[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Beaulieu et al., 2013 - Google Patents

Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review

Beaulieu et al., 2013

View PDF
Document ID
3302434789979668164
Author
Beaulieu L
Schneider C
Publication year
Publication venue
Neurophysiologie Clinique/Clinical Neurophysiology

External Links

Snippet

Introduction Repetitive magnetic stimulation at the periphery (rPMS), ie over spinal roots, nerves or muscles, represents a new painless and noninvasive approach that can contribute to motor recovery. This method is based on the assumption that, under rPMS, neural …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • A61N1/3615Intensity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/04Devices for pressing such points, e.g. Shiatsu or Acupressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0476Electroencephalography
    • A61B5/0484Electroencephalography using evoked response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4824Touch or pain perception evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H5/00Exercisers for the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/04001Detecting, measuring or recording bioelectric signals of the body of parts thereof adapted to neuroelectric signals, e.g. nerve impulses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/168Movement of interface, i.e. force application means not moving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth

Similar Documents

Publication Publication Date Title
Beaulieu et al. Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review
Lewis et al. Phasic modulation of corticomotor excitability during passive movement of the upper limb: effects of movement frequency and muscle specificity
Hendy et al. Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle
Kido Thompson et al. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles
Hortobágyi et al. Interhemispheric plasticity in humans
Tinazzi et al. Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation
Goodwill et al. Corticomotor plasticity following unilateral strength training
Pan et al. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke
Frazer et al. Determining the potential sites of neural adaptation to cross-education: implications for the cross-education of muscle strength
Kattenstroth et al. Daily repetitive sensory stimulation of the paretic hand for the treatment of sensorimotor deficits in patients with subacute stroke: RESET, a randomized, sham-controlled trial
Frazer et al. Cross-education of muscular strength is facilitated by homeostatic plasticity
Mang et al. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency
Saeys et al. Transcranial direct current stimulation in the recovery of postural control after stroke: a pilot study
Nardone et al. Noninvasive spinal cord stimulation: technical aspects and therapeutic applications
Tu-Chan et al. Effects of somatosensory electrical stimulation on motor function and cortical oscillations
Shulga et al. Long-term paired associative stimulation can restore voluntary control over paralyzed muscles in incomplete chronic spinal cord injury patients
Jochumsen et al. Pairing voluntary movement and muscle-located electrical stimulation increases cortical excitability
Oliveri et al. Fast increase of motor cortical inhibition following postural changes in healthy subjects
Fisher et al. Evidence of altered corticomotor excitability following targeted activation of gluteus maximus training in healthy individuals
Rosso et al. Cerebello-motor paired associative stimulation and motor recovery in stroke: a randomized, sham-controlled, double-blind pilot trial
Ehsani et al. The effects of concurrent M1 anodal tDCS and physical therapy interventions on function of ankle muscles in patients with stroke: a randomized, double-blinded sham-controlled trial study
Halakoo et al. Does anodal trans-cranial direct current stimulation of the damaged primary motor cortex affects wrist flexor muscle spasticity and also activity of the wrist flexor and extensor muscles in patients with stroke?: a randomized clinical trial
Taylor et al. Short-term effects of electrical stimulation and voluntary activity on corticomotor excitability in healthy individuals and people with stroke
Pfenninger et al. Effects of prolonged local vibration superimposed to muscle contraction on motoneuronal and cortical excitability
Amiez et al. Local vibration induces changes in spinal and corticospinal excitability in vibrated and antagonist muscles