[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wolochuk et al., 1996 - Google Patents

The effects of turbulence and unsteadiness on vortex shedding from sharp-edged bluff bodies

Wolochuk et al., 1996

View PDF
Document ID
3115052647568064739
Author
Wolochuk M
Plesniak M
Braun J
Publication year

External Links

Snippet

Motivated by a desire to evaluate vortex shedding flow meters for measuring velocity in unsteady turbulent flow applications, the objective of our work was to study the effects of flow disturbances on vortex shedding from sharp-edged bluff bodies. In particular, the combined …
Continue reading at citeseerx.ist.psu.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices
    • G01F1/3245Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices detection means for swirl flowmeters
    • G01F1/3254Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices detection means for swirl flowmeters for detecting fluid pressure oscillations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices using Karmann vortices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details or construction of the flow constriction devices
    • G01F1/44Venturi tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • G01F1/10Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects using rotating vanes with axial admission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by measuring frequency, phaseshift, or propagation time of electro-magnetic or other waves, e.g. ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter

Similar Documents

Publication Publication Date Title
Mannini et al. The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5: 1 cross section
Martinuzzi et al. Turbulent flow around two interfering surface-mounted cubic obstacles in tandem arrangement
Bearman et al. An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders
McClean et al. An experimental investigation of aspect ratio and incidence angle effects for the flow around surface-mounted finite-height square prisms
Durao et al. Velocity characteristics of the flow around a square cross section cylinder placed near a channel wall
Hilgenfeld et al. Unsteady boundary layer development due to wake passing effects on a highly loaded linear compressor cascade
Wolochuk et al. The effects of turbulence and unsteadiness on vortex shedding from sharp-edged bluff bodies
Samson et al. Effects of free-stream turbulence on transition of a separated boundary layer over the leading-edge of a constant thickness airfoil
Orth Unsteady boundary-layer transition in flow periodically disturbed by wakes
Farabee et al. Effects of surface irregularity on turbulent boundary layer wall pressure fluctuations
Bourgoyne et al. Vortex shedding from a hydrofoil at high Reynolds number
Sohankar et al. Feature of the flow over a finite length square cylinder on a wall at various incidence angles
Ezadi Yazdi et al. Features of the flow over a rotating circular cylinder at different spin ratios and Reynolds numbers: Experimental and numerical study
Yarusevych et al. Airfoil performance at low Reynolds numbers in the presence of periodic disturbances
Zhang et al. Effects of surface roughness and freestream turbulence on the wake turbulence structure of a symmetric airfoil
Lou et al. Hydrodynamic coefficients of a yawed square cylinder in oscillatory flows
Siller et al. Manipulation of the reverse-flow region downstream of a fence by spanwise vortices
Rediniotis et al. Dynamic pitch-up of a delta wing
Steggel et al. Simulation of the effects of body shape on lock-in characteristics in pulsating flow by the discrete vortex method
Pfeil et al. Boundary-layer transition on a cylinder with and without separation bubbles
Plogmann et al. Interaction of a laminar boundary layer with a cylindrical roughness element near an airfoil leading edge
Barnes et al. Vortex shedding in unsteady flow
Jiang et al. Aerodynamic force characteristics and flow field mechanism of multiple square cylinders in a tandem arrangement
Miau et al. Low-frequency fluctuations in the near-wake region of a trapezoidal cylinder with low aspect ratio
Sudalaimuthu et al. An Experimental Investigation of the Effect of Surface Perforation on Unsteady Aerodynamic Force Reduction for a Hollow Cylinder