser diodes with uni-travelling carrier absorber