Viotti et al., 2009 - Google Patents
Industrial inspections by speckle interferometry: general requirements and a case studyViotti et al., 2009
View PDF- Document ID
- 2264893359400526748
- Author
- Viotti M
- G Jr A
- Publication year
- Publication venue
- Optical Measurement Systems for Industrial Inspection VI
External Links
Snippet
Digital speckle pattern interferometry is potentially capable to solve a large variety of measurement and inspection demands in industrial applications. However, it is not so widely used in industry due to some special requirements that are not easily fulfilled on the shop …
- 238000005305 interferometry 0 title abstract description 8
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/02—Measuring arrangements characterised by the use of optical means for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical means for measuring length, width or thickness for measuring thickness, e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical means for measuring length, width or thickness for measuring thickness, e.g. of sheet material of coating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/24—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/16—Measuring arrangements characterised by the use of optical means for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/14—Measuring arrangements characterised by the use of optical means for measuring distance or clearance between spaced objects or spaced apertures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02001—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by manipulating or generating specific radiation properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02015—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by a particular beam path configuration
- G01B9/02022—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by a particular beam path configuration contacting one object by grazing incidence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/266—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light by interferometric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B3/00—Instruments as specified in the subgroups and characterised by the use of mechanical measuring means
- G01B3/20—Slide gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
- G01J9/02—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Steinzig et al. | Residual stress measurement using the hole drilling method and laser speckle interferometry: part 1 | |
Nelson | Residual stress determination by hole drilling combined with optical methods | |
Min et al. | Determination of residual stress by use of phase shifting moiré interferometry and hole-drilling method | |
Viotti et al. | Experimental comparison between a portable DSPI device with diffractive optical element and a hole drilling strain gage combined system | |
Viotti et al. | Compact sensor combining digital speckle pattern interferometry and the hole-drilling technique to measure nonuniform residual stress fields | |
Pisarev et al. | Reflection hologram interferometry combined with hole drilling technique as an effective tool for residual stresses fields investigation in thin-walled structures | |
Viotti et al. | Industrial inspections by speckle interferometry: general requirements and a case study | |
Abdullah et al. | Wavefront divergence: a source of error in quantified speckle shearing data | |
Gibson et al. | Absolute angle measurement using dual-wavelength laser speckle for robotic manufacturing | |
Albertazzi Gonçalves Jr et al. | Radial speckle interferometry and applications | |
Tendela et al. | A novel approach for measuring nanometric displacements by correlating speckle interferograms | |
Krezel et al. | Design and testing of a low-cost full-field integrated optical extensometer | |
G Jr et al. | A radial in-plane DSPI interferometer using diffractive optics for residual stresses measurement | |
Sjoedahl et al. | Strain and torque measurements on cylindrical objects using the laser speckle strain gauge | |
Miks et al. | Application of multistep algorithms for deformation measurement | |
Albertazzi et al. | Full-field optical metrology in polar and cylindrical coordinates | |
Albertazzi et al. | Residual stresses measurement and inner geometry inspection of pipelines by optical methods | |
Bortoli et al. | Diameter quantification of through holes in pipelines hidden by protective layers of composite materials using instantaneous shearography simultaneously in three shearing directions | |
Lemeshko et al. | Precision dimensional inspection of diameters of circular reflecting cylinders | |
Wyant | A wonderful life of holography, interferometry, and optical testing | |
Pacheco et al. | Bending moment evaluation of a long specimen using a radial speckle pattern interferometer in combination with relaxation methods | |
Miroshnichenko et al. | Using a point radiation source to extend the functional possibilities of a device for measuring displacements | |
Albertazzi Jr et al. | Performance evaluation of a radial in-plane digital speckle pattern interferometer using a diffractive optical element for residual stress measurement | |
G Jr et al. | Full-field optical metrology in polar and cylindrical coordinates | |
Mahammad et al. | Optical Dimensional Metrology |