[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Gawali et al., 2016 - Google Patents

DPS: A dynamic procrastination scheduler for multi-core/multi-processor hard real time systems

Gawali et al., 2016

Document ID
2817626808502788732
Author
Gawali S
Raveendran B
Publication year
Publication venue
2016 International Conference on Control, Decision and Information Technologies (CoDIT)

External Links

Snippet

Energy consumption plays an important role in designing embedded devices. In recent years, leakage energy gained significant importance in overall energy consumption. This paper addresses leakage energy at operating system level by optimizing scheduler level …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Programme initiating; Programme switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • G06F1/324Power saving by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5094Allocation of resources, e.g. of the central processing unit [CPU] where the allocation takes into account power or heat criteria
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3206Monitoring a parameter, a device or an event triggering a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3836Instruction issuing, e.g. dynamic instruction scheduling, out of order instruction execution
    • G06F9/3851Instruction issuing, e.g. dynamic instruction scheduling, out of order instruction execution from multiple instruction streams, e.g. multistreaming
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring

Similar Documents

Publication Publication Date Title
Juarez et al. Dynamic energy-aware scheduling for parallel task-based application in cloud computing
Xie et al. Energy-efficient fault-tolerant scheduling of reliable parallel applications on heterogeneous distributed embedded systems
Mishra et al. Energy aware scheduling for distributed real-time systems
Lee et al. Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling
Etinski et al. Parallel job scheduling for power constrained HPC systems
Jejurikar et al. Procrastination scheduling in fixed priority real-time systems
Chen et al. Procrastination for leakage-aware rate-monotonic scheduling on a dynamic voltage scaling processor
Cheng et al. Online energy-aware i/o device scheduling for hard real-time systems
Stavrinides et al. Energy-aware scheduling of real-time workflow applications in clouds utilizing DVFS and approximate computations
Niu Energy efficient scheduling for real-time embedded systems with QoS guarantee
Kandhalu et al. Energy-aware partitioned fixed-priority scheduling for chip multi-processors
Elewi et al. Energy-efficient task allocation techniques for asymmetric multiprocessor embedded systems
Zeng et al. Practical energy-aware scheduling for real-time multiprocessor systems
Liu et al. Energy-efficient scheduling of real-time tasks on heterogeneous multicores using task splitting
Bhatti et al. An inter-task real time DVFS scheme for multiprocessor embedded systems
Wang et al. Balancing energy efficiency and real-time performance in GPU scheduling
Akram et al. Efficient task allocation for real-time partitioned scheduling on multi-core systems
Chakraborty et al. Prepare: P owe r-Awar e A p proximate Re a l-time Task Scheduling for Ene r gy-Adaptiv e QoS Maximization
Cheng et al. SYS-EDF: a system-wide energy-efficient scheduling algorithm for hard real-time systems
Gawali et al. DPS: A dynamic procrastination scheduler for multi-core/multi-processor hard real time systems
Molnos et al. Conservative dynamic energy management for real-time dataflow applications mapped on multiple processors
Zhu et al. Dvsleak: combining leakage reduction and voltage scaling in feedback edf scheduling
Tsai et al. Triple speed: Energy-aware real-time task synchronization in homogeneous multi-core systems
Ansari et al. Power-aware scheduling of fixed priority tasks in soft real-time multicore systems
Digalwar et al. LAMCS: A leakage aware DVFS based mixed task set scheduler for multi-core processors