[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Han et al., 2016 - Google Patents

Improving the Specific Capacity and Cyclability of Sodium‐Ion Batteries by Engineering a Dual‐Carbon Phase‐Modified Amorphous and Mesoporous Iron Phosphide

Han et al., 2016

Document ID
2282277956048168840
Author
Han F
Tan C
Gao Z
Publication year
Publication venue
ChemElectroChem

External Links

Snippet

Based on the concept of the nanoconfinement reaction, a synthetic strategy is developed to construct carbon‐coated iron phosphide (FeP) with an amorphous and mesoporous framework anchored on carbon nanotubes (CNTs). The synthesis involves direct growth of …
Continue reading at chemistry-europe.onlinelibrary.wiley.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B31/00Carbon; Compounds thereof
    • C01B31/02Preparation of carbon; Purification; After-treatment
    • C01B31/0206Nanosized carbon materials
    • C01B31/022Carbon nanotubes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte

Similar Documents

Publication Publication Date Title
Han et al. Improving the Specific Capacity and Cyclability of Sodium‐Ion Batteries by Engineering a Dual‐Carbon Phase‐Modified Amorphous and Mesoporous Iron Phosphide
Tian et al. Stable hollow‐structured silicon suboxide‐based anodes toward high‐performance lithium‐ion batteries
Zhang et al. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder‐free anodes for sodium‐ion batteries
Zhou et al. Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors
Zhang et al. 3D, mutually embedded MOF@ carbon nanotube hybrid networks for high‐performance lithium‐sulfur batteries
Zou et al. Advanced hierarchical vesicular carbon co‐doped with S, P, N for high‐rate sodium storage
Li et al. Confined amorphous red phosphorus in MOF‐derived N‐doped microporous carbon as a superior anode for sodium‐ion battery
Zhu et al. Ultrathin‐nanosheet‐induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes
Zhou et al. Ultrahigh‐performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach
Lei et al. Confined Nanospace Pyrolysis for the Fabrication of Coaxial Fe3O4@ C Hollow Particles with a Penetrated Mesochannel as a Superior Anode for Li‐Ion Batteries
Wang et al. Supercritical Carbon Dioxide Assisted Deposition of Fe3O4 Nanoparticles on Hierarchical Porous Carbon and Their Lithium‐Storage Performance
Yu et al. Growth of hollow transition metal (Fe, Co, Ni) oxide nanoparticles on graphene sheets through Kirkendall effect as anodes for high‐performance lithium‐ion batteries
Xu et al. Construction of rGO‐Encapsulated Co3O4‐CoFe2O4 Composites with a Double‐Buffer Structure for High‐Performance Lithium Storage
He et al. One‐pot synthesis of pomegranate‐structured Fe3O4/carbon nanospheres‐doped graphene aerogel for high‐rate lithium ion batteries
Fang et al. Facile Fabrication of Fe2O3 Nanoparticles Anchored on Carbon Nanotubes as High‐Performance Anode for Lithium‐Ion Batteries
Qin et al. Germanium Quantum Dots Embedded in N‐Doping Graphene Matrix with Sponge‐Like Architecture for Enhanced Performance in Lithium‐Ion Batteries
Dong et al. Facile Synthesis of Hollow Mesoporous CoFe2O4 Nanospheres and Graphene Composites as High‐Performance Anode Materials for Lithium‐Ion Batteries
Zheng et al. Porous core–shell CuCo2S4 nanospheres as anode material for enhanced lithium‐ion batteries
Ding et al. Confined Pyrolysis of ZIF‐8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures
Liu et al. Metal‐organic framework derived Ni2P/C hollow microspheres as battery‐type electrodes for battery‐supercapacitor hybrids
Choi et al. Macroporous Fe3O4/carbon composite microspheres with a short Li+ diffusion pathway for the fast charge/discharge of lithium ion batteries
Shin et al. Atomic‐distributed coordination state of metal‐phenolic compounds enabled low temperature graphitization for high‐performance multioriented graphite anode
Saikia et al. Insight into the Superior Lithium Storage Properties of Ultrafine CoO Nanoparticles Confined in a 3 D Bimodal Ordered Mesoporous Carbon CMK‐9 Anode
Wang et al. Hierarchically Porous Carbon Nanofibers Encapsulating Carbon‐Coated Mini Hollow FeP Nanoparticles for High Performance Lithium and Sodium Ion Batteries
Li et al. Hierarchically Multiporous Carbon Nanotube/Co3O4 Composite as an Anode Material for High‐Performance Lithium‐Ion Batteries