[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Akan et al., 2020 - Google Patents

Antennas for space applications: A review

Akan et al., 2020

View HTML
Document ID
2382929270552632478
Author
Akan V
Yazgan E
Publication year
Publication venue
Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

External Links

Snippet

It is well known that antennas are inevitable for wireless communication systems. After the launch of Sputnik-1 which was the first artificial satellite developed by USSR (Union of Soviet Socialist Republics), telecommunication technologies started to develop for space …
Continue reading at www.intechopen.com (HTML) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Curved in two dimensions, e.g. paraboloidal
    • H01Q15/161Collapsible reflectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • H01Q19/10Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • H01Q19/175Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements arrayed along the focal line of a cylindrical focusing surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/52Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure
    • H01Q1/521Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems

Similar Documents

Publication Publication Date Title
Akan et al. Antennas for space applications: A review
Gao et al. Advanced antennas for small satellites
Chahat et al. Advanced cubesat antennas for deep space and earth science missions: A review
Imbriale et al. Space Antenna Handbook
Hodges et al. ISARA-integrated solar array and reflectarray CubeSat deployable Ka-band antenna
Gao et al. Antennas for modern small satellites
Rahmat-Samii et al. Technology trends and challenges of antennas for satellite communication systems
Braun Satellite Communications payload and system
Chahat CubeSat antenna design
Gao et al. Antennas for small satellites
Samsuzzaman et al. BIRDS-1 CubeSat constellation using compact UHF patch antenna
Decrossas et al. Deployable circularly polarized UHF printed loop antenna for mars cube one (MarCO) CubeSat
Cooley et al. RF design and development of a deployable membrane reflectarray antenna for space
Liu et al. Printed yagi-uda antenna array on CubeSat
Chahat et al. Mars cube one
Focardi et al. Deployable mesh reflector antennas for space applications: RF characterizations
Vacchione et al. Telecommunications antennas for the Juno Mission to Jupiter
You et al. Technologies for spacecraft antenna engineering design
Ricardi Communication satellite antennas
Shishlov Vehicular antennas for satellite communications
Fragnier et al. Compact Antennas for Nano-and Micro-satellites: development and future antenna needs at CNES
Roederer Historical overview of the development of space antennas
Yazgan et al. Chapter Antennas for Space Applications: A Review
Devaraj Small Satellite Antennas
Urata et al. Development of a circularly polarized L-band SAR deployable mesh reflector antenna for microsatellite earth observation