Huang et al., 2004 - Google Patents
On test and diagnostics of flash memoriesHuang et al., 2004
View PDF- Document ID
- 3148604790684878864
- Author
- Huang C
- Yeh J
- Shih Y
- Huang R
- Wu C
- Publication year
- Publication venue
- 13th Asian Test Symposium
External Links
Snippet
Embedded flash memory has been widely used in applications that require non-volatile on- chip storage elements. However, test and diagnostics of flash memories needs further investigation so that the overall cost of the products can be reduced. This paper presents the …
- 230000015654 memory 0 title abstract description 75
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/44—Indication or identification of errors, e.g. for repair
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/18—Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
- G11C29/26—Accessing multiple arrays
- G11C2029/2602—Concurrent test
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/14—Implementation of control logic, e.g. test mode decoders
- G11C29/16—Implementation of control logic, e.g. test mode decoders using microprogrammed units, e.g. state machines
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/38—Response verification devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/50—Marginal testing, e.g. race, voltage or current testing
- G11C2029/5002—Characteristic
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/50—Marginal testing, e.g. race, voltage or current testing
- G11C2029/5006—Current
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/22—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
- G06F11/26—Functional testing
- G06F11/273—Tester hardware, i.e. output processing circuits
- G06F11/2733—Test interface between tester and unit under test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C2029/0401—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals in embedded memories
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/72—Masking faults in memories by using spares or by reconfiguring with optimized replacement algorithms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/02—Detection or location of defective auxiliary circuits, e.g. defective refresh counters
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/006—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation at wafer scale level, i.e. WSI
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6564347B1 (en) | Method and apparatus for testing an integrated circuit using an on-chip logic analyzer unit | |
CN104361909B (en) | RAM build-in self-test methods and circuit on a kind of piece | |
Wang et al. | A built-in self-test and self-diagnosis scheme for embedded SRAM | |
Yeh et al. | Flash memory built-in self-test using march-like algorithms | |
US5680544A (en) | Method for testing an on-chip cache for repair | |
Cockburn | Tutorial on semiconductor memory testing | |
Aitken | A modular wrapper enabling high speed BIST and repair for small wide memories | |
Dekker et al. | Realistic built-in self-test for static RAMs | |
Yeh et al. | Flash memory testing and built-in self-diagnosis with march-like test algorithms | |
Wu et al. | Error catch and analysis for semiconductor memories using March tests | |
Tan et al. | Testing of UltraSPARC T1 microprocessor and its challenges | |
Bernardi et al. | Recent trends and perspectives on defect-oriented testing | |
US7571367B2 (en) | Built-in self diagnosis device for a random access memory and method of diagnosing a random access | |
Powell et al. | BIST for deep submicron ASIC memories with high performance application | |
Huang et al. | On test and diagnostics of flash memories | |
Koshy et al. | Diagnostic data detection of faults in RAM using different march algorithms with BIST scheme | |
Martirosyan et al. | An efficient fault detection and diagnosis methodology for volatile and non-volatile memories | |
Husin et al. | Built in self test for RAM Using VHDL | |
Cheng | Comprehensive study on designing memory BIST: algorithms, implementations and trade-offs | |
US6751762B2 (en) | Systems and methods for testing a memory | |
Kumari et al. | FPGA implementation of memory design and testing | |
Ghale et al. | Design and implementation of memory BIST for hybrid cache architecture | |
Yeh et al. | Flash memory built-in self-diagnosis with test mode control | |
Tuv et al. | Development of a Hardware and Software Complex Based on the Study of the Diagnostic Properties of Methods for Testing Nonvolatile Memory with a Serial Interface | |
Wu | MBIST Repair Mechanishm and Implementation |