Han et al., 2016 - Google Patents
Improving the Specific Capacity and Cyclability of Sodium‐Ion Batteries by Engineering a Dual‐Carbon Phase‐Modified Amorphous and Mesoporous Iron PhosphideHan et al., 2016
- Document ID
- 2282277956048168840
- Author
- Han F
- Tan C
- Gao Z
- Publication year
- Publication venue
- ChemElectroChem
External Links
Snippet
Based on the concept of the nanoconfinement reaction, a synthetic strategy is developed to construct carbon‐coated iron phosphide (FeP) with an amorphous and mesoporous framework anchored on carbon nanotubes (CNTs). The synthesis involves direct growth of …
- 229910001415 sodium ion 0 title abstract description 34
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B31/00—Carbon; Compounds thereof
- C01B31/02—Preparation of carbon; Purification; After-treatment
- C01B31/0206—Nanosized carbon materials
- C01B31/022—Carbon nanotubes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | Improving the Specific Capacity and Cyclability of Sodium‐Ion Batteries by Engineering a Dual‐Carbon Phase‐Modified Amorphous and Mesoporous Iron Phosphide | |
Tian et al. | Stable hollow‐structured silicon suboxide‐based anodes toward high‐performance lithium‐ion batteries | |
Zhang et al. | A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder‐free anodes for sodium‐ion batteries | |
Zhou et al. | Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors | |
Zhang et al. | 3D, mutually embedded MOF@ carbon nanotube hybrid networks for high‐performance lithium‐sulfur batteries | |
Zou et al. | Advanced hierarchical vesicular carbon co‐doped with S, P, N for high‐rate sodium storage | |
Li et al. | Confined amorphous red phosphorus in MOF‐derived N‐doped microporous carbon as a superior anode for sodium‐ion battery | |
Zhu et al. | Ultrathin‐nanosheet‐induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes | |
Zhou et al. | Ultrahigh‐performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach | |
Lei et al. | Confined Nanospace Pyrolysis for the Fabrication of Coaxial Fe3O4@ C Hollow Particles with a Penetrated Mesochannel as a Superior Anode for Li‐Ion Batteries | |
Wang et al. | Supercritical Carbon Dioxide Assisted Deposition of Fe3O4 Nanoparticles on Hierarchical Porous Carbon and Their Lithium‐Storage Performance | |
Yu et al. | Growth of hollow transition metal (Fe, Co, Ni) oxide nanoparticles on graphene sheets through Kirkendall effect as anodes for high‐performance lithium‐ion batteries | |
Xu et al. | Construction of rGO‐Encapsulated Co3O4‐CoFe2O4 Composites with a Double‐Buffer Structure for High‐Performance Lithium Storage | |
He et al. | One‐pot synthesis of pomegranate‐structured Fe3O4/carbon nanospheres‐doped graphene aerogel for high‐rate lithium ion batteries | |
Fang et al. | Facile Fabrication of Fe2O3 Nanoparticles Anchored on Carbon Nanotubes as High‐Performance Anode for Lithium‐Ion Batteries | |
Qin et al. | Germanium Quantum Dots Embedded in N‐Doping Graphene Matrix with Sponge‐Like Architecture for Enhanced Performance in Lithium‐Ion Batteries | |
Dong et al. | Facile Synthesis of Hollow Mesoporous CoFe2O4 Nanospheres and Graphene Composites as High‐Performance Anode Materials for Lithium‐Ion Batteries | |
Zheng et al. | Porous core–shell CuCo2S4 nanospheres as anode material for enhanced lithium‐ion batteries | |
Ding et al. | Confined Pyrolysis of ZIF‐8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures | |
Liu et al. | Metal‐organic framework derived Ni2P/C hollow microspheres as battery‐type electrodes for battery‐supercapacitor hybrids | |
Choi et al. | Macroporous Fe3O4/carbon composite microspheres with a short Li+ diffusion pathway for the fast charge/discharge of lithium ion batteries | |
Shin et al. | Atomic‐distributed coordination state of metal‐phenolic compounds enabled low temperature graphitization for high‐performance multioriented graphite anode | |
Saikia et al. | Insight into the Superior Lithium Storage Properties of Ultrafine CoO Nanoparticles Confined in a 3 D Bimodal Ordered Mesoporous Carbon CMK‐9 Anode | |
Wang et al. | Hierarchically Porous Carbon Nanofibers Encapsulating Carbon‐Coated Mini Hollow FeP Nanoparticles for High Performance Lithium and Sodium Ion Batteries | |
Li et al. | Hierarchically Multiporous Carbon Nanotube/Co3O4 Composite as an Anode Material for High‐Performance Lithium‐Ion Batteries |