[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Khrushchev et al., 1998 - Google Patents

Nonlinear Pulse Switching and Compression in a Dispersion-Imbalanced Loop Mirror

Khrushchev et al., 1998

Document ID
2454941547144798
Author
Khrushchev I
White I
Penty R
Publication year
Publication venue
The European Conference on Lasers and Electro-Optics

External Links

Snippet

Gain-switched and Q-switched laser diodes have long been of interest because they can be directly modulated over widely tuneable repetition rates. However, the pulses generated in such diodes are typically longer than a few picoseconds duration and hence compression …
Continue reading at opg.optica.org (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam with frequency components different from those of the incident light beams is generated
    • G02F1/3536Four-wave interaction
    • G02F1/3538Four-wave interaction for optical phase conjugation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infra-red or ultra-violet waves
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Pulse generation, e.g. Q-switching, mode locking
    • H01S3/117Q-switching using acousto-optical devices
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F2001/3528Non-linear optics for producing a supercontinuum
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/30Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves using scattering effects, e.g. stimulated Brillouin or Raman effects

Similar Documents

Publication Publication Date Title
US8554035B2 (en) Production of optical pulses at a desired wavelength using soliton self-frequency shift in higher-order-mode fiber
JP3781205B2 (en) Frequency chirp control / compensation apparatus and control / compensation method
US4958910A (en) Radiation pulse generation
De Sterke et al. High-intensity pulse propagation in uniform gratings and grating superstructures
Atkins et al. All-optical pulse rate multiplication using fractional Talbot effect and field-to-intensity conversion with cross-gain modulation
JP2022540831A (en) Laser system with pulse duration switch
Tamura et al. Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror
US8798108B2 (en) Device for generating a short duration laser pulse
Khrushchev et al. Nonlinear Pulse Switching and Compression in a Dispersion-Imbalanced Loop Mirror
Bespalov et al. Femtosecond dynamic holography in C60 solutions
Eichler et al. Phase conjugate mirrors
US20050063446A1 (en) Phase conjugate laser and method with improved fidelity
CN111509539A (en) Optical fiber-solid broadband high signal-to-noise ratio laser amplification system based on spectral filtering
RU2802454C2 (en) Ultra-fast pulsed laser system with fast switching of pulse duration
Varming et al. Five wavelength DFB fiber laser source
JP2005241732A (en) Optical pulse amplification apparatus
EP1794853B1 (en) Spatial filter for phase conjugate laser
Atherton et al. Prechirped fiber transport of 800-nm 100-fs pulses
Smirnov et al. Chirped bulk Bragg gratings in PTR glass for ultrashort pulse stretching and compression
Méchin et al. Generation of a 2.5 ps pedestal-free optical pulse using a 10GHz gain-switched laser and a compressing nonlinear amplifying loop mirror
Town et al. Optical pulse code generation using optical fibre gratings
Lou et al. Green and ultraviolet pulse generation using a low-repetition-rate mode-locked Yb-doped fiber laser
Golub Opto-Optical Switch With A Spatially Modulated Gain Medium
Finot et al. Pulse generation and shaping using fiber nonlinearities
Chou et al. Triggerable continuum source for single-shot ultra-fast applications