[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Lai et al., 2004 - Google Patents

Composite right/left-handed transmission line metamaterials

Lai et al., 2004

Document ID
3268115619971706928
Author
Lai A
Itoh T
Caloz C
Publication year
Publication venue
IEEE microwave magazine

External Links

Snippet

Metamaterials are artificial structures that can be designed to exhibit specific electromagnetic properties not commonly found in nature. Recently, metamaterials with simultaneously negative permittivity (/spl epsiv/) and permeability (μ), more commonly …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. supraconductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0485Dielectric resonator antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • H01Q19/06Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0018Space- fed arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Similar Documents

Publication Publication Date Title
Lai et al. Composite right/left-handed transmission line metamaterials
US10461434B2 (en) Metamaterials for surfaces and waveguides
Jang et al. Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on vialess single layer
Caloz et al. Novel microwave devices and structures based on the transmission line approach of meta-materials
Jin et al. Leaky-wave radiation behavior from a double periodic composite right/left-handed substrate integrated waveguide
Volakis et al. Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals
Xu et al. Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas
US6859114B2 (en) Metamaterials for controlling and guiding electromagnetic radiation and applications therefor
Dong et al. Promising future of metamaterials
Mao et al. Effective electromagnetic parameters of novel distributed left-handed microstrip lines
Nesimoglu et al. A tunable metamaterial resonator using varactor diodes to facilitate the design of reconfigurable microwave circuits
Shirkolaei et al. Scannable leaky-wave antenna based on ferrite-blade waveguide operated below the cutoff frequency
Itoh Prospects for metamaterials
Zhu et al. Experimental Verification of Overcoming the Diffraction Limit<? format?> with a Volumetric Veselago-Pendry Transmission-Line Lens
Lai et al. Microwave composite right/left-handed metamaterials and devices
Cory et al. Wave propagation along a rectangular metallic waveguide longitudinally loaded with a metamaterial slab
Halim et al. Design and improvement a novel microstrip antenna using array of composite right/left handed transmission line (CRLH-TL) technique for multiband applications
Narayan et al. Metamaterial-FSS for the Design of High-Performance Radome
Sheng et al. Simulation and fabrication of broadband tunable phase shifter based on transmission line metamaterial
Vendik et al. Design of miniature microwave devices based on a combination of natural right-handed and metamaterial left-handed transmission lines
Kaneda et al. 2D beam scanning planar antenna array using composite right/left-handed leaky wave antennas
Song et al. Validation of Ultra-Wideband Periodic ENZ Material
Rajab et al. Phase verification of compact multilayered low temperature co‐fired ceramic composite right‐/left‐handed transmission line
Lai et al. Microwave devices based on composite right/left-handed (CRLH) transmission line metamaterials
Siddiqui et al. Spatial-filtering microwave devices using metallic anisotropic grids over ground