Yuan et al., 2008 - Google Patents
Background calibration with piecewise linearized error model for CMOS pipeline A/D converterYuan et al., 2008
View PDF- Document ID
- 295037592727953323
- Author
- Yuan J
- Farhat N
- Van der Spiegel J
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems I: Regular Papers
External Links
Snippet
A new all-digital background calibration method, using a piecewise linear model to estimate the stage error pattern, is presented. The method corrects both linear and nonlinear errors. The proposed procedure converges in a few milliseconds and requires low hardware …
- 238000000034 method 0 abstract description 73
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/16—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
- H03M1/164—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/44—Sequential comparisons in series-connected stages with change in value of analogue signal
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/40—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type
- H03M1/403—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type using switched capacitors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/46—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0626—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/145—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1033—Calibration over the full range of the converter, e.g. for correcting differential non-linearity
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0602—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0614—Continuously compensating for, or preventing, undesired influence of physical parameters of harmonic distortion
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/004—Reconfigurable analogue/digital or digital/analogue converters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yuan et al. | A 12-bit 20 MS/s 56.3 mW pipelined ADC with interpolation-based nonlinear calibration | |
Chen et al. | A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-$\mu {\hbox {m}} $ CMOS | |
Murmann et al. | A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification | |
Pelgrom et al. | Analog-to-digital conversion | |
CN109756226B (en) | Background calibration of reference DAC and quantization nonlinearity in ADC | |
Chiu et al. | A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR | |
Verbruggen et al. | A 2.6 mW 6 bit 2.2 GS/s fully dynamic pipeline ADC in 40 nm digital CMOS | |
Verbruggen et al. | A 60 dB SNDR 35 MS/s SAR ADC with comparator-noise-based stochastic residue estimation | |
Oh et al. | A time-based pipelined ADC using both voltage and time domain information | |
Tseng et al. | A 10-b 320-MS/s stage-gain-error self-calibration pipeline ADC | |
Yuan et al. | Background calibration with piecewise linearized error model for CMOS pipeline A/D converter | |
Shen et al. | A two-step ADC with a continuous-time SAR-based first stage | |
Danesh et al. | A reconfigurable 1 GSps to 250 MSps, 7-bit to 9-bit highly time-interleaved counter ADC with low power comparator design | |
Rabuske et al. | Charge-Sharing SAR ADCs for low-voltage low-power applications | |
Yuan et al. | An interpolation-based calibration architecture for pipeline ADC with nonlinear error | |
Chan et al. | A 5-bit 1.25-GS/s 4x-capacitive-folding flash ADC in 65-nm CMOS | |
Chen et al. | A low-power dynamic comparator with digital calibration for reduced offset mismatch | |
Nuzzo et al. | A 10.6 mW/0.8 pJ power-scalable 1GS/s 4b ADC in 0.18 μm CMOS with 5.8 GHz ERBW | |
Kim et al. | A 10 MS/s 11-bit 0.19 mm $^{2} $ Algorithmic ADC With Improved Clocking Scheme | |
Murmann et al. | Digital domain measurement and cancellation of residue amplifier nonlinearity in pipelined ADCs | |
Gines et al. | Digital non-linearity calibration for ADCs with redundancy using a new LUT approach | |
Di Salvo | Design of a 12-bit SAR ADC with digital self-calibration for radiation detectors front-ends | |
Brenna et al. | An efficient tool for the assisted design of SAR ADCs capacitive DACs | |
Wang et al. | Missing-code-occurrence probability calibration technique for DAC nonlinearity with supply and reference circuit analysis in a SAR ADC | |
Hassan et al. | Matrix-Based Digital Calibration Technique for High-Performance SAR and Pipeline ADCs |