Lumauag, 2021 - Google Patents
A Modified Memory-Based Collaborative Filtering Algorithm based on a New User Similarity MeasureLumauag, 2021
- Document ID
- 2537496996679228689
- Author
- Lumauag R
- Publication year
- Publication venue
- 2021 Second International Conference on Innovative Technology Convergence (CITC)
External Links
Snippet
Data sparsity remains to be a critical concern for recommendation systems since it results in low accuracy and poor recommendation quality. To address this problem, collaborative filtering techniques based on user similarity have been applied but existing implementations …
- 238000001914 filtration 0 title abstract description 28
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/30675—Query execution
- G06F17/3069—Query execution using vector based model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6261—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30533—Other types of queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30522—Query processing with adaptation to user needs
- G06F17/3053—Query processing with adaptation to user needs using ranking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wasid et al. | An improved recommender system based on multi-criteria clustering approach | |
Wang et al. | Factorization bandits for interactive recommendation | |
Chiliguano et al. | Hybrid music recommender using content-based and social information | |
CN111626821A (en) | Product recommendation method and system for realizing customer classification based on integrated feature selection | |
Kawakubo et al. | Rapid feature selection based on random forests for high-dimensional data | |
Lumauag et al. | An enhanced recommendation algorithm based on modified user-based collaborative filtering | |
Melhart et al. | A study on affect model validity: Nominal vs ordinal labels | |
Wasid et al. | Multi-criteria clustering-based recommendation using Mahalanobis distance | |
Zhang et al. | Robust KPI anomaly detection for large-scale software services with partial labels | |
Wang et al. | AMD-DBSCAN: An Adaptive Multi-density DBSCAN for datasets of extremely variable density | |
Sagala et al. | Enhanced churn prediction model with boosted trees algorithms in the banking sector | |
Dahiya et al. | A rank aggregation algorithm for ensemble of multiple feature selection techniques in credit risk evaluation | |
Mahfuz et al. | Clustering heterogeneous categorical data using enhanced mini batch K-means with entropy distance measure | |
Kumar et al. | A novel fuzzy rough sets theory based CF recommendation system | |
Zhao et al. | Autodes: Automl pipeline generation of classification with dynamic ensemble strategy selection | |
Lumauag | A Modified Memory-Based Collaborative Filtering Algorithm based on a New User Similarity Measure | |
Jesus et al. | Dynamic feature selection based on pareto front optimization | |
Branny et al. | Non-fungible token price prediction with multivariate lstm neural networks | |
Senthil et al. | Efficient time series data classification using sliding window technique based improved association rule mining with enhanced support vector machine | |
Abhinand et al. | An efficient stacking ensemble technique for success prediction of Indian ventures | |
Zhang et al. | CCFD-Gan: Credit card fraud detection based on generative adversarial networks enhanced by penalty mechanism | |
Yan et al. | Unsupervised feature selection through fitness proportionate sharing clustering | |
Al-Shammari | An incremental ensemble diversification in data stream classification using improved hoeffding trees with thompson sampling | |
Mannan et al. | A new user similarity computation method for collaborative filtering using artificial neural network | |
Ye et al. | On the calibration and uncertainty with pólya-gamma augmentation for dialog retrieval models |