Yang et al., 2023 - Google Patents
Efficient hdr reconstruction from real-world raw imagesYang et al., 2023
View PDF- Document ID
- 2255016174673417009
- Author
- Yang Q
- Liu Y
- Chen Q
- Yue H
- Li K
- Yang J
- Publication year
- Publication venue
- arXiv preprint arXiv:2306.10311
External Links
Snippet
The widespread usage of high-definition screens on edge devices stimulates a strong demand for efficient high dynamic range (HDR) algorithms. However, many existing HDR methods either deliver unsatisfactory results or consume too much computational and …
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/232—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
- H04N5/23229—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles comprising further processing of the captured image without influencing the image pickup process
- H04N5/23232—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles comprising further processing of the captured image without influencing the image pickup process by using more than one image in order to influence resolution, frame rate or aspect ratio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/335—Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
- H04N5/351—Control of the SSIS depending on the scene, e.g. brightness or motion in the scene
- H04N5/355—Control of the dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/235—Circuitry or methods for compensating for variation in the brightness of the object, e.g. based on electric image signals provided by an electronic image sensor
- H04N5/2355—Circuitry or methods for compensating for variation in the brightness of the object, e.g. based on electric image signals provided by an electronic image sensor by increasing the dynamic range of the final image compared to the dynamic range of the electronic image sensor, e.g. by adding correct exposed portions of short and long exposed images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/335—Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
- H04N5/357—Noise processing, e.g. detecting, correcting, reducing or removing noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/335—Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
- H04N5/369—SSIS architecture; Circuitry associated therewith
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effect; Cameras specially adapted for the electronic generation of special effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/21—Circuitry for suppressing or minimising disturbance, e.g. moiré, halo, even if the automatic gain control is involved
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/04—Picture signal generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
- G06T3/40—Scaling the whole image or part thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20182—Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pérez-Pellitero et al. | NTIRE 2021 challenge on high dynamic range imaging: Dataset, methods and results | |
Wei et al. | Physics-based noise modeling for extreme low-light photography | |
JP5319415B2 (en) | Image processing apparatus and image processing method | |
TWI615027B (en) | High dynamic range image generation method, imaging device, terminal device and imaging method | |
US8749699B2 (en) | Method and device for video processing using a neighboring frame to calculate motion information | |
KR102314703B1 (en) | Joint dictionary generation method for image processing, interlace based high dynamic range imaging apparatus using the joint dictionary and image processing method of the same | |
Conde et al. | Model-based image signal processors via learnable dictionaries | |
Cho et al. | Single‐shot High Dynamic Range Imaging Using Coded Electronic Shutter | |
JP6714078B2 (en) | Image processing apparatus, image processing method, and image processing program | |
CN114820405A (en) | Image fusion method, device, equipment and computer readable storage medium | |
CN111429371A (en) | Image processing method and device and terminal equipment | |
Zheng et al. | Neural augmented exposure interpolation for two large-exposure-ratio images | |
CN112651911B (en) | High dynamic range imaging generation method based on polarized image | |
Zhou et al. | Unmodnet: Learning to unwrap a modulo image for high dynamic range imaging | |
Jiang et al. | Hdr video reconstruction with tri-exposure quad-bayer sensors | |
CN108122218B (en) | Image fusion method and device based on color space | |
Yang et al. | Efficient hdr reconstruction from real-world raw images | |
Lukac | Single-sensor imaging in consumer digital cameras: a survey of recent advances and future directions | |
WO2020215263A1 (en) | Image processing method and device | |
CN116208812A (en) | Video frame inserting method and system based on stereo event and intensity camera | |
Lee et al. | Efficient unified demosaicing for bayer and non-bayer patterned image sensors | |
Silva et al. | A deep learning approach to mobile camera image signal processing | |
Li et al. | Penrose high-dynamic-range imaging | |
JP2023537864A (en) | Systems and methods for performing image enhancement using neural networks implemented by channel-constrained hardware accelerators | |
Lin et al. | LDRM: Degradation Rectify Model for Low-light Imaging via Color-Monochrome Cameras |