Cui, 2011 - Google Patents
A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering mediaCui, 2011
View HTML- Document ID
- 2342931579618729421
- Author
- Cui M
- Publication year
- Publication venue
- Optics express
External Links
Snippet
A large number of degrees of freedom are required to produce a high quality focus through random scattering media. Previous demonstrations based on spatial phase modulations suffer from either a slow speed or a small number of degrees of freedom. In this work, a high …
- 230000000051 modifying 0 title abstract description 21
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/636—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/16—Microscopes adapted for ultra-violet illumination; Fluorescence microscopes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
- G02B21/367—Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
- G02B21/08—Condensers
- G02B21/10—Condensers affording dark-field illumination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cui | A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media | |
Chowdhury et al. | Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy | |
Katz et al. | Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers | |
Vellekoop et al. | Scattered light fluorescence microscopy: imaging through turbid layers | |
Popescu et al. | Diffraction phase microscopy for quantifying cell structure and dynamics | |
Schwertner et al. | Characterizing specimen induced aberrations for high NA adaptive optical microscopy | |
Cui | Parallel wavefront optimization method for focusing light through random scattering media | |
Li et al. | Quantitative phase microscopy for cellular dynamics based on transport of intensity equation | |
Olarte et al. | Decoupled illumination detection in light sheet microscopy for fast volumetric imaging | |
Park et al. | Speckle-field digital holographic microscopy | |
Kim et al. | High-speed synthetic aperture microscopy for live cell imaging | |
Thompson et al. | Adaptive phase compensation for ultracompact laser scanning endomicroscopy | |
Rylander et al. | Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy | |
Sánchez-Ortiga et al. | Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector | |
Noom et al. | Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction | |
Tao et al. | Adaptive optical two-photon microscopy using autofluorescent guide stars | |
Lu et al. | Super-resolution scanning laser microscopy through virtually structured detection | |
Rinehart et al. | Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera | |
Applegate et al. | Polarization-resolved second-harmonic-generation optical coherence tomography in collagen | |
Wang et al. | Comparison of line-scanned and point-scanned dual-axis confocal microscope performance | |
Doi et al. | High-resolution imaging in two-photon excitation microscopy using in situ estimations of the point spread function | |
Yuan et al. | Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography | |
Liu et al. | Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique | |
Goy et al. | Digital confocal microscope | |
Tao et al. | Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF) |