Han, 2011 - Google Patents
E-Bayesian estimation and hierarchical Bayesian estimation of failure probabilityHan, 2011
- Document ID
- 2702719336546744717
- Author
- Han M
- Publication year
- Publication venue
- Communications in Statistics-Theory and Methods
External Links
Snippet
This article introduces a new parameter estimation method, named E-Bayesian estimation, to estimate failure probability. The method is suitable for the censored or truncated data with small sample sizes and high reliability. The definition, properties and related simulation …
- 238000004088 simulation 0 abstract description 7
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30994—Browsing or visualization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/20—Education
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/02—Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
- G06Q30/0202—Market predictions or demand forecasting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B19/00—Teaching not covered by other main groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kundu et al. | Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring | |
Nassar et al. | Bayesian estimation for the exponentiated Weibull model | |
Singh et al. | Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors | |
Krishna et al. | Reliability estimation in Maxwell distribution with progressively type-II censored data | |
Xia et al. | Multiplicative consistency-based decision support system for incomplete linguistic preference relations | |
Balakrishnan et al. | One-and two-sample Bayesian prediction intervals based on Type-II hybrid censored data | |
Yousefzadeh | E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function | |
Mondal et al. | A new two sample type-II progressive censoring scheme | |
El-Din et al. | Statistical inference for the Gompertz distribution based on Type-II progressively hybrid censored data | |
Han | The E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter | |
Soliman et al. | Reliability estimation in stress–strength models: an MCMC approach | |
Shafay et al. | One-and two-sample Bayesian prediction intervals based on Type-I hybrid censored data | |
Noor et al. | Bayesian inference of the inverse Weibull mixture distribution using type-I censoring | |
Bhattacharya et al. | Analysis of hybrid censored competing risks data | |
Ling et al. | Optimal bivariate step-stress accelerated life test for Type-I hybrid censored data | |
Mousa et al. | Bayesian prediction for progressively type-II censored data from the Rayleigh model | |
Han | E-Bayesian estimations of the reliability and its E-posterior risk under different loss functions | |
Han | E-Bayesian estimation and hierarchical Bayesian estimation of failure probability | |
Yang et al. | Planning accelerated life tests under progressive type I interval censoring with random removals | |
Sriramachandran et al. | Acceptance sampling plan from truncated life tests based on exponentiated inverse Rayleigh distribution | |
Renjini et al. | Bayesian estimation of dynamic cumulative residual entropy for classical Pareto distribution | |
Han | Take a look at the hierarchical Bayesian estimation of parameters from several different angles | |
Shafay | Exact inference for a simple step-stress model with generalized Type-I hybrid censored data from the exponential distribution | |
Shirke et al. | Tolerance intervals for exponentiated scale family of distributions | |
Juillard et al. | Estimation under cross-classified sampling with application to a childhood survey |