Leinonen et al., 2019 - Google Patents
System EVM characterization and coverage area estimation of 5G directive mmW linksLeinonen et al., 2019
View PDF- Document ID
- 3239177989078249146
- Author
- Leinonen M
- Jokinen M
- Tervo N
- Kursu O
- Pärssinen A
- Publication year
- Publication venue
- IEEE Transactions on Microwave Theory and Techniques
External Links
Snippet
RF performance of fifth-generation (5G) new radio (NR) millimeter-wave (mmW) system will be characterized over-the-air (OTA) in 3GPP 5G NR performance and type approval testing. Total system error vector magnitude (EVM) performance has not been standardized in 3GPP …
- 238000010192 crystallographic characterization 0 title description 12
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0602—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
- H04B7/0604—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
- H04B7/0606—Random or pseudo-random switching scheme
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/267—Phased-array testing or checking devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC [Transmission power control]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Leinonen et al. | System EVM characterization and coverage area estimation of 5G directive mmW links | |
Kibaroglu et al. | A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a $2\times 2$ beamformer flip-chip unit cell | |
US10707942B2 (en) | Method and apparatus for controlling equivalent isotropic radiated power | |
US9419692B2 (en) | Antenna control | |
RU2390934C2 (en) | Control of radiated power for multi-antenna transmission | |
Zhang et al. | A high-precision hybrid analog and digital beamforming transceiver system for 5G millimeter-wave communication | |
Leinonen et al. | 28 GHz wireless backhaul transceiver characterization and radio link budget | |
US9917658B2 (en) | Method, apparatus and computer program for testing a transceiver device | |
Kursu et al. | Design and measurement of a 5G mmW mobile backhaul transceiver at 28 GHz | |
US11101899B2 (en) | Method and node for enabling OTA testing of an EUT | |
Li et al. | Design and implementation of an active array antenna with remote controllable radiation patterns for mobile communications | |
Tervo et al. | Combined sidelobe reduction and omnidirectional linearization of phased array by using tapered power amplifier biasing and digital predistortion | |
Tervo et al. | Digital predistortion concepts for linearization of mmW phased array transmitters | |
Zia et al. | Effects of SNR-dependent beam alignment errors on millimeter-wave cellular networks | |
Leinonen et al. | 5G mm-wave link range estimation based on over-the-air measured system EVM performance | |
US20210050668A1 (en) | Wireless communication device and wireless communication method | |
WO2017068356A2 (en) | Method and apparatus for controlling equivalent isotropic radiated power | |
Jokinen et al. | Over-the-air phase calibration methods for 5G mmW antenna array transceivers | |
Leinonen et al. | Out-of-band interference in 5G mmW multi-antenna transceivers: Co-existence scenarios | |
Sarmadi et al. | Outdoor Transmission Trials in the W-Band for 6G Mobile Access Scenarios | |
Mochizuki | Specificity analysis for nonlinear distorted radiation using 4.65 GHz band massive element active antenna system for 5G and influence on spatial multiplexing performance | |
Akbar et al. | A wideband IF receiver chip for flexibly scalable mmwave subarray combining and interference rejection | |
Tervo et al. | Measurement method for characterizing nonlinearity under near-field and far-field interferers in 5G mmW phased arrays | |
Leinonen et al. | 5G mmW receiver interoperability with Wi-Fi and LTE transmissions | |
Sun et al. | Antenna diversity combining and beamforming at millimeter wave frequencies |