[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Nunes et al., 2007 - Google Patents

FBG sensor multiplexing system based on the TDM and fixed filters approach

Nunes et al., 2007

Document ID
2692844827618793047
Author
Nunes L
Olivieri B
Kato C
Valente L
Braga A
Publication year
Publication venue
Sensors and Actuators A: Physical

External Links

Snippet

An analysis of the Bragg wavelength deviation generated by the TDM multiplexing of a large number of low reflective sensors at the same nominal wavelength using a single optical fiber has been proposed. In this paper, the demodulation technique based on Fixed Spectrum …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3136Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR for testing of multiple fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress in general
    • G01L1/24Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
    • G01L1/242Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency
    • G01K11/125Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency using change in reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Similar Documents

Publication Publication Date Title
Kersey et al. Fiber grating sensors
US9599460B2 (en) Hybrid Raman and Brillouin scattering in few-mode fibers
US7060967B2 (en) Optical wavelength interrogator
US6888125B2 (en) Fiber optic sensing systems and method of use thereof
EP0983486B1 (en) Distributed sensing system
US6449047B1 (en) Calibrated swept-wavelength laser and interrogator system for testing wavelength-division multiplexing system
US20150323455A1 (en) Distributed Optical Fibre Sensor
CN210089716U (en) Multi-parameter synchronous sensing acquisition instrument based on multi-core optical fiber sensing
CN110440838B (en) Multi-parameter optical fiber sensing instrument and sensing method based on multi-core optical fiber
WO2010009007A1 (en) Frequency-scanned optical time domain reflectometry
Han et al. A high-speed distributed ultra-weak FBG sensing system with high resolution
Song et al. The interrogation of quasi-distributed optical FBG sensing system through adopting a wavelength-tunable fiber chaotic laser
Nunes et al. FBG sensor multiplexing system based on the TDM and fixed filters approach
Elgaud et al. Analysis of independent strain-temperature fiber Bragg grating sensing technique using OptiSystem and OptiGrating
US20040213501A1 (en) Using intensity and wavelength division multiplexing for fiber Bragg grating sensor system
EP1192500A1 (en) Method and apparatus for interrogation of birefringent fbg sensors
CN110440837B (en) Multi-parameter optical fiber synchronous sensing acquisition instrument and sensing acquisition method
Misbakhov Combined raman DTS and address FBG sensor system for distributed and point temperature and strain compensation measurements
WO2016118441A1 (en) Birefringent multi-peak optical reference element and birefringent sensor system
Valente et al. Time and wavelength multiplexing of fiber Bragg grating sensors using a commercial OTDR
Montero et al. Self-referenced optical networks for remote interrogation of quasi-distributed fiber-optic intensity sensors
Elgaud et al. Analysis and simulation of time domain multiplexed (TDM) fiber Bragg sensing array using OptiSystem and OptiGrating
Giordana et al. Simple wavelength-to-phase mapping FBG's interrogation method
US12104972B2 (en) Multiplexed long-range fiber optic sensing
Li et al. A multiple fiber grating sensor system using code division multiple access