[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Chandrasekharan et al., 2020 - Google Patents

Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications

Chandrasekharan et al., 2020

View HTML
Document ID
2393800822918996484
Author
Chandrasekharan P
Tay Z
Hensley D
Zhou X
Fung B
Colson C
Lu Y
Fellows B
Huynh Q
Saayujya C
Yu E
Orendorff R
Zheng B
Goodwill P
Rinaldi C
Conolly S
Publication year
Publication venue
Theranostics

External Links

Snippet

Magnetic fluid hyperthermia (MFH) treatment makes use of a suspension of superparamagnetic iron oxide nanoparticles, administered systemically or locally, in combination with an externally applied alternating magnetic field, to ablate target tissue by …
Continue reading at www.ncbi.nlm.nih.gov (HTML) (other versions)

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • A61N1/406Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia using implantable thermoseeds or injected particles for localized hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0409Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is not a halogenated organic compound
    • A61K49/0414Particles, beads, capsules or spheres
    • A61K49/0423Nanoparticles, nanobeads, nanospheres, nanocapsules, i.e. having a size or diameter smaller than 1 micrometer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
    • A61B5/0515Magnetic particle imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves involving electronic or nuclear magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/48Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
    • A61K47/48769Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
    • A61K47/48853Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere
    • A61K47/48861Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being an inorganic particle, e.g. a ceramic particle, silica particle, ferrite, synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis

Similar Documents

Publication Publication Date Title
Chandrasekharan et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications
Rodrigues et al. In vivo magnetic nanoparticle hyperthermia: A review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning
Liu et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy
Lu et al. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment
Healy et al. Clinical magnetic hyperthermia requires integrated magnetic particle imaging
IP Soares et al. Application of hyperthermia for cancer treatment: recent patents review
Wang et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer
Rodrigues et al. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration
Laurent et al. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles
Ortega et al. Magnetic hyperthermia
Hilger et al. Use of magnetic nanoparticle heating in the treatment of breast cancer
Hilger et al. Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice
US20080213382A1 (en) Thermotherapy susceptors and methods of using same
Rivera-Rodriguez et al. Emerging biomedical applications based on the response of magnetic nanoparticles to time-varying magnetic fields
Elsherbini et al. Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging
M Tishin et al. Developing antitumor magnetic hyperthermia: principles, materials and devices
LeBrun et al. Magnetic nanoparticle hyperthermia in cancer treatment: History, mechanism, imaging‐assisted protocol design, and challenges
Binns Medical applications of magnetic nanoparticles
Shalaby et al. A promising platform of magnetic nanofluid and ultrasonic treatment for cancer hyperthermia therapy: In vitro and in vivo study
Polo et al. Magnetic nanoparticles for cancer therapy and bioimaging
Zhang et al. Recent advances in functionalized ferrite nanoparticles: from fundamentals to magnetic hyperthermia cancer therapy
Nijhawan et al. Hyperthermia treatments
Kuboyabu et al. Quantitative evaluation of tumor early response to magnetic hyperthermia combined with vascular disrupting therapy using magnetic particle imaging
Dhavalikar et al. Image-guided thermal therapy using magnetic particle imaging and magnetic fluid hyperthermia
Lei et al. Magnetic particle imaging-guided hyperthermia for precise treatment of cancer: review, challenges, and prospects