[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

McCormick et al., 2015 - Google Patents

High-sensitivity in situ soot particle sensing in an aero-engine exhaust plume using long-pulsed fiber-laser-induced incandescence

McCormick et al., 2015

View PDF
Document ID
321990463119480740
Author
McCormick D
Black J
Feng Y
Nilsson J
Ozanyan K
Publication year
Publication venue
IEEE Sensors Journal

External Links

Snippet

A method to produce spatially resolved images of the distribution of absorbing particles in the exhaust plume of a modified helicopter gas turbine engine is presented. Over a small region of the plume, in situ sensing of soot particles by laser-induced incandescence (LII) is …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry
    • G01J5/02Details
    • G01J5/04Casings Mountings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/043Prevention or determination of dust, smog or clogging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing of internal-combustion engines, e.g. diagnostic testing of piston engines
    • G01M15/10Testing of internal-combustion engines, e.g. diagnostic testing of piston engines by monitoring exhaust gases or combustion flame

Similar Documents

Publication Publication Date Title
Köhler et al. Sooting turbulent jet flame: characterization and quantitative soot measurements
Crosland et al. Instantaneous in-flame measurement of soot volume fraction, primary particle diameter, and aggregate radius of gyration via auto-compensating laser-induced incandescence and two-angle elastic light scattering
Doll et al. Temperature measurements at the outlet of a lean burn single-sector combustor by laser optical methods
Blunck Applications of infrared thermography for studying flows with participating media
Ax et al. High-momentum jet flames at elevated pressure, C: statistical distribution of thermochemical states obtained from laser-Raman measurements
Seyfried et al. Optical diagnostics for characterization of a full-size fighter-jet afterburner
Lee et al. Quantitative measurements of soot particles in a laminar diffusion flame using a LII/LIS technique
McGrath et al. Planar laser-induced incandescence for the study of soot production in a multi-sector RQL Jet A combustor
McCormick et al. High-sensitivity in situ soot particle sensing in an aero-engine exhaust plume using long-pulsed fiber-laser-induced incandescence
Seyfried et al. Laser-induced phosphorescence for surface thermometry in the afterburner of an aircraft engine
Delhay et al. Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence
Cenker Imaging measurements of soot particle size and soot volume fraction with laser-induced incandescence at Diesel engine conditions
Zheng et al. Planar time-resolved laser-induced incandescence for particulate emissions in premixed flames at elevated pressures
Yuan et al. Measurement of black carbon emissions from multiple engine and source types using laser-induced incandescence: sensitivity to laser fluence
Zheng et al. Planar time-resolved laser-induced incandescence for pressurized premixed Jet-A combustion
Yu et al. Oxygen concentration distribution measurement of the nozzle flow field by toluene/acetone planar laser-induced fluorescence
Gounder et al. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures
Wu et al. A Comprehensive Review of Optical Systems for Soot Volume Fraction Measurements in Co-Flow Laminar Flames: Laser-Induced Incandescence (LII) and Laser Extinction Method (LEM)
Black Laser-induced incandescence measurements of particles in aeroengine exhausts
Kojima et al. Code-validation scalar measurements in high-pressure hydrogen-added methane combustion
McCormick et al. In-situ soot particle sensing in an aero-engine exhaust plume
Olofsson Laser-induced incandescence and complementary diagnostics for flame soot characterization
Xavier et al. Phosphor thermometry on a rotating flame holder for combustion applications
Krishnasamy Bharathi et al. Investigation of Soot in a Model CFM56 Atmospheric Combustor Using In-Situ Laser-Induced Incandescence Calibration
Black et al. In-situ laser-induced incandescence of soot in large civil aeroengine exhausts