Pavan et al., 2014 - Google Patents
Experimental demonstration of 51.56 Gbit/s PAM-4 at 905nm and impact of level dependent RINPavan et al., 2014
- Document ID
- 318196383342915197
- Author
- Pavan S
- Lavrencik J
- Ralph S
- Publication year
- Publication venue
- 2014 The European Conference on Optical Communication (ECOC)
External Links
Snippet
We demonstrate robust error-free transmission of 51.56 Gbit/s PAM-4 over multiple examples of 100m of multimode fiber with 905nm VCSELs. We further demonstrate the need to include level dependent RIN when assessing impairments and predicting performance of …
- 230000001419 dependent 0 title abstract description 9
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/504—Laser transmitters using direct modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5053—Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/676—Optical arrangements in the receiver for all-optical demodulation of the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07953—Monitoring or measuring OSNR, BER or Q
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2537—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07951—Monitoring or measuring chromatic dispersion or PMD
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/112—Line-of-sight transmission over an extended range
- H04B10/1121—One-way transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pavan et al. | Experimental demonstration of 51.56 Gbit/s PAM-4 at 905nm and impact of level dependent RIN | |
Pendock et al. | Transmission performance of high bit rate spectrum-sliced WDM systems | |
Bosco et al. | Performance prediction for WDM PM-QPSK transmission over uncompensated links | |
Parkash et al. | Performance investigation of 40 GB/s DWDM over free space optical communication system using RZ modulation format | |
Ye et al. | Demonstration of high-performance cost-effective 100-Gb/s TWDM-PON using 4× 25-Gb/s optical duobinary channels with 16-GHz APD and receiver-side post-equalization | |
Marazzi et al. | Up to 10.7-Gb/s high-PDG RSOA-based colorless transmitter for WDM networks | |
Pavan et al. | 50Gbit/s PAM-4 MMF transmission using 1060nm VCSELs with reach beyond 200m | |
Lavrencik et al. | Noise in VCSEL-based links: Direct measurement of VCSEL transverse mode correlations and implications for MPN and RIN | |
Latal et al. | Simulation of modulation formats for optical access network based on WDM-PON | |
Othman et al. | Erbium doped fiber amplifier (EDFA) for C-band optical communication system | |
Pang et al. | 200 Gb/s optical-amplifier-free IM/DD transmissions using a directly modulated O-band DFB+ R laser targeting LR applications | |
Sano et al. | Long-span repeaterless transmission systems with optical amplifiers using pulse width management | |
Pavan et al. | VCSEL-Based PAM-4 Links up to 62 Gbit/s Over OM3, OM4, and WB-MMF: Performance Comparison at 850 nm and 1050 nm | |
US20200119957A1 (en) | Pulse Amplitude Modulation Level Optimization and Equalization in Optical Systems | |
Wang et al. | A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber–IVLLC integration | |
Motaghiannezam et al. | 104 Gbps PAM4 transmission over OM3 and OM4 fibers using 850 and 880 nm VCSELs | |
Ramírez-Cruz et al. | An alternative for the implementation of 40-km reach Ethernet at 400 Gb/s using an 8× 50 Gb/s PHY at 1310 nm with SOA pre-amplification | |
Pilori et al. | Bidirectional 4-PAM to Double Per-Fiber Capacity in 2-km Intra-Datacenter Links | |
Ralph | Requirements and Results for Practical VCSEL Transmission using PAM-4 over MMF | |
Zhou et al. | 25-Gb/s OOK and 4-PAM Transmission over> 35-km SSMF Using Directly Modulated 1.5-µm VCSEL | |
Bae et al. | Transmission of 51.56-Gb/s OOK signal over 15 km of SSMF using directly-modulated 1.55-μm DFB laser | |
Zhou et al. | 25-Gb/s OOK Transmission Using 1.5-$\mu {\rm m} $ 10G-Class VCSEL for Optical Access Network | |
Guo et al. | 20 Gb/s transmission in RSOA-based WDM-PON using partial-response maximum likelihood equalization | |
Kodama et al. | Energy-efficient coherent PON system with access-span length difference between ONUs using marginal IQ power loading in downlink transmission | |
Turkiewicz et al. | High speed transmission with 850 nm SM and MM VCSELs |